Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics
Plant litter decomposition in the soil is governed by microorganisms such as bacteria and fungi that colonize lignocellulose residues during the decomposition process, and thus, the interplay of bacterial and fungal communities can yield insight into the lignocellulose decomposition dynamics. Previo...
Saved in:
Published in | Soil biology & biochemistry Vol. 157; p. 108230 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant litter decomposition in the soil is governed by microorganisms such as bacteria and fungi that colonize lignocellulose residues during the decomposition process, and thus, the interplay of bacterial and fungal communities can yield insight into the lignocellulose decomposition dynamics. Previous studies have mainly investigated litter decomposing communities in microcosms or ex-situ conditions or at a single soil ecosystem. Here we conducted a 12 week-long litter decomposition experiment to explore how the temporal dynamics of soil enzyme activities and microbial communities are linked to litter decomposition under three different land use sites (forestland, farmland, and abandoned farmland) in Nanjing, China. We found that litter decomposition in the forestland was the highest among the three land use sites. Then, using a multifactorial approach, we showed that this higher decomposition rate in forest soils is determined by microbial communities with higher ligninolytic enzyme activities, higher diversity, and a less complex but more specialized network. Chryseobacterium in bacteria, and Fusarium, Aspergillus and Penicillium in fungi were the keystone taxa in networks across three land use types. We conducted subsequent culturing that further confirmed the strong decomposition ability and enzyme activities of these taxa, indicating their importance for microbial litter decomposition. As such, this is one of the first studies to validate the role of keystone taxa for litter decomposition, and it demonstrates that co-occurrence network scores can be used for statistical identification of putative keystone taxa for further screening and linking to microbiome functioning. Overall, we show that land use alters the composition and network structure of soil microbiota that determine the litter decomposition. Our study also reveals that specialized keystone taxa are involved in the decomposition dynamics, and highlights an opportunity of harnessing such taxa for manipulating lignocellulose decomposition in soil ecosystems.
•Forestland had the highest litter decomposition and lignocellulolytic enzyme activities.•Forestland had greater microbial diversity and a specialized microbial network.•Culturing supported the role of keystone taxa in litter decomposition. |
---|---|
AbstractList | Plant litter decomposition in the soil is governed by microorganisms such as bacteria and fungi that colonize lignocellulose residues during the decomposition process, and thus, the interplay of bacterial and fungal communities can yield insight into the lignocellulose decomposition dynamics. Previous studies have mainly investigated litter decomposing communities in microcosms or ex-situ conditions or at a single soil ecosystem. Here we conducted a 12 week-long litter decomposition experiment to explore how the temporal dynamics of soil enzyme activities and microbial communities are linked to litter decomposition under three different land use sites (forestland, farmland, and abandoned farmland) in Nanjing, China. We found that litter decomposition in the forestland was the highest among the three land use sites. Then, using a multifactorial approach, we showed that this higher decomposition rate in forest soils is determined by microbial communities with higher ligninolytic enzyme activities, higher diversity, and a less complex but more specialized network. Chryseobacterium in bacteria, and Fusarium, Aspergillus and Penicillium in fungi were the keystone taxa in networks across three land use types. We conducted subsequent culturing that further confirmed the strong decomposition ability and enzyme activities of these taxa, indicating their importance for microbial litter decomposition. As such, this is one of the first studies to validate the role of keystone taxa for litter decomposition, and it demonstrates that co-occurrence network scores can be used for statistical identification of putative keystone taxa for further screening and linking to microbiome functioning. Overall, we show that land use alters the composition and network structure of soil microbiota that determine the litter decomposition. Our study also reveals that specialized keystone taxa are involved in the decomposition dynamics, and highlights an opportunity of harnessing such taxa for manipulating lignocellulose decomposition in soil ecosystems. Plant litter decomposition in the soil is governed by microorganisms such as bacteria and fungi that colonize lignocellulose residues during the decomposition process, and thus, the interplay of bacterial and fungal communities can yield insight into the lignocellulose decomposition dynamics. Previous studies have mainly investigated litter decomposing communities in microcosms or ex-situ conditions or at a single soil ecosystem. Here we conducted a 12 week-long litter decomposition experiment to explore how the temporal dynamics of soil enzyme activities and microbial communities are linked to litter decomposition under three different land use sites (forestland, farmland, and abandoned farmland) in Nanjing, China. We found that litter decomposition in the forestland was the highest among the three land use sites. Then, using a multifactorial approach, we showed that this higher decomposition rate in forest soils is determined by microbial communities with higher ligninolytic enzyme activities, higher diversity, and a less complex but more specialized network. Chryseobacterium in bacteria, and Fusarium, Aspergillus and Penicillium in fungi were the keystone taxa in networks across three land use types. We conducted subsequent culturing that further confirmed the strong decomposition ability and enzyme activities of these taxa, indicating their importance for microbial litter decomposition. As such, this is one of the first studies to validate the role of keystone taxa for litter decomposition, and it demonstrates that co-occurrence network scores can be used for statistical identification of putative keystone taxa for further screening and linking to microbiome functioning. Overall, we show that land use alters the composition and network structure of soil microbiota that determine the litter decomposition. Our study also reveals that specialized keystone taxa are involved in the decomposition dynamics, and highlights an opportunity of harnessing such taxa for manipulating lignocellulose decomposition in soil ecosystems. •Forestland had the highest litter decomposition and lignocellulolytic enzyme activities.•Forestland had greater microbial diversity and a specialized microbial network.•Culturing supported the role of keystone taxa in litter decomposition. |
ArticleNumber | 108230 |
Author | He, Panpan Shen, Qirong Mei, Xinlan Yang, Tianjie Bao, Yanzhuo Zheng, Haiping Wei, Zhong Xu, Yangchun Banerjee, Samiran Yang, Keming |
Author_xml | – sequence: 1 givenname: Haiping surname: Zheng fullname: Zheng, Haiping organization: College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, PR China – sequence: 2 givenname: Tianjie surname: Yang fullname: Yang, Tianjie organization: College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, PR China – sequence: 3 givenname: Yanzhuo surname: Bao fullname: Bao, Yanzhuo organization: College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, PR China – sequence: 4 givenname: Panpan surname: He fullname: He, Panpan organization: College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, PR China – sequence: 5 givenname: Keming orcidid: 0000-0003-0069-5765 surname: Yang fullname: Yang, Keming organization: College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, PR China – sequence: 6 givenname: Xinlan surname: Mei fullname: Mei, Xinlan organization: College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, PR China – sequence: 7 givenname: Zhong surname: Wei fullname: Wei, Zhong organization: College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, PR China – sequence: 8 givenname: Yangchun surname: Xu fullname: Xu, Yangchun email: ycxu@njau.edu.cn organization: College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, PR China – sequence: 9 givenname: Qirong surname: Shen fullname: Shen, Qirong organization: College of Resources and Environmental Sciences, Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, PR China – sequence: 10 givenname: Samiran surname: Banerjee fullname: Banerjee, Samiran organization: Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA |
BookMark | eNqFkEFvEzEQhS1UJNLCT6jkI5dNbe-u1xEHhCqgSBVcerds77Sa1LGDxxvIv8dReuLSuczIeu_p-btkFyknYOxairUUUt9s15QxesxrJZRsb0b14g1bSTNtun5Q5oKthOhNJyY5vWOXRFshhBplv2LlJ9Q_uTxzl1w8ElI7Zk6LJ_i9QKo8LLEuBdMTL3AAF_kzHKm2Ary6v45jOuR4gLkdfIehZI9NE7FWKHyGkHf7TFgxJz4fk2sSes_ePrpI8OFlX7GHb18fbu-6-1_ff9x-ue_CIEztYBpAezBBCd-PXsiWpsFMQsFm8MqYIehezi6MelJmmCehtQ5GehWG4Hx_xT6eY_clt69QtTukADG6BHkhq8ZRbrRs06SfztLWn6jAow1Y3al0LQ6jlcKeQNutfQFtT6DtGXRzj_-59wV3rhxf9X0--6BBOCAUSwEhBZixQKh2zvhKwj8HaqCM |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2024_105761 crossref_primary_10_1016_j_scitotenv_2024_173226 crossref_primary_10_3390_microorganisms12040713 crossref_primary_10_1016_j_apsoil_2024_105484 crossref_primary_10_1186_s12870_025_06392_2 crossref_primary_10_1016_j_scitotenv_2022_154302 crossref_primary_10_3390_w15183246 crossref_primary_10_1016_j_apsoil_2024_105521 crossref_primary_10_5194_soil_8_163_2022 crossref_primary_10_1002_ldr_4547 crossref_primary_10_1016_j_wasman_2023_02_033 crossref_primary_10_1016_j_ecoenv_2024_117609 crossref_primary_10_1016_j_soilbio_2024_109623 crossref_primary_10_1016_j_scitotenv_2023_162972 crossref_primary_10_1016_j_catena_2023_107251 crossref_primary_10_1186_s40168_023_01553_7 crossref_primary_10_3389_fmicb_2023_1177239 crossref_primary_10_1016_j_biortech_2023_130118 crossref_primary_10_1002_ldr_5470 crossref_primary_10_1093_jpe_rtad031 crossref_primary_10_1016_j_scitotenv_2023_169353 crossref_primary_10_3390_f14050955 crossref_primary_10_1016_j_envres_2022_114420 crossref_primary_10_1186_s12870_024_05351_7 crossref_primary_10_3389_fenvs_2022_956309 crossref_primary_10_1016_j_scitotenv_2024_170881 crossref_primary_10_1016_j_scitotenv_2022_153560 crossref_primary_10_1016_j_scitotenv_2024_176586 crossref_primary_10_3389_fmicb_2024_1478807 crossref_primary_10_1002_ldr_4937 crossref_primary_10_1016_j_ejsobi_2022_103462 crossref_primary_10_1021_acs_est_4c08731 crossref_primary_10_1128_spectrum_01355_23 crossref_primary_10_3389_fmicb_2022_1076620 crossref_primary_10_1016_j_marpolbul_2024_117431 crossref_primary_10_1016_j_apsoil_2025_105919 crossref_primary_10_1111_1758_2229_70044 crossref_primary_10_3390_microorganisms9071532 crossref_primary_10_1002_ldr_5106 crossref_primary_10_1111_1365_2435_14500 crossref_primary_10_1111_gcb_17101 crossref_primary_10_3389_fmicb_2025_1531875 crossref_primary_10_1016_j_scitotenv_2024_172874 crossref_primary_10_3389_fmicb_2023_1120679 crossref_primary_10_1515_biol_2022_0807 crossref_primary_10_1016_j_watres_2022_118104 crossref_primary_10_1016_j_apsoil_2023_105102 crossref_primary_10_3389_fpls_2024_1467689 crossref_primary_10_1016_j_envpol_2023_121443 crossref_primary_10_1016_j_apsoil_2024_105744 crossref_primary_10_1016_j_soilbio_2022_108916 crossref_primary_10_1007_s11104_022_05528_9 crossref_primary_10_1016_j_apsoil_2022_104735 crossref_primary_10_1007_s00248_022_02134_1 crossref_primary_10_1016_j_eti_2024_103682 crossref_primary_10_1016_j_jia_2024_09_020 crossref_primary_10_1007_s42729_024_01771_4 crossref_primary_10_1016_j_scitotenv_2022_159223 crossref_primary_10_3389_fmicb_2024_1353629 crossref_primary_10_1016_j_soilbio_2025_109763 crossref_primary_10_3390_agronomy14071349 crossref_primary_10_1007_s13399_023_04991_3 crossref_primary_10_1016_j_agee_2024_108915 crossref_primary_10_1016_j_scitotenv_2024_171936 crossref_primary_10_1016_j_agee_2023_108717 crossref_primary_10_1007_s11104_023_05897_9 crossref_primary_10_1016_j_jia_2024_06_008 crossref_primary_10_3390_agriculture14060792 crossref_primary_10_1016_j_scitotenv_2024_171952 crossref_primary_10_3389_fmicb_2025_1544641 crossref_primary_10_1016_j_scitotenv_2024_172365 crossref_primary_10_3389_fmars_2024_1459186 crossref_primary_10_1016_j_still_2024_106037 crossref_primary_10_1002_ldr_4877 crossref_primary_10_1007_s11104_023_06319_6 crossref_primary_10_1094_MPMI_09_22_0188_R crossref_primary_10_2139_ssrn_4116195 crossref_primary_10_1016_j_meatsci_2024_109704 crossref_primary_10_1038_s43705_022_00109_4 crossref_primary_10_1016_j_micres_2022_127203 crossref_primary_10_1016_j_aquaculture_2024_741999 crossref_primary_10_1016_j_scitotenv_2022_156242 crossref_primary_10_1016_j_scitotenv_2023_165532 crossref_primary_10_1039_D4EM00096J crossref_primary_10_1016_j_agee_2022_108065 crossref_primary_10_1016_j_foreco_2022_120072 crossref_primary_10_1038_s43705_022_00144_1 crossref_primary_10_1016_j_envpol_2023_122790 crossref_primary_10_1016_j_apsoil_2024_105567 crossref_primary_10_1093_ismeco_ycae022 crossref_primary_10_1016_j_scitotenv_2023_168355 crossref_primary_10_1007_s11756_021_00818_6 crossref_primary_10_3390_jof9121165 crossref_primary_10_3390_microorganisms12122498 crossref_primary_10_3390_f15050797 crossref_primary_10_3389_fmicb_2021_780015 crossref_primary_10_1111_1758_2229_13205 crossref_primary_10_1007_s42729_023_01545_4 crossref_primary_10_1016_j_gecco_2025_e03501 crossref_primary_10_1016_j_scitotenv_2023_162413 crossref_primary_10_1016_j_ejsobi_2024_103664 crossref_primary_10_1016_j_soisec_2024_100140 crossref_primary_10_1007_s11356_023_26944_z crossref_primary_10_1016_j_catena_2023_107734 crossref_primary_10_1016_j_scitotenv_2024_172724 crossref_primary_10_1016_j_scitotenv_2022_157627 crossref_primary_10_1016_j_scitotenv_2024_172862 crossref_primary_10_1016_j_apsoil_2024_105330 crossref_primary_10_3389_fmicb_2024_1505916 crossref_primary_10_1016_j_jece_2024_113334 crossref_primary_10_1016_j_scitotenv_2023_169398 crossref_primary_10_3389_fmicb_2023_1167353 crossref_primary_10_1016_j_jes_2023_03_005 crossref_primary_10_1016_j_jenvman_2024_122897 crossref_primary_10_1007_s00374_024_01857_2 crossref_primary_10_3389_fbioe_2022_1062351 crossref_primary_10_1016_j_still_2022_105360 crossref_primary_10_1002_ldr_4219 crossref_primary_10_1016_j_scitotenv_2024_175297 crossref_primary_10_1016_j_biortech_2022_127547 crossref_primary_10_1016_j_scitotenv_2022_153082 crossref_primary_10_1007_s11356_024_32221_4 crossref_primary_10_3390_agronomy14123036 crossref_primary_10_1016_j_heliyon_2024_e24022 crossref_primary_10_1016_j_indcrop_2023_117723 crossref_primary_10_1016_j_jhazmat_2024_134577 crossref_primary_10_1128_spectrum_00933_22 crossref_primary_10_1016_j_geoderma_2023_116668 crossref_primary_10_1016_j_jia_2024_09_019 crossref_primary_10_1016_j_scitotenv_2024_171529 crossref_primary_10_1016_j_scitotenv_2022_153517 crossref_primary_10_1016_j_jenvman_2024_122964 crossref_primary_10_3390_microorganisms12112274 crossref_primary_10_3390_microorganisms12050938 crossref_primary_10_1016_j_envres_2023_116194 crossref_primary_10_3390_w16060906 crossref_primary_10_1016_j_envint_2024_108516 crossref_primary_10_3389_fpls_2022_973919 crossref_primary_10_1007_s11783_025_1978_7 crossref_primary_10_1111_sum_13051 crossref_primary_10_1016_j_jenvman_2025_124350 crossref_primary_10_1016_j_soilbio_2021_108357 crossref_primary_10_1016_j_agee_2022_108118 crossref_primary_10_3389_fmicb_2022_824267 crossref_primary_10_3390_microorganisms11071755 crossref_primary_10_1016_j_envres_2024_119707 crossref_primary_10_1002_ldr_5371 crossref_primary_10_1016_j_jhazmat_2022_129482 crossref_primary_10_1007_s11104_022_05727_4 crossref_primary_10_1016_j_apsoil_2022_104661 crossref_primary_10_1186_s40168_024_01965_z crossref_primary_10_1128_spectrum_02794_22 crossref_primary_10_3389_fmicb_2022_912312 crossref_primary_10_3389_fmicb_2023_1327056 crossref_primary_10_3389_fmicb_2023_1091117 crossref_primary_10_3389_fmicb_2024_1489889 crossref_primary_10_1016_j_envpol_2024_125610 crossref_primary_10_1016_j_scitotenv_2024_171191 crossref_primary_10_1016_j_jenvman_2024_122837 crossref_primary_10_3389_fpls_2025_1545311 crossref_primary_10_1007_s42729_024_01819_5 crossref_primary_10_1016_j_crmicr_2024_100227 crossref_primary_10_1016_j_algal_2024_103656 crossref_primary_10_1016_j_soilbio_2023_109019 crossref_primary_10_1016_j_ejsobi_2021_103379 crossref_primary_10_1016_j_envint_2023_107903 crossref_primary_10_1038_s41522_022_00277_0 crossref_primary_10_1016_j_jhazmat_2022_130597 crossref_primary_10_1016_j_foreco_2023_120851 crossref_primary_10_1128_spectrum_00186_22 crossref_primary_10_3390_agronomy14102333 crossref_primary_10_5194_bg_20_4737_2023 |
Cites_doi | 10.1016/j.femsre.2004.11.005 10.1002/ecy.2142 10.1007/s13213-014-1002-0 10.1128/AEM.66.4.1328-1333.2000 10.1016/j.soilbio.2009.11.016 10.1111/j.1461-0248.2012.01837.x 10.1016/j.soilbio.2016.03.017 10.1007/s11356-014-3342-5 10.1007/s002489900146 10.1890/08-0296.1 10.1016/j.soilbio.2018.04.026 10.1016/j.biortech.2016.08.035 10.1016/j.biortech.2014.03.145 10.1016/S0926-6690(03)00018-9 10.1016/S0141-3910(01)00163-X 10.1016/j.soilbio.2008.10.024 10.1016/j.biortech.2019.01.013 10.1016/j.copbio.2014.07.002 10.1016/0014-5793(90)80298-W 10.1093/bioinformatics/btr381 10.1007/s00374-010-0478-4 10.1111/1462-2920.12815 10.1371/journal.pbio.1002352 10.1016/j.biortech.2012.07.051 10.1186/1471-2180-10-189 10.1111/j.1365-294X.1993.tb00005.x 10.1038/ncomms14349 10.1016/j.pedobi.2009.03.004 10.1016/j.biortech.2006.01.007 10.1007/s00442-013-2758-9 10.1016/j.foreco.2016.07.035 10.1021/cr500351c 10.1093/bioinformatics/btn209 10.1016/j.soilbio.2006.04.028 10.1016/j.soilbio.2015.08.010 10.1016/j.soilbio.2015.11.007 10.3389/fmicb.2012.00348 10.1038/nclimate1951 10.1002/ecy.2137 10.1038/nature08058 10.1016/j.enzmictec.2007.11.008 10.1038/ismej.2012.116 10.3748/wjg.v16.i33.4135 10.1111/ele.13456 10.7150/ijbs.5.578 10.1016/j.soilbio.2010.11.015 10.1073/pnas.1000080107 10.1111/j.1574-6941.2010.00999.x 10.1038/s41467-018-05516-7 10.1016/S1164-5563(01)01089-5 10.1186/s13068-014-0162-2 10.1038/s41579-018-0024-1 10.1007/s11368-017-1749-6 10.1021/ac60147a030 10.1890/05-1839 10.1073/pnas.0601602103 10.1128/AEM.00083-13 10.1038/s41396-019-0383-2 10.1038/s41467-019-12798-y 10.1016/j.geoderma.2019.07.034 10.1016/0003-2697(86)90063-1 10.1016/j.biortech.2007.01.060 10.1111/j.2517-6161.1995.tb02031.x 10.1038/srep25279 10.1139/cjm-2017-0754 10.5194/we-16-51-2016 10.1016/j.chom.2014.11.005 10.1007/s11356-020-10192-6 10.1093/bioinformatics/btq461 10.5943/mycosphere/2/6/3 10.1093/femsre/fux049 10.1016/j.biombioe.2015.01.016 10.1007/s10123-002-0062-3 10.1016/j.soilbio.2007.05.023 10.1007/s12275-008-0071-9 10.1111/1751-7915.13034 10.1038/ismej.2012.8 10.2136/sssaj1996.03615995006000050041x 10.1007/s00248-006-9006-3 10.3389/fenvs.2014.00010 10.1016/j.biortech.2019.121549 10.1016/j.apsoil.2019.02.018 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2021.108230 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
ExternalDocumentID | 10_1016_j_soilbio_2021_108230 S0038071721001024 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-e74e6be8c20b35b01dec6e8702e94b2884c631dac567284d70666c81b2c4cab3 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Fri Jul 11 00:16:19 EDT 2025 Tue Jul 01 03:20:04 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Fri Feb 23 02:46:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Culturing Network structure Keystone taxa Litter decomposition Microbial community |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-e74e6be8c20b35b01dec6e8702e94b2884c631dac567284d70666c81b2c4cab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0069-5765 |
PQID | 2551961111 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551961111 crossref_citationtrail_10_1016_j_soilbio_2021_108230 crossref_primary_10_1016_j_soilbio_2021_108230 elsevier_sciencedirect_doi_10_1016_j_soilbio_2021_108230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Valášková, Šnajdr, Bittner, Cajthaml, Merhautová, Hofrichter, Baldrian (bib86) 2007; 39 Agler, Ruhe, Kroll, Morhenn, Kim, Weigel, Kemen (bib1) 2016; 14 de Boer (bib24) 2005; 29 Zhao, Qiu, Xu, Ciampitti, Zhang, He (bib98) 2019; 138 de Vries, Griffiths, Bailey, Craig, Girlanda, Gweon, Hallin, Kaisermann, Keith, Kretzschmar, Lemanceau, Lumini, Mason, Oliver, Ostle, Prosser, Thion, Thomson, Bardgett (bib26) 2018; 9 Bastian, Heymann, Jacomy (bib10) 2009 Kagezi, Kaib, Nyebo, Bakuneeta, Schädler, Stadler, Brandl (bib43) 2016; 16 Noll, Leonhardt, Arnstadt, Hoppe, Poll, Matzner, Hofrichter, Kellner (bib64) 2016; 378 Liao, Xu, Tan, Wei, Ling, Yu, Raza, Zhang, Shen, Xu (bib52) 2012; 123 Tan, Miao, Liu, Yang, Yang, Chen, Lei, Li, He, Sun, Peng, Gan, Huang (bib82) 2017; 11 Caporaso, Lauber, Walters, Berg-Lyons, Huntley, Fierer, Owens, Betley, Fraser, Bauer, Gormley, Gilbert, Smith, Knight (bib16) 2012; 6 Koeck, Pechtl, Zverlov, Schwarz (bib47) 2014; 29 Liao, Li, Wei, Shen, Xu (bib51) 2014; 7 Ulrich, Wirth (bib85) 1999; 37 Newman (bib63) 2006; 103 Strimmer (bib80) 2008; 24 Bellemain, Carlsen, Brochmann, Coissac, Taberlet, Kauserud (bib11) 2010; 10 Huang, Li, Xu, Zeng, Chen, Lai, Cheng, Guo, Chen, Li (bib39) 2019; 276 Tardy, Spor, Mathieu, Lévèque, Terrat, Plassart, Regnier, Bardgett, van der Putten, Roggero, Seddaiu, Bagella, Lemanceau, Ranjard, Maron (bib83) 2015; 90 Šnajdr, Valaskova, Merhautova, Cajthaml, Baldrian (bib77) 2008; 43 Akyol, Ince, Ince (bib2) 2019; 288 Fuhrman (bib34) 2009; 459 Edgar (bib27) 2010; 26 Aneja, Sharma, Fleischmann, Stich, Heller, Bahnweg, Munch, Schloter (bib3) 2006; 52 Lane (bib48) 1991 Oksanen, Blanchet, Friendly, Kindt, Legendre, McGilinn, Minchin, O'Hara, Simpson, Solymos, Stevens, Szoecs, Wagner (bib65) 2018 Schimel, Schaeffer (bib74) 2012; 3 Baldrian, Merhautová, Cajthaml, Petránková, Šnajdr (bib5) 2010; 46 Anzhou, Xuliang, Junmei, Mengmeng, Di, Chunzhao, Guoqiang (bib4) 2013; 8 López-Mondéjar, Zühlke, Becher, Riedel, Baldrian (bib55) 2016; 6 Wickings, Grandy, Reed, Cleveland (bib93) 2012; 15 Benjamini, Hochberg (bib12) 1995; 57 Lupatini, Suleiman, Jacques, Antoniolli, de Siqueira Ferreira, Kuramae, Roesch (bib57) 2014; 2 Osono, Fujimaki (bib66) 2006; 38 Strickland, Lauber, Fierer, Brandford (bib79) 2009; 90 Sun, Wang, Wang, Jiang, Zhang (bib81) 2013; 79 Delgado-Baquerizo, Reith, Dennis, Hamonts, Powell, Young, Singh, Bissett (bib25) 2018; 99 McGuire, Treseder (bib60) 2010; 42 Bourbonnais, Paice (bib14) 1990; 267 Geissen, Peña-Peña, Huerta (bib36) 2009; 53 Panagiotou, Kekos, Macris, Christakopoulos (bib67) 2003; 18 Yuan, Niu, Wang, Boydston, Guo, Li, Wen, Qin, Fu (bib96) 2019; 354 Islam (bib40) 2011; 2 Scow (bib75) 1997 Chodak, Gołębiewski, Morawska-Płoskonka, Kuduk, Niklińska (bib19) 2014; 65 Jurado, López, Suárez-Estrella, Vargas-García, López-González, Moreno (bib42) 2014; 162 Wagg, Schlaeppi, Banerjee, Kuramae, van der Heijden (bib89) 2019; 10 Pérez, Muñoz-Dorado, de la Rubia, Martínez (bib69) 2002; 5 Gonzalez, Germain, Srivastava, Filotas, Dee, Gravel, Thompson, Isbell, Wang, Kéfi, Montoya, Zelnik, Loreau (bib37) 2020; 23 Cleveland, Reed, Keller, Nemergut, O'Neill, Ostertag, Vitousek (bib20) 2014; 174 Gardes, Bruns (bib35) 1993; 2 Zhang, Wang, Li, Zhang, Ning, Shi, Zhang, Yang (bib97) 2020; 27 Li, Li, Zheng, Ding, Ming, Pan, Lv, Tang (bib49) 2017; 18 Berry, Widder (bib13) 2014; 5 Curtis, Hu, Klimko, Narayanan, Deberardinis, Sperandio (bib21) 2014; 16 Rodrigues, Gurgel, Pasquini, Badotti, Góes-Neto, Baffi (bib72) 2020; 145 Martins, Kolling, Camassola, Dillon, Ramos (bib59) 2008; 99 Marschner, Umar, Baumann (bib58) 2011; 43 Wieder, Bonan, Allison (bib92) 2013; 3 Xiao, Sun, Sun (bib94) 2001; 74 Freilich, Wieters, Broitman, Marquet, Navarrete (bib32) 2018; 99 Banerjee, Kirkby, Schmutter, Bissett, Kirkegaard, Richardson (bib6) 2016; 97 Banerjee, Schlaeppi, van der Heijden (bib7) 2018; 16 Kim, Kim, Lee, Kim, Lim, Chun (bib44) 2008; 46 Kjøller, Struwe (bib45) 2002 Liu, Hu, Wu, Zeng, Huang, Shen, He, Lai, He (bib54) 2014; 21 Voříšková, Baldrian (bib87) 2013; 7 Banerjee, Walder, Büchi, Meyer, Held, Gattinger, Keller, Charles, van der Heijden (bib8) 2019; 13 Thakur, Kumar, Kumar, Singh (bib84) 2018; 64 Edgar, Haas, Clemente, Quince, Knight (bib28) 2011; 27 Höfer, Hanagarth, Garcia, Martius, Franklin, Römbke, Beck (bib38) 2001; 37 Morriën, Hannula, Snoek, Helmsing, Zweers, de Hollander, Soto, Bouffaud, Buée, Dimmers, Duyts, Geisen, Girlanda, Griffiths, Jørgensen, Jensen, Plassart, Redecker, Schmelz, Schmidt, Thomson, Tisserant, Uroz, Winding, Bailey, Bonkowski, Faber, Martin, Lemanceau, de Boer, van Veen, van der Putten (bib62) 2017; 8 Carlos, William, Oberdorf, Bruce, DeSantis (bib18) 2010; 16 Miller (bib61) 1959; 31 Carder (bib17) 1986; 153 Fanin, Bertrand (bib29) 2016; 94 White, Bruns, Lee, Taylor (bib91) 1990 Caporaso, Lauber, Walters, Berg-Lyons, Lozupone, Turnbaugh, Fierer, Knight (bib15) 2011; 108 Ververis, Georghiou, Danielidis, Hatzinikolaou, Santas, Santas, Corleti (bib88) 2007; 98 Payne, Knott, Mayes, Hansson, Himmel, Sandgren, Ståhlberg, Beckham (bib68) 2015; 115 Song, Gao, Yang, Xiao, Liu, Xia, Liu, Yi, Jiang (bib78) 2016; 219 Sauvadet, Lashermes, Alavoine, Recous, Chauvat, Maron, Bertrand (bib73) 2018; 123 Randlett, Zak, Pregitzer, Curtis (bib71) 1996; 60 Liao, Fan, Mei, Wei, Raza, Shen, Xu (bib53) 2015; 74 Fierer, Bradford, Jackson (bib31) 2007; 88 Janusz, Pawlik, Sulej, Swiderska-Burek, Jarosz-Wilkolazka, Paszczynski (bib41) 2017; 41 Dashtban, Schraft, Qin (bib22) 2009; 5 Wegner, Liesack (bib90) 2016; 18 Klappenbach, Dunbar, Schmidt (bib46) 2000; 66 Šnajdr, Cajthaml, Valášková, Merhautová, Petránková, Spetz, Leppänen, Baldrian (bib76) 2011; 75 Bastian, Bouziri, Nicolardot, Ranjard (bib9) 2009; 41 Wagg (10.1016/j.soilbio.2021.108230_bib89) 2019; 10 Bellemain (10.1016/j.soilbio.2021.108230_bib11) 2010; 10 White (10.1016/j.soilbio.2021.108230_bib91) 1990 Agler (10.1016/j.soilbio.2021.108230_bib1) 2016; 14 Voříšková (10.1016/j.soilbio.2021.108230_bib87) 2013; 7 Kim (10.1016/j.soilbio.2021.108230_bib44) 2008; 46 Šnajdr (10.1016/j.soilbio.2021.108230_bib76) 2011; 75 Jurado (10.1016/j.soilbio.2021.108230_bib42) 2014; 162 Klappenbach (10.1016/j.soilbio.2021.108230_bib46) 2000; 66 Miller (10.1016/j.soilbio.2021.108230_bib61) 1959; 31 Tardy (10.1016/j.soilbio.2021.108230_bib83) 2015; 90 Gonzalez (10.1016/j.soilbio.2021.108230_bib37) 2020; 23 Noll (10.1016/j.soilbio.2021.108230_bib64) 2016; 378 Wieder (10.1016/j.soilbio.2021.108230_bib92) 2013; 3 Zhao (10.1016/j.soilbio.2021.108230_bib98) 2019; 138 de Boer (10.1016/j.soilbio.2021.108230_bib24) 2005; 29 Liao (10.1016/j.soilbio.2021.108230_bib53) 2015; 74 Edgar (10.1016/j.soilbio.2021.108230_bib28) 2011; 27 Liao (10.1016/j.soilbio.2021.108230_bib51) 2014; 7 Höfer (10.1016/j.soilbio.2021.108230_bib38) 2001; 37 Ulrich (10.1016/j.soilbio.2021.108230_bib85) 1999; 37 Akyol (10.1016/j.soilbio.2021.108230_bib2) 2019; 288 Edgar (10.1016/j.soilbio.2021.108230_bib27) 2010; 26 Kagezi (10.1016/j.soilbio.2021.108230_bib43) 2016; 16 Rodrigues (10.1016/j.soilbio.2021.108230_bib72) 2020; 145 Carlos (10.1016/j.soilbio.2021.108230_bib18) 2010; 16 Fuhrman (10.1016/j.soilbio.2021.108230_bib34) 2009; 459 Fanin (10.1016/j.soilbio.2021.108230_bib29) 2016; 94 Banerjee (10.1016/j.soilbio.2021.108230_bib6) 2016; 97 Caporaso (10.1016/j.soilbio.2021.108230_bib16) 2012; 6 Panagiotou (10.1016/j.soilbio.2021.108230_bib67) 2003; 18 Benjamini (10.1016/j.soilbio.2021.108230_bib12) 1995; 57 Chodak (10.1016/j.soilbio.2021.108230_bib19) 2014; 65 Carder (10.1016/j.soilbio.2021.108230_bib17) 1986; 153 Freilich (10.1016/j.soilbio.2021.108230_bib32) 2018; 99 Liu (10.1016/j.soilbio.2021.108230_bib54) 2014; 21 Wickings (10.1016/j.soilbio.2021.108230_bib93) 2012; 15 Aneja (10.1016/j.soilbio.2021.108230_bib3) 2006; 52 Bastian (10.1016/j.soilbio.2021.108230_bib10) 2009 Song (10.1016/j.soilbio.2021.108230_bib78) 2016; 219 Lupatini (10.1016/j.soilbio.2021.108230_bib57) 2014; 2 Randlett (10.1016/j.soilbio.2021.108230_bib71) 1996; 60 Valášková (10.1016/j.soilbio.2021.108230_bib86) 2007; 39 Schimel (10.1016/j.soilbio.2021.108230_bib74) 2012; 3 Payne (10.1016/j.soilbio.2021.108230_bib68) 2015; 115 Koeck (10.1016/j.soilbio.2021.108230_bib47) 2014; 29 Anzhou (10.1016/j.soilbio.2021.108230_bib4) 2013; 8 Marschner (10.1016/j.soilbio.2021.108230_bib58) 2011; 43 Strickland (10.1016/j.soilbio.2021.108230_bib79) 2009; 90 Bourbonnais (10.1016/j.soilbio.2021.108230_bib14) 1990; 267 de Vries (10.1016/j.soilbio.2021.108230_bib26) 2018; 9 Liao (10.1016/j.soilbio.2021.108230_bib52) 2012; 123 Strimmer (10.1016/j.soilbio.2021.108230_bib80) 2008; 24 Ververis (10.1016/j.soilbio.2021.108230_bib88) 2007; 98 Baldrian (10.1016/j.soilbio.2021.108230_bib5) 2010; 46 Berry (10.1016/j.soilbio.2021.108230_bib13) 2014; 5 Xiao (10.1016/j.soilbio.2021.108230_bib94) 2001; 74 Šnajdr (10.1016/j.soilbio.2021.108230_bib77) 2008; 43 Huang (10.1016/j.soilbio.2021.108230_bib39) 2019; 276 López-Mondéjar (10.1016/j.soilbio.2021.108230_bib55) 2016; 6 Osono (10.1016/j.soilbio.2021.108230_bib66) 2006; 38 Janusz (10.1016/j.soilbio.2021.108230_bib41) 2017; 41 Banerjee (10.1016/j.soilbio.2021.108230_bib8) 2019; 13 Li (10.1016/j.soilbio.2021.108230_bib49) 2017; 18 Geissen (10.1016/j.soilbio.2021.108230_bib36) 2009; 53 Cleveland (10.1016/j.soilbio.2021.108230_bib20) 2014; 174 Islam (10.1016/j.soilbio.2021.108230_bib40) 2011; 2 Yuan (10.1016/j.soilbio.2021.108230_bib96) 2019; 354 Wegner (10.1016/j.soilbio.2021.108230_bib90) 2016; 18 McGuire (10.1016/j.soilbio.2021.108230_bib60) 2010; 42 Newman (10.1016/j.soilbio.2021.108230_bib63) 2006; 103 Bastian (10.1016/j.soilbio.2021.108230_bib9) 2009; 41 Martins (10.1016/j.soilbio.2021.108230_bib59) 2008; 99 Oksanen (10.1016/j.soilbio.2021.108230_bib65) 2018 Fierer (10.1016/j.soilbio.2021.108230_bib31) 2007; 88 Pérez (10.1016/j.soilbio.2021.108230_bib69) 2002; 5 Thakur (10.1016/j.soilbio.2021.108230_bib84) 2018; 64 Caporaso (10.1016/j.soilbio.2021.108230_bib15) 2011; 108 Lane (10.1016/j.soilbio.2021.108230_bib48) 1991 Curtis (10.1016/j.soilbio.2021.108230_bib21) 2014; 16 Gardes (10.1016/j.soilbio.2021.108230_bib35) 1993; 2 Dashtban (10.1016/j.soilbio.2021.108230_bib22) 2009; 5 Tan (10.1016/j.soilbio.2021.108230_bib82) 2017; 11 Sun (10.1016/j.soilbio.2021.108230_bib81) 2013; 79 Zhang (10.1016/j.soilbio.2021.108230_bib97) 2020; 27 Delgado-Baquerizo (10.1016/j.soilbio.2021.108230_bib25) 2018; 99 Scow (10.1016/j.soilbio.2021.108230_bib75) 1997 Kjøller (10.1016/j.soilbio.2021.108230_bib45) 2002 Banerjee (10.1016/j.soilbio.2021.108230_bib7) 2018; 16 Sauvadet (10.1016/j.soilbio.2021.108230_bib73) 2018; 123 Morriën (10.1016/j.soilbio.2021.108230_bib62) 2017; 8 |
References_xml | – year: 2009 ident: bib10 article-title: Gephi: an Open Source Software for Exploring and Manipulating Networks – volume: 10 start-page: 189 year: 2010 ident: bib11 article-title: ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases publication-title: BMC Microbiology – year: 1991 ident: bib48 article-title: 16S/23S rRNA sequencing publication-title: Nucleic Acid Techniques in Bacterial Systematics – volume: 38 start-page: 2743 year: 2006 end-page: 2752 ident: bib66 article-title: Fungal colonization as affected by litter depth and decomposition stage of needle litter publication-title: Soil Biology and Biochemistry – volume: 24 start-page: 1461 year: 2008 end-page: 1462 ident: bib80 article-title: Fdrtool a versatile R package for estimating local and tail area-based false discovery rates publication-title: Bioinformatics – volume: 23 start-page: 757 year: 2020 end-page: 776 ident: bib37 article-title: Scaling-up biodiversity-ecosystem functioning research publication-title: Ecology Letters – volume: 79 start-page: 3327 year: 2013 ident: bib81 article-title: Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition publication-title: Applied and Environmental Microbiology – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: bib12 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society: Series B – volume: 53 start-page: 75 year: 2009 end-page: 86 ident: bib36 article-title: Effects of different land use on soil chemical properties, decomposition rate and earthworm communities in tropical Mexico publication-title: Pedobiologia – volume: 31 start-page: 426 year: 1959 end-page: 428 ident: bib61 article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar publication-title: Analytical Chemistry – volume: 27 start-page: 2194 year: 2011 end-page: 2200 ident: bib28 article-title: UCHIME improves sensitivity and speed of chimera detection publication-title: Bioinformatics – volume: 46 start-page: 357 year: 2008 end-page: 363 ident: bib44 article-title: Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing publication-title: Journal of Microbiology – volume: 15 start-page: 1180 year: 2012 end-page: 1188 ident: bib93 article-title: The origin of litter chemical complexity during decomposition publication-title: Ecology Letters – volume: 41 start-page: 941 year: 2017 end-page: 962 ident: bib41 article-title: Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution publication-title: FEMS Microbiology Reviews – volume: 16 start-page: 567 year: 2018 end-page: 576 ident: bib7 article-title: Keystone taxa as drivers of microbiome structure and functioning publication-title: Nature Reviews Microbiology – volume: 99 start-page: 1417 year: 2008 end-page: 1424 ident: bib59 article-title: Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates publication-title: Bioresource Technology – volume: 2 start-page: 113 year: 1993 end-page: 118 ident: bib35 article-title: ITS primers with enhanced specificity for basidiomycetes--application to the identification of mycorrhizae and rusts publication-title: Molecular Ecology – volume: 7 year: 2013 ident: bib87 article-title: Fungal community on decomposing leaf litter undergoes rapid successional changes publication-title: The ISME Journal – volume: 41 start-page: 262 year: 2009 end-page: 275 ident: bib9 article-title: Impact of wheat straw decomposition on successional patterns of soil microbial community structure publication-title: Soil Biology and Biochemistry – volume: 99 start-page: 583 year: 2018 end-page: 596 ident: bib25 article-title: Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere publication-title: Ecology – volume: 66 start-page: 1328 year: 2000 end-page: 1333 ident: bib46 article-title: rRNA operon copy number reflects ecological strategies of bacteria publication-title: Applied and Environmental Microbiology – volume: 162 start-page: 283 year: 2014 end-page: 293 ident: bib42 article-title: Exploiting composting biodiversity: study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting publication-title: Bioresource Technology – volume: 2 start-page: 627 year: 2011 end-page: 635 ident: bib40 article-title: Study of fungi associated with decomposition of rice stubble and their role in degradation of lignin and holocellulose publication-title: Mycosphere – start-page: 315 year: 1990 end-page: 322 ident: bib91 article-title: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics publication-title: PCR Protocol: a Guide to Methods and Applications – volume: 276 start-page: 335 year: 2019 end-page: 342 ident: bib39 article-title: Deciphering the Fenton-reaction-aid lignocellulose degradation pattern by Phanerochaete chrysosporium with ferroferric oxide nanomaterials: enzyme secretion, straw humification and structural alteration publication-title: Bioresource Technology – volume: 27 start-page: 42969 year: 2020 end-page: 42978 ident: bib97 article-title: Ligninolytic enzyme involved in removal of high molecular weight polycyclic aromatic hydrocarbons by Fusarium strain ZH-H2 publication-title: Environmental Science and Pollution Research – volume: 42 start-page: 529 year: 2010 end-page: 535 ident: bib60 article-title: Microbial communities and their relevance for ecosystem models: decomposition as a case study publication-title: Soil Biology and Biochemistry – volume: 90 start-page: 441 year: 2009 end-page: 451 ident: bib79 article-title: Testing the functional significance of microbial community composition publication-title: Ecology – volume: 64 start-page: 798 year: 2018 end-page: 808 ident: bib84 article-title: Diverse culturable bacterial communities with cellulolytic potential revealed from pristine habitat in Indian trans-Himalaya publication-title: Canadian Journal of Microbiology – volume: 138 start-page: 123 year: 2019 end-page: 133 ident: bib98 article-title: Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils publication-title: Applied Soil Ecology – start-page: 267 year: 2002 end-page: 284 ident: bib45 article-title: Fungal communities, succession, enzymes, and decomposition publication-title: Enzymes in the Environment: Activity, Ecology and Applications – volume: 115 start-page: 1308 year: 2015 end-page: 1448 ident: bib68 article-title: Fungal cellulases publication-title: Chemical Reviews – volume: 219 start-page: 710 year: 2016 end-page: 715 ident: bib78 article-title: Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates publication-title: Bioresource Technology – volume: 26 start-page: 2460 year: 2010 end-page: 2461 ident: bib27 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics – volume: 13 start-page: 1722 year: 2019 end-page: 1736 ident: bib8 article-title: Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots publication-title: The ISME Journal – volume: 29 start-page: 795 year: 2005 end-page: 811 ident: bib24 publication-title: FEMS Microbiology Reviews – volume: 99 start-page: 690 year: 2018 end-page: 699 ident: bib32 article-title: Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? publication-title: Ecology – volume: 29 start-page: 171 year: 2014 end-page: 183 ident: bib47 article-title: Genomics of cellulolytic bacteria publication-title: Current Opinion in Biotechnology – year: 2018 ident: bib65 article-title: Vegan: Community Ecology Package. R Package Version 2.4-4 – volume: 11 start-page: 381 year: 2017 end-page: 398 ident: bib82 article-title: A bifunctional cellulase–xylanase of a new Chryseobacterium strain isolated from the dung of a straw‐fed cattle publication-title: Microbial Biotechnology – volume: 37 start-page: 238 year: 1999 end-page: 247 ident: bib85 article-title: Phylogenetic diversity and population densities of culturable cellulolytic soil bacteria across an agricultural encatchment publication-title: Microbial Ecology – volume: 267 start-page: 99 year: 1990 end-page: 102 ident: bib14 article-title: Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation publication-title: FEBS Letters – volume: 145 year: 2020 ident: bib72 article-title: Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes publication-title: Renewable Energy – volume: 90 start-page: 204 year: 2015 end-page: 2123 ident: bib83 article-title: Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil publication-title: Soil Biology and Biochemistry – volume: 9 start-page: 3033 year: 2018 ident: bib26 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nature Communications – volume: 94 start-page: 48 year: 2016 end-page: 60 ident: bib29 article-title: Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient publication-title: Soil Biology and Biochemistry – volume: 52 start-page: 127 year: 2006 end-page: 135 ident: bib3 article-title: Microbial colonization of beech and spruce litter--influence of decomposition site and plant litter species on the diversity of microbial community publication-title: Microbial Ecology – volume: 354 start-page: 113876 year: 2019 ident: bib96 article-title: Litter decomposition in fenced and grazed grasslands: a test of the home-field advantage hypothesis publication-title: Geoderma – volume: 16 start-page: 51 year: 2016 end-page: 58 ident: bib43 article-title: Impacts of land-use intensification on litter decomposition in western Kenya publication-title: Web Ecology – volume: 39 start-page: 2651 year: 2007 end-page: 2660 ident: bib86 article-title: Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest publication-title: Soil Biology and Biochemistry – volume: 46 start-page: 717 year: 2010 end-page: 726 ident: bib5 article-title: Small-scale distribution of extracellular enzymes, fungal, and bacterial biomass in publication-title: Biology and Fertility of Soils – volume: 153 start-page: 75 year: 1986 end-page: 79 ident: bib17 article-title: Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay publication-title: Analytical Biochemistry – volume: 103 start-page: 8577 year: 2006 end-page: 8582 ident: bib63 article-title: Modularity and community structure in networks publication-title: Proceedings of the National Academy of Sciences of the U S A – volume: 43 start-page: 186 year: 2008 end-page: 192 ident: bib77 article-title: Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes publication-title: Enzyme and Microbial Technology – volume: 18 start-page: 2825 year: 2016 end-page: 2842 ident: bib90 article-title: Microbial community dynamics during the early stages of plant polymer breakdown in paddy soil publication-title: Environmental Microbiology – volume: 74 start-page: 122 year: 2015 end-page: 134 ident: bib53 article-title: Production and characterization of cellulolytic enzyme from Penicillium oxalicum GZ-2 and its application in lignocellulose saccharification publication-title: Biomass and Bioenergy – volume: 3 start-page: 909 year: 2013 end-page: 912 ident: bib92 article-title: Global soil carbon projections are improved by modelling microbial processes publication-title: Nature Climate Change – volume: 74 start-page: 307 year: 2001 end-page: 319 ident: bib94 article-title: Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw publication-title: Polymer Degradation and Stability – volume: 60 start-page: 1571 year: 1996 end-page: 1577 ident: bib71 article-title: Elevated atmospheric carbon dioxide and leaf litter chemistry: influences on microbial respiration and net nitrogen mineralization publication-title: Soil Science Society of America Journal - SSSAJ – volume: 21 start-page: 14004 year: 2014 end-page: 14013 ident: bib54 article-title: Study on biodegradation process of lignin by FTIR and DSC publication-title: Environmental Science and Pollution Research International – volume: 378 start-page: 181 year: 2016 end-page: 192 ident: bib64 article-title: Fungal biomass and extracellular enzyme activities in coarse woody debris of 13 tree species in the early phase of decomposition publication-title: Forest Ecology and Management – volume: 37 start-page: 229 year: 2001 end-page: 235 ident: bib38 article-title: Structure and function of soil fauna communities in Amazonian anthropogenic and natural ecosystems publication-title: European Journal of Soil Biology – volume: 8 year: 2013 ident: bib4 article-title: Ascomycota members dominate fungal communities during straw residue decomposition in arable soil publication-title: PloS One – volume: 18 start-page: 248 year: 2017 end-page: 258 ident: bib49 article-title: Rice straw decomposition affects diversity and dynamics of soil fungal community, but not bacteria publication-title: Journal of Soils and Sediments – start-page: 367 year: 1997 end-page: 413 ident: bib75 article-title: Soil microbial communities and carbon flow in agroecosystems publication-title: Ecology in Agriculture – volume: 98 start-page: 296 year: 2007 end-page: 301 ident: bib88 article-title: Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements publication-title: Bioresource Technology – volume: 6 start-page: 1621 year: 2012 end-page: 1624 ident: bib16 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: The ISME Journal – volume: 5 start-page: 578 year: 2009 ident: bib22 article-title: Fungal bioconversion of lignocellulosic residues; opportunities & perspectives publication-title: International Journal of Biological Sciences – volume: 18 start-page: 37 year: 2003 end-page: 45 ident: bib67 article-title: Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation publication-title: Industrial Crops and Products – volume: 14 year: 2016 ident: bib1 article-title: Microbial hub taxa link host and abiotic factors to plant microbiome variation publication-title: PLoS Biology – volume: 123 start-page: 117 year: 2012 end-page: 124 ident: bib52 article-title: Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2 publication-title: Bioresource Technology – volume: 7 start-page: 162 year: 2014 ident: bib51 article-title: Insights into high-efficiency lignocellulolytic enzyme production by Penicillium oxalicum GZ-2 induced by a complex substrate publication-title: Biotechnology for Biofuels – volume: 16 start-page: 4135 year: 2010 end-page: 4144 ident: bib18 article-title: Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome publication-title: World Journal of Gastroenterology – volume: 174 start-page: 283 year: 2014 end-page: 294 ident: bib20 article-title: Litter quality versus soil microbial community controls over decomposition: a quantitative analysis publication-title: Oecologia – volume: 2 year: 2014 ident: bib57 article-title: Network topology reveals high connectance levels and few key microbial genera within soils publication-title: Frontiers in Environmental Science – volume: 75 start-page: 291 year: 2011 end-page: 303 ident: bib76 article-title: Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition publication-title: FEMS Microbiology Ecology – volume: 5 start-page: 53 year: 2002 end-page: 63 ident: bib69 article-title: Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview publication-title: International Microbiology – volume: 459 start-page: 193 year: 2009 end-page: 199 ident: bib34 article-title: Microbial community structure and its functional implications publication-title: Nature – volume: 3 start-page: 348 year: 2012 ident: bib74 article-title: Microbial control over carbon cycling in soil publication-title: Frontiers in Microbiology – volume: 16 start-page: 759 year: 2014 end-page: 769 ident: bib21 article-title: The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape publication-title: Cell Host & Microbe – volume: 288 start-page: 121549 year: 2019 ident: bib2 article-title: Crop-based composting of lignocellulosic digestates: focus on bacterial and fungal diversity publication-title: Bioresource Technology – volume: 6 start-page: 25279 year: 2016 ident: bib55 article-title: Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems publication-title: Scientific Reports – volume: 5 year: 2014 ident: bib13 article-title: Deciphering microbial interactions and detecting keystone species with co-occurrence networks publication-title: Frontiers in Microbiology – volume: 123 start-page: 64 year: 2018 end-page: 73 ident: bib73 article-title: High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage publication-title: Soil Biology and Biochemistry – volume: 108 start-page: 4516 year: 2011 ident: bib15 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proceedings of the National Academy of Sciences – volume: 43 start-page: 445 year: 2011 end-page: 451 ident: bib58 article-title: The microbial community composition changes rapidly in the early stages of decomposition of wheat residue publication-title: Soil Biology and Biochemistry – volume: 88 start-page: 1354 year: 2007 end-page: 1364 ident: bib31 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology – volume: 8 start-page: 14349 year: 2017 ident: bib62 article-title: Soil networks become more connected and take up more carbon as nature restoration progresses publication-title: Nature Communications – volume: 97 start-page: 188 year: 2016 end-page: 198 ident: bib6 article-title: Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil publication-title: Soil Biology and Biochemistry – volume: 65 start-page: 1627 year: 2014 end-page: 1637 ident: bib19 article-title: Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress publication-title: Annals of Microbiology – volume: 10 start-page: 4841 year: 2019 ident: bib89 article-title: Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning publication-title: Nature Communications – volume: 29 start-page: 795 issue: 4 year: 2005 ident: 10.1016/j.soilbio.2021.108230_bib24 publication-title: FEMS Microbiology Reviews doi: 10.1016/j.femsre.2004.11.005 – volume: 99 start-page: 690 year: 2018 ident: 10.1016/j.soilbio.2021.108230_bib32 article-title: Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? publication-title: Ecology doi: 10.1002/ecy.2142 – volume: 65 start-page: 1627 year: 2014 ident: 10.1016/j.soilbio.2021.108230_bib19 article-title: Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress publication-title: Annals of Microbiology doi: 10.1007/s13213-014-1002-0 – volume: 66 start-page: 1328 issue: 4 year: 2000 ident: 10.1016/j.soilbio.2021.108230_bib46 article-title: rRNA operon copy number reflects ecological strategies of bacteria publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.66.4.1328-1333.2000 – volume: 42 start-page: 529 issue: 4 year: 2010 ident: 10.1016/j.soilbio.2021.108230_bib60 article-title: Microbial communities and their relevance for ecosystem models: decomposition as a case study publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2009.11.016 – volume: 15 start-page: 1180 year: 2012 ident: 10.1016/j.soilbio.2021.108230_bib93 article-title: The origin of litter chemical complexity during decomposition publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2012.01837.x – volume: 97 start-page: 188 year: 2016 ident: 10.1016/j.soilbio.2021.108230_bib6 article-title: Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2016.03.017 – volume: 21 start-page: 14004 issue: 24 year: 2014 ident: 10.1016/j.soilbio.2021.108230_bib54 article-title: Study on biodegradation process of lignin by FTIR and DSC publication-title: Environmental Science and Pollution Research International doi: 10.1007/s11356-014-3342-5 – volume: 37 start-page: 238 issue: 4 year: 1999 ident: 10.1016/j.soilbio.2021.108230_bib85 article-title: Phylogenetic diversity and population densities of culturable cellulolytic soil bacteria across an agricultural encatchment publication-title: Microbial Ecology doi: 10.1007/s002489900146 – volume: 90 start-page: 441 issue: 2 year: 2009 ident: 10.1016/j.soilbio.2021.108230_bib79 article-title: Testing the functional significance of microbial community composition publication-title: Ecology doi: 10.1890/08-0296.1 – volume: 123 start-page: 64 year: 2018 ident: 10.1016/j.soilbio.2021.108230_bib73 article-title: High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.04.026 – volume: 219 start-page: 710 year: 2016 ident: 10.1016/j.soilbio.2021.108230_bib78 article-title: Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates publication-title: Bioresource Technology doi: 10.1016/j.biortech.2016.08.035 – volume: 162 start-page: 283 year: 2014 ident: 10.1016/j.soilbio.2021.108230_bib42 article-title: Exploiting composting biodiversity: study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting publication-title: Bioresource Technology doi: 10.1016/j.biortech.2014.03.145 – volume: 18 start-page: 37 year: 2003 ident: 10.1016/j.soilbio.2021.108230_bib67 article-title: Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation publication-title: Industrial Crops and Products doi: 10.1016/S0926-6690(03)00018-9 – volume: 74 start-page: 307 issue: 2 year: 2001 ident: 10.1016/j.soilbio.2021.108230_bib94 article-title: Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw publication-title: Polymer Degradation and Stability doi: 10.1016/S0141-3910(01)00163-X – volume: 41 start-page: 262 issue: 2 year: 2009 ident: 10.1016/j.soilbio.2021.108230_bib9 article-title: Impact of wheat straw decomposition on successional patterns of soil microbial community structure publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2008.10.024 – volume: 276 start-page: 335 year: 2019 ident: 10.1016/j.soilbio.2021.108230_bib39 article-title: Deciphering the Fenton-reaction-aid lignocellulose degradation pattern by Phanerochaete chrysosporium with ferroferric oxide nanomaterials: enzyme secretion, straw humification and structural alteration publication-title: Bioresource Technology doi: 10.1016/j.biortech.2019.01.013 – volume: 29 start-page: 171 year: 2014 ident: 10.1016/j.soilbio.2021.108230_bib47 article-title: Genomics of cellulolytic bacteria publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2014.07.002 – volume: 267 start-page: 99 issue: 1 year: 1990 ident: 10.1016/j.soilbio.2021.108230_bib14 article-title: Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation publication-title: FEBS Letters doi: 10.1016/0014-5793(90)80298-W – volume: 27 start-page: 2194 issue: 16 year: 2011 ident: 10.1016/j.soilbio.2021.108230_bib28 article-title: UCHIME improves sensitivity and speed of chimera detection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr381 – volume: 46 start-page: 717 year: 2010 ident: 10.1016/j.soilbio.2021.108230_bib5 article-title: Small-scale distribution of extracellular enzymes, fungal, and bacterial biomass in Quercus petraea forest topsoil publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-010-0478-4 – volume: 145 year: 2020 ident: 10.1016/j.soilbio.2021.108230_bib72 article-title: Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes publication-title: Renewable Energy – volume: 18 start-page: 2825 issue: 9 year: 2016 ident: 10.1016/j.soilbio.2021.108230_bib90 article-title: Microbial community dynamics during the early stages of plant polymer breakdown in paddy soil publication-title: Environmental Microbiology doi: 10.1111/1462-2920.12815 – volume: 14 issue: 1 year: 2016 ident: 10.1016/j.soilbio.2021.108230_bib1 article-title: Microbial hub taxa link host and abiotic factors to plant microbiome variation publication-title: PLoS Biology doi: 10.1371/journal.pbio.1002352 – year: 2009 ident: 10.1016/j.soilbio.2021.108230_bib10 – volume: 123 start-page: 117 year: 2012 ident: 10.1016/j.soilbio.2021.108230_bib52 article-title: Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2 publication-title: Bioresource Technology doi: 10.1016/j.biortech.2012.07.051 – volume: 10 start-page: 189 year: 2010 ident: 10.1016/j.soilbio.2021.108230_bib11 article-title: ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases publication-title: BMC Microbiology doi: 10.1186/1471-2180-10-189 – volume: 2 start-page: 113 issue: 2 year: 1993 ident: 10.1016/j.soilbio.2021.108230_bib35 article-title: ITS primers with enhanced specificity for basidiomycetes--application to the identification of mycorrhizae and rusts publication-title: Molecular Ecology doi: 10.1111/j.1365-294X.1993.tb00005.x – year: 1991 ident: 10.1016/j.soilbio.2021.108230_bib48 article-title: 16S/23S rRNA sequencing – volume: 8 start-page: 14349 year: 2017 ident: 10.1016/j.soilbio.2021.108230_bib62 article-title: Soil networks become more connected and take up more carbon as nature restoration progresses publication-title: Nature Communications doi: 10.1038/ncomms14349 – volume: 53 start-page: 75 year: 2009 ident: 10.1016/j.soilbio.2021.108230_bib36 article-title: Effects of different land use on soil chemical properties, decomposition rate and earthworm communities in tropical Mexico publication-title: Pedobiologia doi: 10.1016/j.pedobi.2009.03.004 – volume: 98 start-page: 296 year: 2007 ident: 10.1016/j.soilbio.2021.108230_bib88 article-title: Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements publication-title: Bioresource Technology doi: 10.1016/j.biortech.2006.01.007 – volume: 174 start-page: 283 year: 2014 ident: 10.1016/j.soilbio.2021.108230_bib20 article-title: Litter quality versus soil microbial community controls over decomposition: a quantitative analysis publication-title: Oecologia doi: 10.1007/s00442-013-2758-9 – volume: 378 start-page: 181 year: 2016 ident: 10.1016/j.soilbio.2021.108230_bib64 article-title: Fungal biomass and extracellular enzyme activities in coarse woody debris of 13 tree species in the early phase of decomposition publication-title: Forest Ecology and Management doi: 10.1016/j.foreco.2016.07.035 – volume: 115 start-page: 1308 issue: 3 year: 2015 ident: 10.1016/j.soilbio.2021.108230_bib68 article-title: Fungal cellulases publication-title: Chemical Reviews doi: 10.1021/cr500351c – volume: 24 start-page: 1461 year: 2008 ident: 10.1016/j.soilbio.2021.108230_bib80 article-title: Fdrtool a versatile R package for estimating local and tail area-based false discovery rates publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn209 – volume: 38 start-page: 2743 issue: 9 year: 2006 ident: 10.1016/j.soilbio.2021.108230_bib66 article-title: Fungal colonization as affected by litter depth and decomposition stage of needle litter publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2006.04.028 – volume: 90 start-page: 204 year: 2015 ident: 10.1016/j.soilbio.2021.108230_bib83 article-title: Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.08.010 – volume: 5 issue: 219 year: 2014 ident: 10.1016/j.soilbio.2021.108230_bib13 article-title: Deciphering microbial interactions and detecting keystone species with co-occurrence networks publication-title: Frontiers in Microbiology – volume: 94 start-page: 48 year: 2016 ident: 10.1016/j.soilbio.2021.108230_bib29 article-title: Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.11.007 – volume: 3 start-page: 348 year: 2012 ident: 10.1016/j.soilbio.2021.108230_bib74 article-title: Microbial control over carbon cycling in soil publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2012.00348 – volume: 3 start-page: 909 year: 2013 ident: 10.1016/j.soilbio.2021.108230_bib92 article-title: Global soil carbon projections are improved by modelling microbial processes publication-title: Nature Climate Change doi: 10.1038/nclimate1951 – volume: 99 start-page: 583 year: 2018 ident: 10.1016/j.soilbio.2021.108230_bib25 article-title: Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere publication-title: Ecology doi: 10.1002/ecy.2137 – volume: 459 start-page: 193 year: 2009 ident: 10.1016/j.soilbio.2021.108230_bib34 article-title: Microbial community structure and its functional implications publication-title: Nature doi: 10.1038/nature08058 – volume: 43 start-page: 186 year: 2008 ident: 10.1016/j.soilbio.2021.108230_bib77 article-title: Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes publication-title: Enzyme and Microbial Technology doi: 10.1016/j.enzmictec.2007.11.008 – volume: 7 year: 2013 ident: 10.1016/j.soilbio.2021.108230_bib87 article-title: Fungal community on decomposing leaf litter undergoes rapid successional changes publication-title: The ISME Journal doi: 10.1038/ismej.2012.116 – volume: 16 start-page: 4135 issue: 33 year: 2010 ident: 10.1016/j.soilbio.2021.108230_bib18 article-title: Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome publication-title: World Journal of Gastroenterology doi: 10.3748/wjg.v16.i33.4135 – volume: 23 start-page: 757 year: 2020 ident: 10.1016/j.soilbio.2021.108230_bib37 article-title: Scaling-up biodiversity-ecosystem functioning research publication-title: Ecology Letters doi: 10.1111/ele.13456 – volume: 5 start-page: 578 issue: 6 year: 2009 ident: 10.1016/j.soilbio.2021.108230_bib22 article-title: Fungal bioconversion of lignocellulosic residues; opportunities & perspectives publication-title: International Journal of Biological Sciences doi: 10.7150/ijbs.5.578 – volume: 43 start-page: 445 issue: 2 year: 2011 ident: 10.1016/j.soilbio.2021.108230_bib58 article-title: The microbial community composition changes rapidly in the early stages of decomposition of wheat residue publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2010.11.015 – start-page: 367 year: 1997 ident: 10.1016/j.soilbio.2021.108230_bib75 article-title: Soil microbial communities and carbon flow in agroecosystems – volume: 108 start-page: 4516 issue: Suppl. 1 year: 2011 ident: 10.1016/j.soilbio.2021.108230_bib15 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1000080107 – volume: 75 start-page: 291 year: 2011 ident: 10.1016/j.soilbio.2021.108230_bib76 article-title: Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition publication-title: FEMS Microbiology Ecology doi: 10.1111/j.1574-6941.2010.00999.x – volume: 8 issue: 6 year: 2013 ident: 10.1016/j.soilbio.2021.108230_bib4 article-title: Ascomycota members dominate fungal communities during straw residue decomposition in arable soil publication-title: PloS One – volume: 9 start-page: 3033 year: 2018 ident: 10.1016/j.soilbio.2021.108230_bib26 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nature Communications doi: 10.1038/s41467-018-05516-7 – volume: 37 start-page: 229 year: 2001 ident: 10.1016/j.soilbio.2021.108230_bib38 article-title: Structure and function of soil fauna communities in Amazonian anthropogenic and natural ecosystems publication-title: European Journal of Soil Biology doi: 10.1016/S1164-5563(01)01089-5 – volume: 7 start-page: 162 year: 2014 ident: 10.1016/j.soilbio.2021.108230_bib51 article-title: Insights into high-efficiency lignocellulolytic enzyme production by Penicillium oxalicum GZ-2 induced by a complex substrate publication-title: Biotechnology for Biofuels doi: 10.1186/s13068-014-0162-2 – volume: 16 start-page: 567 year: 2018 ident: 10.1016/j.soilbio.2021.108230_bib7 article-title: Keystone taxa as drivers of microbiome structure and functioning publication-title: Nature Reviews Microbiology doi: 10.1038/s41579-018-0024-1 – start-page: 267 year: 2002 ident: 10.1016/j.soilbio.2021.108230_bib45 article-title: Fungal communities, succession, enzymes, and decomposition – volume: 18 start-page: 248 issue: 1 year: 2017 ident: 10.1016/j.soilbio.2021.108230_bib49 article-title: Rice straw decomposition affects diversity and dynamics of soil fungal community, but not bacteria publication-title: Journal of Soils and Sediments doi: 10.1007/s11368-017-1749-6 – volume: 31 start-page: 426 year: 1959 ident: 10.1016/j.soilbio.2021.108230_bib61 article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar publication-title: Analytical Chemistry doi: 10.1021/ac60147a030 – volume: 88 start-page: 1354 year: 2007 ident: 10.1016/j.soilbio.2021.108230_bib31 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology doi: 10.1890/05-1839 – volume: 103 start-page: 8577 issue: 23 year: 2006 ident: 10.1016/j.soilbio.2021.108230_bib63 article-title: Modularity and community structure in networks publication-title: Proceedings of the National Academy of Sciences of the U S A doi: 10.1073/pnas.0601602103 – volume: 79 start-page: 3327 issue: 11 year: 2013 ident: 10.1016/j.soilbio.2021.108230_bib81 article-title: Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.00083-13 – volume: 13 start-page: 1722 year: 2019 ident: 10.1016/j.soilbio.2021.108230_bib8 article-title: Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots publication-title: The ISME Journal doi: 10.1038/s41396-019-0383-2 – volume: 10 start-page: 4841 year: 2019 ident: 10.1016/j.soilbio.2021.108230_bib89 article-title: Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning publication-title: Nature Communications doi: 10.1038/s41467-019-12798-y – volume: 354 start-page: 113876 year: 2019 ident: 10.1016/j.soilbio.2021.108230_bib96 article-title: Litter decomposition in fenced and grazed grasslands: a test of the home-field advantage hypothesis publication-title: Geoderma doi: 10.1016/j.geoderma.2019.07.034 – volume: 153 start-page: 75 issue: 1 year: 1986 ident: 10.1016/j.soilbio.2021.108230_bib17 article-title: Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay publication-title: Analytical Biochemistry doi: 10.1016/0003-2697(86)90063-1 – volume: 99 start-page: 1417 year: 2008 ident: 10.1016/j.soilbio.2021.108230_bib59 article-title: Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates publication-title: Bioresource Technology doi: 10.1016/j.biortech.2007.01.060 – volume: 57 start-page: 289 year: 1995 ident: 10.1016/j.soilbio.2021.108230_bib12 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 6 start-page: 25279 year: 2016 ident: 10.1016/j.soilbio.2021.108230_bib55 article-title: Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems publication-title: Scientific Reports doi: 10.1038/srep25279 – volume: 64 start-page: 798 issue: 11 year: 2018 ident: 10.1016/j.soilbio.2021.108230_bib84 article-title: Diverse culturable bacterial communities with cellulolytic potential revealed from pristine habitat in Indian trans-Himalaya publication-title: Canadian Journal of Microbiology doi: 10.1139/cjm-2017-0754 – start-page: 315 year: 1990 ident: 10.1016/j.soilbio.2021.108230_bib91 article-title: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics – volume: 16 start-page: 51 issue: 1 year: 2016 ident: 10.1016/j.soilbio.2021.108230_bib43 article-title: Impacts of land-use intensification on litter decomposition in western Kenya publication-title: Web Ecology doi: 10.5194/we-16-51-2016 – volume: 16 start-page: 759 year: 2014 ident: 10.1016/j.soilbio.2021.108230_bib21 article-title: The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape publication-title: Cell Host & Microbe doi: 10.1016/j.chom.2014.11.005 – volume: 27 start-page: 42969 issue: 34 year: 2020 ident: 10.1016/j.soilbio.2021.108230_bib97 article-title: Ligninolytic enzyme involved in removal of high molecular weight polycyclic aromatic hydrocarbons by Fusarium strain ZH-H2 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-020-10192-6 – volume: 26 start-page: 2460 issue: 19 year: 2010 ident: 10.1016/j.soilbio.2021.108230_bib27 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 2 start-page: 627 issue: 6 year: 2011 ident: 10.1016/j.soilbio.2021.108230_bib40 article-title: Study of fungi associated with decomposition of rice stubble and their role in degradation of lignin and holocellulose publication-title: Mycosphere doi: 10.5943/mycosphere/2/6/3 – volume: 41 start-page: 941 issue: 6 year: 2017 ident: 10.1016/j.soilbio.2021.108230_bib41 article-title: Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution publication-title: FEMS Microbiology Reviews doi: 10.1093/femsre/fux049 – volume: 74 start-page: 122 year: 2015 ident: 10.1016/j.soilbio.2021.108230_bib53 article-title: Production and characterization of cellulolytic enzyme from Penicillium oxalicum GZ-2 and its application in lignocellulose saccharification publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2015.01.016 – volume: 5 start-page: 53 issue: 2 year: 2002 ident: 10.1016/j.soilbio.2021.108230_bib69 article-title: Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview publication-title: International Microbiology doi: 10.1007/s10123-002-0062-3 – volume: 39 start-page: 2651 issue: 10 year: 2007 ident: 10.1016/j.soilbio.2021.108230_bib86 article-title: Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2007.05.023 – volume: 46 start-page: 357 year: 2008 ident: 10.1016/j.soilbio.2021.108230_bib44 article-title: Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing publication-title: Journal of Microbiology doi: 10.1007/s12275-008-0071-9 – volume: 11 start-page: 381 issue: 2 year: 2017 ident: 10.1016/j.soilbio.2021.108230_bib82 article-title: A bifunctional cellulase–xylanase of a new Chryseobacterium strain isolated from the dung of a straw‐fed cattle publication-title: Microbial Biotechnology doi: 10.1111/1751-7915.13034 – volume: 6 start-page: 1621 year: 2012 ident: 10.1016/j.soilbio.2021.108230_bib16 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: The ISME Journal doi: 10.1038/ismej.2012.8 – year: 2018 ident: 10.1016/j.soilbio.2021.108230_bib65 – volume: 60 start-page: 1571 year: 1996 ident: 10.1016/j.soilbio.2021.108230_bib71 article-title: Elevated atmospheric carbon dioxide and leaf litter chemistry: influences on microbial respiration and net nitrogen mineralization publication-title: Soil Science Society of America Journal - SSSAJ doi: 10.2136/sssaj1996.03615995006000050041x – volume: 52 start-page: 127 issue: 1 year: 2006 ident: 10.1016/j.soilbio.2021.108230_bib3 article-title: Microbial colonization of beech and spruce litter--influence of decomposition site and plant litter species on the diversity of microbial community publication-title: Microbial Ecology doi: 10.1007/s00248-006-9006-3 – volume: 2 year: 2014 ident: 10.1016/j.soilbio.2021.108230_bib57 article-title: Network topology reveals high connectance levels and few key microbial genera within soils publication-title: Frontiers in Environmental Science doi: 10.3389/fenvs.2014.00010 – volume: 288 start-page: 121549 year: 2019 ident: 10.1016/j.soilbio.2021.108230_bib2 article-title: Crop-based composting of lignocellulosic digestates: focus on bacterial and fungal diversity publication-title: Bioresource Technology doi: 10.1016/j.biortech.2019.121549 – volume: 138 start-page: 123 year: 2019 ident: 10.1016/j.soilbio.2021.108230_bib98 article-title: Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2019.02.018 |
SSID | ssj0002513 |
Score | 2.6647618 |
Snippet | Plant litter decomposition in the soil is governed by microorganisms such as bacteria and fungi that colonize lignocellulose residues during the decomposition... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108230 |
SubjectTerms | abandoned land agricultural land Aspergillus China Chryseobacterium Culturing enzymes forest land forests fungi Fusarium Keystone taxa land use lignocellulose Litter decomposition Microbial community microbiome Network structure Penicillium plant litter soil ecosystems soil enzymes soil microorganisms temporal variation |
Title | Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics |
URI | https://dx.doi.org/10.1016/j.soilbio.2021.108230 https://www.proquest.com/docview/2551961111 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jHtSD6FT8JoLXujZN0-44hjIVd1LwFvJVqcw6tiqe_Nt9r00diiB4S0tfCHnJ-6C_93uEnCWMi5y7KBDWWGxh5gJl4kGQg3tK49RGIsRC4duJGN_z64fkoUNGbS0Mwiq97W9sem2t_Zu-383-rCiwxhfJ0jGFqYnRkBOU8xRP-fnHEuYB_tsT72ZYrJMuq3j6T8iXO9UF1gCyCNF2DMHQv_unH5a6dj-Xm2TDx4102Cxti3Rc2SPrw8e5585wPbI6apu3bZP5pIF3U-VJR2Bg6QKsRA2drmgjBX6LIocTzAyXGeNARyv1rmhRgtl6cxYG9LmoyZrgGwjZQQ3UOgSie7QXtU1P-8UOubu8uBuNA99eITA8zKrApdwJ7TLDQh0nOoxAWji4v8wNuGZZxo2II6tMIlJwYjbFVMdAmMsMN0rHu6RbwrL2CM3yOIl1CqGhjrhOmA6FgkzJxdYpZvJ8n_B2T6Xx1OPYAWMqW4zZk_SqkKgK2ahin5x_ic0a7o2_BLJWYfLbIZLgH_4SPW0VLEFV-NdEle7ldSEh5wIrhZ7l4P_TH5I1fGowZkekW81f3TFEM5U-qY_rCVkZXt2MJ5-t7PeF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC50PKgHWV_o7rq24DVO0ul04nEYVsZV5zSCt6Zfkcg4ykwUf75VSUdRBGFvTZJqmq7uepCvvgI4zriQpfBJJJ111MLMR9qmp1GJ7ilPc5fImAqFr8ZydC3-3WQ3SzDsamEIVhlsf2vTG2sdnvTDbvYfq4pqfIksnVKYhhhNLMMKsVNlPVgZnF-Mxm8GGV144N4tqF4nfy_k6d8RZe7UVFQGyBMC3HHCQ3_toj4Z68YDnf2AjRA6skG7uk1Y8rMtWB_czgN9ht-C1WHXv20b5uMW4c104B3BgWMLNBQNerpmrRS6LkY0Tjgz3mcKBT2r9Ytm1Qwt17N3OGD3VcPXhN9g1I6aYM4TFj0Avphr29ovdmBy9ncyHEWhw0JkRVzUkc-Fl8YXlscmzUycoLT0eIW5PxWGF4WwMk2ctpnM0Y-5nLIdi5Eut8Jqk-5Cb4bL2gNWlGmWmhyjQ5MIk3ETS43Jkk-d19yW5T6Ibk-VDezj1ARjqjqY2Z0KqlCkCtWqYh9O3sQeW_qN7wSKTmHqwzlS6CK-Ez3qFKxQVfTjRM_8w9NCYdqFhoqcy8__n_4QVkeTq0t1eT6--AVr9KaFnP2GXj1_8gcY3NTmTzi8rx_F-jY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+analysis+and+subsequent+culturing+reveal+keystone+taxa+involved+in+microbial+litter+decomposition+dynamics&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Zheng%2C+Haiping&rft.au=Yang%2C+Tianjie&rft.au=Bao%2C+Yanzhuo&rft.au=He%2C+Panpan&rft.date=2021-06-01&rft.issn=0038-0717&rft.volume=157&rft.spage=108230&rft_id=info:doi/10.1016%2Fj.soilbio.2021.108230&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_soilbio_2021_108230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |