Early Detection of Parkinson's Disease by Neural Network Models
This paper develops neural network models that can recognize Parkinson's disease (PD) at its early stage. PD is a common neurodegenerative disorder that presents with progressive slow movement, tremor, limb rigidity, and gait alterations, including stooped posture, shuffling steps, festination,...
Saved in:
Published in | IEEE access Vol. 10; pp. 19033 - 19044 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper develops neural network models that can recognize Parkinson's disease (PD) at its early stage. PD is a common neurodegenerative disorder that presents with progressive slow movement, tremor, limb rigidity, and gait alterations, including stooped posture, shuffling steps, festination, freezing of gait, and falling. Early detection of PD enables timely initiation of therapeutic management that decreases morbidity. However, correct recognition of PD, especially in early-stage disease, is challenging because the aging population, which has a high PD prevalence, also commonly exhibits progressive gait slowness due to other disorders, such as joint osteoarthritis or sarcopenia. Therefore, developing a reliable and objective method is crucial for differentiating PD gait characteristics from those of the normal elderly. The aim of this study was to develop neural network models that could use the participants' motion data during walking to identify PD. We recruited 32 drug-naïve PD patients with variable disease severity and 16 age/sex-matched healthy controls, and we measured their motions using inertial measurement unit (IMU) sensors. The IMU data were used to develop neural network models that could identify patients with advanced-stage PD with an average accuracy of 92.72% in validation processes. The models also differentiated patients with early-stage PD from normal elderly subjects with an accuracy of 99.67%. Another independent group of participants recruited to test the developed models confirmed the successful discrimination of PD-affected from healthy elderly, as well as patients at different severity stages. Our results provide support for early diagnosis and disease severity monitoring in patients with PD. |
---|---|
AbstractList | This paper develops neural network models that can recognize Parkinson's disease (PD) at its early stage. PD is a common neurodegenerative disorder that presents with progressive slow movement, tremor, limb rigidity, and gait alterations, including stooped posture, shuffling steps, festination, freezing of gait, and falling. Early detection of PD enables timely initiation of therapeutic management that decreases morbidity. However, correct recognition of PD, especially in early-stage disease, is challenging because the aging population, which has a high PD prevalence, also commonly exhibits progressive gait slowness due to other disorders, such as joint osteoarthritis or sarcopenia. Therefore, developing a reliable and objective method is crucial for differentiating PD gait characteristics from those of the normal elderly. The aim of this study was to develop neural network models that could use the participants' motion data during walking to identify PD. We recruited 32 drug-naïve PD patients with variable disease severity and 16 age/sex-matched healthy controls, and we measured their motions using inertial measurement unit (IMU) sensors. The IMU data were used to develop neural network models that could identify patients with advanced-stage PD with an average accuracy of 92.72% in validation processes. The models also differentiated patients with early-stage PD from normal elderly subjects with an accuracy of 99.67%. Another independent group of participants recruited to test the developed models confirmed the successful discrimination of PD-affected from healthy elderly, as well as patients at different severity stages. Our results provide support for early diagnosis and disease severity monitoring in patients with PD. |
Author | Fu, Li-Chen Lin, Chin-Hsien Chen, Szu-Fu Wang, Fu-Cheng Kuo, Tien-Yun Huang, Po-Wei |
Author_xml | – sequence: 1 givenname: Chin-Hsien orcidid: 0000-0001-8566-7573 surname: Lin fullname: Lin, Chin-Hsien organization: Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan – sequence: 2 givenname: Fu-Cheng orcidid: 0000-0001-5011-7934 surname: Wang fullname: Wang, Fu-Cheng email: fcw@ntu.edu.tw organization: Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan – sequence: 3 givenname: Tien-Yun surname: Kuo fullname: Kuo, Tien-Yun organization: Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan – sequence: 4 givenname: Po-Wei surname: Huang fullname: Huang, Po-Wei organization: Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan – sequence: 5 givenname: Szu-Fu surname: Chen fullname: Chen, Szu-Fu organization: Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan – sequence: 6 givenname: Li-Chen orcidid: 0000-0002-6947-7646 surname: Fu fullname: Fu, Li-Chen organization: Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan |
BookMark | eNqFkE1LxDAQhoMo-PkLvBQ8eNo1kzRNcxJZV13wC9RzmE2nkrU2mnSR_fd2rYh4cS4zDPO-7_Dsss02tMTYIfAxADcnZ5PJ9OFhLLgQYwmKa51vsB0BhRlJJYvNX_M2O0hpwfsq-5XSO-x0irFZZefUket8aLNQZ_cYX3ybQnucsnOfCBNl81V2S8uITd-6jxBfsptQUZP22VaNTaKD777Hni6mj5Or0fXd5Wxydj1yOS-7ESmlRVFxk2usUDtXCtAgFEhunKqdMlxLJ7GAihe8yOcSJOQK8nmNopJc7rHZ4FsFXNi36F8xrmxAb78WIT5bjJ13Ddna1Gh6r1yUIudUIwAaKLVxVM6FkL3X0eD1FsP7klJnF2EZ2_59KwoJRhkjoL-Sw5WLIaVI9U8qcLsGbwfwdg3efoPvVeaPyvkO12S7iL75R3s4aD0R_aQZzY0ujfwEMe-PvA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1038_s41598_024_72648_w crossref_primary_10_1109_ACCESS_2024_3487001 crossref_primary_10_1007_s40263_023_01007_6 crossref_primary_10_1016_j_compbiomed_2022_105859 crossref_primary_10_3390_electronics12204201 crossref_primary_10_1016_j_eswa_2023_120541 crossref_primary_10_1109_TNSRE_2023_3277749 crossref_primary_10_1016_j_compbiomed_2023_107270 |
Cites_doi | 10.1016/j.gaitpost.2007.08.003 10.3389/fnagi.2020.00141 10.1212/wnl.56.12.1712 10.1109/JBHI.2015.2450232 10.3390/s20123389 10.1016/j.bbe.2020.01.003 10.1136/jnnp.55.3.181 10.1001/jama.2014.3654 10.1109/ICCPCT.2017.8074230 10.1016/j.bbe.2021.04.014 10.1109/EMBC.2014.6944285 10.24251/hicss.2019.511 10.1016/j.jbi.2021.103935 10.1016/j.expneurol.2004.12.008 10.1109/JBHI.2019.2923209 10.1016/j.compbiomed.2018.02.007 10.1002/mds.26720 10.1016/j.eswa.2019.113075 10.1016/j.jestch.2020.12.005 10.11138/fneur/2017.32.1.028 10.1016/s0021-9290(02)00008-8 10.3233/jad-201163 10.3906/elk-1708-221 10.1212/01.wnl.0000247740.47667.03 10.1016/j.bspc.2021.102452 10.3238/arztebl.2010.0306 10.1016/j.compbiomed.2017.03.020 10.1016/j.bspc.2012.04.007 10.1212/wnl.50.2.318 10.1007/s11042-019-7469-8 10.1016/j.cmpb.2012.10.016 10.1109/ICCWAMTIP.2018.8632613 10.33564/ijeast.2020.v04i12.054 10.3389/fnhum.2019.00317 10.2174/1567205018666210212154941 10.1016/j.future.2018.02.009 10.1109/ATC.2019.8924567 10.1038/nature14539 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3150774 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 19044 |
ExternalDocumentID | oai_doaj_org_article_f9fa9c3a428240efa11a91879ce8b223 10_1109_ACCESS_2022_3150774 9709789 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Taiwan University, Center for Artificial Intelligence & Advanced Robotics funderid: 10.13039/501100006477 – fundername: Ministry of Science and Technology of Taiwan grantid: MOST 107-2634-F-002-018; MOST 108-2634-F-002-016; MOST 109-2634-F-002-027; MOST 110-2634-F-002-042 funderid: 10.13039/501100004663 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-e55726d0947ada7cc82171251309c5fc59073c3a61d06064b31314514bfa2d303 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:23 EDT 2025 Mon Jun 30 02:37:09 EDT 2025 Thu Apr 24 22:55:49 EDT 2025 Tue Jul 01 04:20:58 EDT 2025 Wed Aug 27 02:49:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-e55726d0947ada7cc82171251309c5fc59073c3a61d06064b31314514bfa2d303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8566-7573 0000-0002-6947-7646 0000-0001-5011-7934 |
OpenAccessLink | https://doaj.org/article/f9fa9c3a428240efa11a91879ce8b223 |
PQID | 2631959921 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9709789 crossref_primary_10_1109_ACCESS_2022_3150774 doaj_primary_oai_doaj_org_article_f9fa9c3a428240efa11a91879ce8b223 proquest_journals_2631959921 crossref_citationtrail_10_1109_ACCESS_2022_3150774 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 Powers (ref46) 2020 ref14 ref36 ref31 ref30 (ref38) 2021 ref11 ref33 ref32 ref2 ref1 ref17 ref39 ref16 Caliskan (ref15) 2017; 17 ref19 ref18 Saad (ref10) 2013; 10 Mungas (ref37) 1991; 46 ref24 ref23 ref26 ref25 ref20 ref22 ref44 ref21 ref43 Karlik (ref45) 2011; 1 ref28 ref27 Kotsiantis (ref42) 2007; 160 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Bind (ref41) 2015; 6 |
References_xml | – volume: 1 start-page: 111 issue: 4 year: 2011 ident: ref45 article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks publication-title: Int. J. Artif. Intell. Expert Syst. – ident: ref7 doi: 10.1016/j.gaitpost.2007.08.003 – volume: 160 start-page: 3 year: 2007 ident: ref42 article-title: Supervised machine learning: A review of classification techniques publication-title: Emerg. Artif. Intell. Appl. Comput. Eng. – ident: ref32 doi: 10.3389/fnagi.2020.00141 – year: 2020 ident: ref46 article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation publication-title: arXiv:2010.16061 – ident: ref8 doi: 10.1212/wnl.56.12.1712 – ident: ref14 doi: 10.1109/JBHI.2015.2450232 – volume-title: Opal User Guide year: 2021 ident: ref38 – ident: ref40 doi: 10.3390/s20123389 – ident: ref25 doi: 10.1016/j.bbe.2020.01.003 – ident: ref36 doi: 10.1136/jnnp.55.3.181 – ident: ref3 doi: 10.1001/jama.2014.3654 – ident: ref16 doi: 10.1109/ICCPCT.2017.8074230 – ident: ref29 doi: 10.1016/j.bbe.2021.04.014 – ident: ref12 doi: 10.1109/EMBC.2014.6944285 – ident: ref22 doi: 10.24251/hicss.2019.511 – ident: ref35 doi: 10.1016/j.jbi.2021.103935 – ident: ref2 doi: 10.1016/j.expneurol.2004.12.008 – ident: ref24 doi: 10.1109/JBHI.2019.2923209 – ident: ref18 doi: 10.1016/j.compbiomed.2018.02.007 – ident: ref5 doi: 10.1002/mds.26720 – volume: 10 start-page: 88 issue: 3 year: 2013 ident: ref10 article-title: A preliminary study of the causality of freezing of gait for Parkinson’s disease patients: Bayesian belief network approach publication-title: Int. J. Comput. Sci. Issues – ident: ref28 doi: 10.1016/j.eswa.2019.113075 – ident: ref27 doi: 10.1016/j.jestch.2020.12.005 – ident: ref6 doi: 10.11138/fneur/2017.32.1.028 – ident: ref39 doi: 10.1016/s0021-9290(02)00008-8 – ident: ref34 doi: 10.3233/jad-201163 – ident: ref20 doi: 10.3906/elk-1708-221 – ident: ref1 doi: 10.1212/01.wnl.0000247740.47667.03 – volume: 17 start-page: 3311 issue: 2 year: 2017 ident: ref15 article-title: Diagnosis of the Parkinson disease by using deep neural network classifier publication-title: Istanbul Univ., J. Elect. Electron. Eng. – ident: ref30 doi: 10.1016/j.bspc.2021.102452 – ident: ref9 doi: 10.3238/arztebl.2010.0306 – ident: ref17 doi: 10.1016/j.compbiomed.2017.03.020 – ident: ref13 doi: 10.1016/j.bspc.2012.04.007 – ident: ref4 doi: 10.1212/wnl.50.2.318 – volume: 46 start-page: 54 issue: 7 year: 1991 ident: ref37 article-title: In-office mental status testing: A practical guide publication-title: Geriatrics – volume: 6 start-page: 1648 issue: 2 year: 2015 ident: ref41 article-title: A survey of machine learning based approaches for Parkinson disease prediction publication-title: Int. J. Comput. Sci. Inf. Technol. – ident: ref26 doi: 10.1007/s11042-019-7469-8 – ident: ref11 doi: 10.1016/j.cmpb.2012.10.016 – ident: ref19 doi: 10.1109/ICCWAMTIP.2018.8632613 – ident: ref44 doi: 10.33564/ijeast.2020.v04i12.054 – ident: ref31 doi: 10.3389/fnhum.2019.00317 – ident: ref33 doi: 10.2174/1567205018666210212154941 – ident: ref21 doi: 10.1016/j.future.2018.02.009 – ident: ref23 doi: 10.1109/ATC.2019.8924567 – ident: ref43 doi: 10.1038/nature14539 |
SSID | ssj0000816957 |
Score | 2.3355918 |
Snippet | This paper develops neural network models that can recognize Parkinson's disease (PD) at its early stage. PD is a common neurodegenerative disorder that... This paper develops neural network models that can recognize Parkinson’s disease (PD) at its early stage. PD is a common neurodegenerative disorder that... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19033 |
SubjectTerms | Biological neural networks Biomedical materials Convolutional neural networks Data models Diseases Feature extraction Gait IMU Inertial platforms Inertial sensing devices neural network Neural networks Older adults Older people Parkinson's disease PD~stage |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_bAR6FiYal8qNQLWWInduITgoUVqgQnkLhZjmNfinarbvYAv54ZxxtRWlW9RZFt2R7bM8-eeQPwtVZeeyWqzAaOAKXO8RzkjmdBiKBC7VshKN759k7dPJTfH-XjBpwOsTDe--h85if0Gd_y24Vb0VXZma4o6kBvwiYCtz5Wa7hPoQQSWlaJWIjn-uxiOsUxIAQUApEp2j1V-ZvyiRz9KanKHydxVC-zHbhdd6z3KvkxWXXNxL2842z8357vwnayM9lFvzD2YMPPP8HHN-yD-3AeyY3Zle-iO9acLQKjIOgYD_Ztya76txvWPDOi8MDW7nqfcUYJ1J6WB_Awu76f3mQpn0LmyrzuMi9lJVSLgK6yra2cqxGPkIFT5NrJ4CQC5cIVVvE2R1xTNgUvKJFv2QQrWtR1n2Frvpj7Q2CNrFVoW-uEQjUobeO1FTKIWqLSVd6NQKwn2rhENk45L55MBB25Nr10DEnHJOmM4HSo9LPn2vh38UuS4FCUiLLjD5x5k_adCTpYjWNClIW2iw-Wc6spw7rzdYOm0Qj2SVpDI0lQIxiv14NJm3ppcKxExaMFP_p7rWP4QB3sb2jGsNX9WvkTtFm65ktcrK_fzuZh priority: 102 providerName: IEEE |
Title | Early Detection of Parkinson's Disease by Neural Network Models |
URI | https://ieeexplore.ieee.org/document/9709789 https://www.proquest.com/docview/2631959921 https://doaj.org/article/f9fa9c3a428240efa11a91879ce8b223 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2xTsMwELVQJxgQUBCFUnlAYiFq7MSOPaHSUlVIdKJSN8tx7KlqES0Df8-dk1ZFSLCwRo4T3yX37iW-d4TcKum1l7xIbGBAUFQKcZA5lgTOgwzKV5xjvfPLVE5m-fNczPdafeGesFoeuDZcP-hgtcsspMkAPj5YxqzGFtnOqxKwDaMvYN4emYoxWDGpRdHIDLFU9wfDIawICCHnwFMhCyryb1AUFfubFis_4nIEm_EJOW6yRDqo7-6UHPjlGTna0w5sk4coTUxHfhM3Uy3pKlAsYY7VXHdrOqr_vNDyk6IAB8w2rXd8U2x_tlifk9n46XU4SZpuCInLU7VJvBAFlxXQscJWtnBOAZvA9CRLtRPBCaC5GRhKsioFVpKXGcuwDW9eBssrQKoL0lqulv6S0FIoGarKOi4BxIQtvbZcBK4EQKb0rkP41jDGNVLh2LFiYSJlSLWprWnQmqaxZofc7056q5Uyfh_-iBbfDUWZ63gAnG8a55u_nN8hbfTXbhJdYFmK7pDu1n-meSXXBtaKQjqas6v_uPQ1OcTl1F9juqS1ef_wN5CfbMpefBR7sZTwCw4i3cw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9wgEB6l6aHtoa-06jZpwqFSL_HGYIPNKUo3iTZtdk-JlBvCGC6Jdquu99D8-sxg1upLVW-WBQgYYOaDmW8APtbKa69EldnAEaDUOZ6D3PEsCBFUqH0rBMU7z-Zqel1-uZE3W3A4xMJ476PzmR_TZ3zLb5duTVdlR7qiqAP9CB6j3pe8j9YablQohYSWVaIW4rk-OplMcBQIAoVAbIqWT1X-on4iS39Kq_LHWRwVzPkLmG261vuV3I7XXTN297-xNv5v31_C82RpspN-abyCLb94Dc9-4h_cgeNIb8xOfRcdshZsGRiFQceIsE8rdtq_3rDmByMSD2xt3nuNM0qhdrd6A9fnZ1eTaZYyKmSuzOsu81JWQrUI6Srb2sq5GhEJmThFrp0MTiJULlxhFW9zRDZlU_CCUvmWTbCiRW33FrYXy4V_B6yRtQpta51QqAilbby2QgZRS1S7yrsRiM1EG5foxinrxZ2JsCPXppeOIemYJJ0RHA6VvvVsG_8u_pkkOBQlquz4A2fepJ1ngg5W45gQZ6H14oPl3GrKse583aBxNIIdktbQSBLUCPY268Gkbb0yOFYi49GCv_97rQN4Mr2aXZrLi_nXXXhKne3va_Zgu_u-9h_Qguma_bhwHwAMzumq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Detection+of+Parkinson%E2%80%99s+Disease+by+Neural+Network+Models&rft.jtitle=IEEE+access&rft.au=Lin%2C+Chin-Hsien&rft.au=Wang%2C+Fu-Cheng&rft.au=Kuo%2C+Tien-Yun&rft.au=Huang%2C+Po-Wei&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=19033&rft.epage=19044&rft_id=info:doi/10.1109%2FACCESS.2022.3150774&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3150774 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |