Early Detection of Parkinson's Disease by Neural Network Models

This paper develops neural network models that can recognize Parkinson's disease (PD) at its early stage. PD is a common neurodegenerative disorder that presents with progressive slow movement, tremor, limb rigidity, and gait alterations, including stooped posture, shuffling steps, festination,...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 19033 - 19044
Main Authors Lin, Chin-Hsien, Wang, Fu-Cheng, Kuo, Tien-Yun, Huang, Po-Wei, Chen, Szu-Fu, Fu, Li-Chen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper develops neural network models that can recognize Parkinson's disease (PD) at its early stage. PD is a common neurodegenerative disorder that presents with progressive slow movement, tremor, limb rigidity, and gait alterations, including stooped posture, shuffling steps, festination, freezing of gait, and falling. Early detection of PD enables timely initiation of therapeutic management that decreases morbidity. However, correct recognition of PD, especially in early-stage disease, is challenging because the aging population, which has a high PD prevalence, also commonly exhibits progressive gait slowness due to other disorders, such as joint osteoarthritis or sarcopenia. Therefore, developing a reliable and objective method is crucial for differentiating PD gait characteristics from those of the normal elderly. The aim of this study was to develop neural network models that could use the participants' motion data during walking to identify PD. We recruited 32 drug-naïve PD patients with variable disease severity and 16 age/sex-matched healthy controls, and we measured their motions using inertial measurement unit (IMU) sensors. The IMU data were used to develop neural network models that could identify patients with advanced-stage PD with an average accuracy of 92.72% in validation processes. The models also differentiated patients with early-stage PD from normal elderly subjects with an accuracy of 99.67%. Another independent group of participants recruited to test the developed models confirmed the successful discrimination of PD-affected from healthy elderly, as well as patients at different severity stages. Our results provide support for early diagnosis and disease severity monitoring in patients with PD.
AbstractList This paper develops neural network models that can recognize Parkinson's disease (PD) at its early stage. PD is a common neurodegenerative disorder that presents with progressive slow movement, tremor, limb rigidity, and gait alterations, including stooped posture, shuffling steps, festination, freezing of gait, and falling. Early detection of PD enables timely initiation of therapeutic management that decreases morbidity. However, correct recognition of PD, especially in early-stage disease, is challenging because the aging population, which has a high PD prevalence, also commonly exhibits progressive gait slowness due to other disorders, such as joint osteoarthritis or sarcopenia. Therefore, developing a reliable and objective method is crucial for differentiating PD gait characteristics from those of the normal elderly. The aim of this study was to develop neural network models that could use the participants' motion data during walking to identify PD. We recruited 32 drug-naïve PD patients with variable disease severity and 16 age/sex-matched healthy controls, and we measured their motions using inertial measurement unit (IMU) sensors. The IMU data were used to develop neural network models that could identify patients with advanced-stage PD with an average accuracy of 92.72% in validation processes. The models also differentiated patients with early-stage PD from normal elderly subjects with an accuracy of 99.67%. Another independent group of participants recruited to test the developed models confirmed the successful discrimination of PD-affected from healthy elderly, as well as patients at different severity stages. Our results provide support for early diagnosis and disease severity monitoring in patients with PD.
Author Fu, Li-Chen
Lin, Chin-Hsien
Chen, Szu-Fu
Wang, Fu-Cheng
Kuo, Tien-Yun
Huang, Po-Wei
Author_xml – sequence: 1
  givenname: Chin-Hsien
  orcidid: 0000-0001-8566-7573
  surname: Lin
  fullname: Lin, Chin-Hsien
  organization: Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 2
  givenname: Fu-Cheng
  orcidid: 0000-0001-5011-7934
  surname: Wang
  fullname: Wang, Fu-Cheng
  email: fcw@ntu.edu.tw
  organization: Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: Tien-Yun
  surname: Kuo
  fullname: Kuo, Tien-Yun
  organization: Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 4
  givenname: Po-Wei
  surname: Huang
  fullname: Huang, Po-Wei
  organization: Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 5
  givenname: Szu-Fu
  surname: Chen
  fullname: Chen, Szu-Fu
  organization: Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
– sequence: 6
  givenname: Li-Chen
  orcidid: 0000-0002-6947-7646
  surname: Fu
  fullname: Fu, Li-Chen
  organization: Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
BookMark eNqFkE1LxDAQhoMo-PkLvBQ8eNo1kzRNcxJZV13wC9RzmE2nkrU2mnSR_fd2rYh4cS4zDPO-7_Dsss02tMTYIfAxADcnZ5PJ9OFhLLgQYwmKa51vsB0BhRlJJYvNX_M2O0hpwfsq-5XSO-x0irFZZefUket8aLNQZ_cYX3ybQnucsnOfCBNl81V2S8uITd-6jxBfsptQUZP22VaNTaKD777Hni6mj5Or0fXd5Wxydj1yOS-7ESmlRVFxk2usUDtXCtAgFEhunKqdMlxLJ7GAihe8yOcSJOQK8nmNopJc7rHZ4FsFXNi36F8xrmxAb78WIT5bjJ13Ddna1Gh6r1yUIudUIwAaKLVxVM6FkL3X0eD1FsP7klJnF2EZ2_59KwoJRhkjoL-Sw5WLIaVI9U8qcLsGbwfwdg3efoPvVeaPyvkO12S7iL75R3s4aD0R_aQZzY0ujfwEMe-PvA
CODEN IAECCG
CitedBy_id crossref_primary_10_1038_s41598_024_72648_w
crossref_primary_10_1109_ACCESS_2024_3487001
crossref_primary_10_1007_s40263_023_01007_6
crossref_primary_10_1016_j_compbiomed_2022_105859
crossref_primary_10_3390_electronics12204201
crossref_primary_10_1016_j_eswa_2023_120541
crossref_primary_10_1109_TNSRE_2023_3277749
crossref_primary_10_1016_j_compbiomed_2023_107270
Cites_doi 10.1016/j.gaitpost.2007.08.003
10.3389/fnagi.2020.00141
10.1212/wnl.56.12.1712
10.1109/JBHI.2015.2450232
10.3390/s20123389
10.1016/j.bbe.2020.01.003
10.1136/jnnp.55.3.181
10.1001/jama.2014.3654
10.1109/ICCPCT.2017.8074230
10.1016/j.bbe.2021.04.014
10.1109/EMBC.2014.6944285
10.24251/hicss.2019.511
10.1016/j.jbi.2021.103935
10.1016/j.expneurol.2004.12.008
10.1109/JBHI.2019.2923209
10.1016/j.compbiomed.2018.02.007
10.1002/mds.26720
10.1016/j.eswa.2019.113075
10.1016/j.jestch.2020.12.005
10.11138/fneur/2017.32.1.028
10.1016/s0021-9290(02)00008-8
10.3233/jad-201163
10.3906/elk-1708-221
10.1212/01.wnl.0000247740.47667.03
10.1016/j.bspc.2021.102452
10.3238/arztebl.2010.0306
10.1016/j.compbiomed.2017.03.020
10.1016/j.bspc.2012.04.007
10.1212/wnl.50.2.318
10.1007/s11042-019-7469-8
10.1016/j.cmpb.2012.10.016
10.1109/ICCWAMTIP.2018.8632613
10.33564/ijeast.2020.v04i12.054
10.3389/fnhum.2019.00317
10.2174/1567205018666210212154941
10.1016/j.future.2018.02.009
10.1109/ATC.2019.8924567
10.1038/nature14539
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3150774
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 19044
ExternalDocumentID oai_doaj_org_article_f9fa9c3a428240efa11a91879ce8b223
10_1109_ACCESS_2022_3150774
9709789
Genre orig-research
GrantInformation_xml – fundername: National Taiwan University, Center for Artificial Intelligence & Advanced Robotics
  funderid: 10.13039/501100006477
– fundername: Ministry of Science and Technology of Taiwan
  grantid: MOST 107-2634-F-002-018; MOST 108-2634-F-002-016; MOST 109-2634-F-002-027; MOST 110-2634-F-002-042
  funderid: 10.13039/501100004663
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-e55726d0947ada7cc82171251309c5fc59073c3a61d06064b31314514bfa2d303
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:23 EDT 2025
Mon Jun 30 02:37:09 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Tue Jul 01 04:20:58 EDT 2025
Wed Aug 27 02:49:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e55726d0947ada7cc82171251309c5fc59073c3a61d06064b31314514bfa2d303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8566-7573
0000-0002-6947-7646
0000-0001-5011-7934
OpenAccessLink https://doaj.org/article/f9fa9c3a428240efa11a91879ce8b223
PQID 2631959921
PQPubID 4845423
PageCount 12
ParticipantIDs ieee_primary_9709789
crossref_primary_10_1109_ACCESS_2022_3150774
doaj_primary_oai_doaj_org_article_f9fa9c3a428240efa11a91879ce8b223
proquest_journals_2631959921
crossref_citationtrail_10_1109_ACCESS_2022_3150774
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
Powers (ref46) 2020
ref14
ref36
ref31
ref30
(ref38) 2021
ref11
ref33
ref32
ref2
ref1
ref17
ref39
ref16
Caliskan (ref15) 2017; 17
ref19
ref18
Saad (ref10) 2013; 10
Mungas (ref37) 1991; 46
ref24
ref23
ref26
ref25
ref20
ref22
ref44
ref21
ref43
Karlik (ref45) 2011; 1
ref28
ref27
Kotsiantis (ref42) 2007; 160
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Bind (ref41) 2015; 6
References_xml – volume: 1
  start-page: 111
  issue: 4
  year: 2011
  ident: ref45
  article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks
  publication-title: Int. J. Artif. Intell. Expert Syst.
– ident: ref7
  doi: 10.1016/j.gaitpost.2007.08.003
– volume: 160
  start-page: 3
  year: 2007
  ident: ref42
  article-title: Supervised machine learning: A review of classification techniques
  publication-title: Emerg. Artif. Intell. Appl. Comput. Eng.
– ident: ref32
  doi: 10.3389/fnagi.2020.00141
– year: 2020
  ident: ref46
  article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation
  publication-title: arXiv:2010.16061
– ident: ref8
  doi: 10.1212/wnl.56.12.1712
– ident: ref14
  doi: 10.1109/JBHI.2015.2450232
– volume-title: Opal User Guide
  year: 2021
  ident: ref38
– ident: ref40
  doi: 10.3390/s20123389
– ident: ref25
  doi: 10.1016/j.bbe.2020.01.003
– ident: ref36
  doi: 10.1136/jnnp.55.3.181
– ident: ref3
  doi: 10.1001/jama.2014.3654
– ident: ref16
  doi: 10.1109/ICCPCT.2017.8074230
– ident: ref29
  doi: 10.1016/j.bbe.2021.04.014
– ident: ref12
  doi: 10.1109/EMBC.2014.6944285
– ident: ref22
  doi: 10.24251/hicss.2019.511
– ident: ref35
  doi: 10.1016/j.jbi.2021.103935
– ident: ref2
  doi: 10.1016/j.expneurol.2004.12.008
– ident: ref24
  doi: 10.1109/JBHI.2019.2923209
– ident: ref18
  doi: 10.1016/j.compbiomed.2018.02.007
– ident: ref5
  doi: 10.1002/mds.26720
– volume: 10
  start-page: 88
  issue: 3
  year: 2013
  ident: ref10
  article-title: A preliminary study of the causality of freezing of gait for Parkinson’s disease patients: Bayesian belief network approach
  publication-title: Int. J. Comput. Sci. Issues
– ident: ref28
  doi: 10.1016/j.eswa.2019.113075
– ident: ref27
  doi: 10.1016/j.jestch.2020.12.005
– ident: ref6
  doi: 10.11138/fneur/2017.32.1.028
– ident: ref39
  doi: 10.1016/s0021-9290(02)00008-8
– ident: ref34
  doi: 10.3233/jad-201163
– ident: ref20
  doi: 10.3906/elk-1708-221
– ident: ref1
  doi: 10.1212/01.wnl.0000247740.47667.03
– volume: 17
  start-page: 3311
  issue: 2
  year: 2017
  ident: ref15
  article-title: Diagnosis of the Parkinson disease by using deep neural network classifier
  publication-title: Istanbul Univ., J. Elect. Electron. Eng.
– ident: ref30
  doi: 10.1016/j.bspc.2021.102452
– ident: ref9
  doi: 10.3238/arztebl.2010.0306
– ident: ref17
  doi: 10.1016/j.compbiomed.2017.03.020
– ident: ref13
  doi: 10.1016/j.bspc.2012.04.007
– ident: ref4
  doi: 10.1212/wnl.50.2.318
– volume: 46
  start-page: 54
  issue: 7
  year: 1991
  ident: ref37
  article-title: In-office mental status testing: A practical guide
  publication-title: Geriatrics
– volume: 6
  start-page: 1648
  issue: 2
  year: 2015
  ident: ref41
  article-title: A survey of machine learning based approaches for Parkinson disease prediction
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– ident: ref26
  doi: 10.1007/s11042-019-7469-8
– ident: ref11
  doi: 10.1016/j.cmpb.2012.10.016
– ident: ref19
  doi: 10.1109/ICCWAMTIP.2018.8632613
– ident: ref44
  doi: 10.33564/ijeast.2020.v04i12.054
– ident: ref31
  doi: 10.3389/fnhum.2019.00317
– ident: ref33
  doi: 10.2174/1567205018666210212154941
– ident: ref21
  doi: 10.1016/j.future.2018.02.009
– ident: ref23
  doi: 10.1109/ATC.2019.8924567
– ident: ref43
  doi: 10.1038/nature14539
SSID ssj0000816957
Score 2.3355918
Snippet This paper develops neural network models that can recognize Parkinson's disease (PD) at its early stage. PD is a common neurodegenerative disorder that...
This paper develops neural network models that can recognize Parkinson’s disease (PD) at its early stage. PD is a common neurodegenerative disorder that...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19033
SubjectTerms Biological neural networks
Biomedical materials
Convolutional neural networks
Data models
Diseases
Feature extraction
Gait
IMU
Inertial platforms
Inertial sensing devices
neural network
Neural networks
Older adults
Older people
Parkinson's disease
PD~stage
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_bAR6FiYal8qNQLWWInduITgoUVqgQnkLhZjmNfinarbvYAv54ZxxtRWlW9RZFt2R7bM8-eeQPwtVZeeyWqzAaOAKXO8RzkjmdBiKBC7VshKN759k7dPJTfH-XjBpwOsTDe--h85if0Gd_y24Vb0VXZma4o6kBvwiYCtz5Wa7hPoQQSWlaJWIjn-uxiOsUxIAQUApEp2j1V-ZvyiRz9KanKHydxVC-zHbhdd6z3KvkxWXXNxL2842z8357vwnayM9lFvzD2YMPPP8HHN-yD-3AeyY3Zle-iO9acLQKjIOgYD_Ztya76txvWPDOi8MDW7nqfcUYJ1J6WB_Awu76f3mQpn0LmyrzuMi9lJVSLgK6yra2cqxGPkIFT5NrJ4CQC5cIVVvE2R1xTNgUvKJFv2QQrWtR1n2Frvpj7Q2CNrFVoW-uEQjUobeO1FTKIWqLSVd6NQKwn2rhENk45L55MBB25Nr10DEnHJOmM4HSo9LPn2vh38UuS4FCUiLLjD5x5k_adCTpYjWNClIW2iw-Wc6spw7rzdYOm0Qj2SVpDI0lQIxiv14NJm3ppcKxExaMFP_p7rWP4QB3sb2jGsNX9WvkTtFm65ktcrK_fzuZh
  priority: 102
  providerName: IEEE
Title Early Detection of Parkinson's Disease by Neural Network Models
URI https://ieeexplore.ieee.org/document/9709789
https://www.proquest.com/docview/2631959921
https://doaj.org/article/f9fa9c3a428240efa11a91879ce8b223
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2xTsMwELVQJxgQUBCFUnlAYiFq7MSOPaHSUlVIdKJSN8tx7KlqES0Df8-dk1ZFSLCwRo4T3yX37iW-d4TcKum1l7xIbGBAUFQKcZA5lgTOgwzKV5xjvfPLVE5m-fNczPdafeGesFoeuDZcP-hgtcsspMkAPj5YxqzGFtnOqxKwDaMvYN4emYoxWDGpRdHIDLFU9wfDIawICCHnwFMhCyryb1AUFfubFis_4nIEm_EJOW6yRDqo7-6UHPjlGTna0w5sk4coTUxHfhM3Uy3pKlAsYY7VXHdrOqr_vNDyk6IAB8w2rXd8U2x_tlifk9n46XU4SZpuCInLU7VJvBAFlxXQscJWtnBOAZvA9CRLtRPBCaC5GRhKsioFVpKXGcuwDW9eBssrQKoL0lqulv6S0FIoGarKOi4BxIQtvbZcBK4EQKb0rkP41jDGNVLh2LFiYSJlSLWprWnQmqaxZofc7056q5Uyfh_-iBbfDUWZ63gAnG8a55u_nN8hbfTXbhJdYFmK7pDu1n-meSXXBtaKQjqas6v_uPQ1OcTl1F9juqS1ef_wN5CfbMpefBR7sZTwCw4i3cw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9wgEB6l6aHtoa-06jZpwqFSL_HGYIPNKUo3iTZtdk-JlBvCGC6Jdquu99D8-sxg1upLVW-WBQgYYOaDmW8APtbKa69EldnAEaDUOZ6D3PEsCBFUqH0rBMU7z-Zqel1-uZE3W3A4xMJ476PzmR_TZ3zLb5duTVdlR7qiqAP9CB6j3pe8j9YablQohYSWVaIW4rk-OplMcBQIAoVAbIqWT1X-on4iS39Kq_LHWRwVzPkLmG261vuV3I7XXTN297-xNv5v31_C82RpspN-abyCLb94Dc9-4h_cgeNIb8xOfRcdshZsGRiFQceIsE8rdtq_3rDmByMSD2xt3nuNM0qhdrd6A9fnZ1eTaZYyKmSuzOsu81JWQrUI6Srb2sq5GhEJmThFrp0MTiJULlxhFW9zRDZlU_CCUvmWTbCiRW33FrYXy4V_B6yRtQpta51QqAilbby2QgZRS1S7yrsRiM1EG5foxinrxZ2JsCPXppeOIemYJJ0RHA6VvvVsG_8u_pkkOBQlquz4A2fepJ1ngg5W45gQZ6H14oPl3GrKse583aBxNIIdktbQSBLUCPY268Gkbb0yOFYi49GCv_97rQN4Mr2aXZrLi_nXXXhKne3va_Zgu_u-9h_Qguma_bhwHwAMzumq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Detection+of+Parkinson%E2%80%99s+Disease+by+Neural+Network+Models&rft.jtitle=IEEE+access&rft.au=Lin%2C+Chin-Hsien&rft.au=Wang%2C+Fu-Cheng&rft.au=Kuo%2C+Tien-Yun&rft.au=Huang%2C+Po-Wei&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=19033&rft.epage=19044&rft_id=info:doi/10.1109%2FACCESS.2022.3150774&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3150774
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon