Self-Supervised Learning Based on Spatial Awareness for Medical Image Analysis

Medical image analysis is one of the research fields that had huge benefits from deep learning in recent years. To earn a good performance, the learning model requires large scale data with full annotation. However, it is a big burden to collect a sufficient number of labeled data for the training....

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 162973 - 162981
Main Authors Nguyen, Xuan-Bac, Lee, Guee Sang, Kim, Soo Hyung, Yang, Hyung Jeong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Medical image analysis is one of the research fields that had huge benefits from deep learning in recent years. To earn a good performance, the learning model requires large scale data with full annotation. However, it is a big burden to collect a sufficient number of labeled data for the training. Since there are more unlabeled data than labeled ones in most of medical applications, self-supervised learning has been utilized to improve the performance. However, most of current methods for self-supervised learning try to understand only semantic features of the data, but have not fully utilized properties inherent in medical images. Specifically, in CT or MR images, the spatial or structural information contained in the dataset has not been fully considered. In this paper, we propose a novel method for self-supervised learning in medical image analysis that can exploit both semantic and spatial features at the same time. The proposed method is experimented in the problems of organ segmentation, intracranial hemorrhage detection and the results show the effectiveness of the method.
AbstractList Medical image analysis is one of the research fields that had huge benefits from deep learning in recent years. To earn a good performance, the learning model requires large scale data with full annotation. However, it is a big burden to collect a sufficient number of labeled data for the training. Since there are more unlabeled data than labeled ones in most of medical applications, self-supervised learning has been utilized to improve the performance. However, most of current methods for self-supervised learning try to understand only semantic features of the data, but have not fully utilized properties inherent in medical images. Specifically, in CT or MR images, the spatial or structural information contained in the dataset has not been fully considered. In this paper, we propose a novel method for self-supervised learning in medical image analysis that can exploit both semantic and spatial features at the same time. The proposed method is experimented in the problems of organ segmentation, intracranial hemorrhage detection and the results show the effectiveness of the method.
Author Lee, Guee Sang
Nguyen, Xuan-Bac
Kim, Soo Hyung
Yang, Hyung Jeong
Author_xml – sequence: 1
  givenname: Xuan-Bac
  orcidid: 0000-0001-8495-5469
  surname: Nguyen
  fullname: Nguyen, Xuan-Bac
  organization: Department of Electronic and Computer Engineering, Chonnam National University, Gwangju, South Korea
– sequence: 2
  givenname: Guee Sang
  orcidid: 0000-0002-8756-1382
  surname: Lee
  fullname: Lee, Guee Sang
  email: gslee@jnu.ac.kr
  organization: Department of Electronic and Computer Engineering, Chonnam National University, Gwangju, South Korea
– sequence: 3
  givenname: Soo Hyung
  orcidid: 0000-0003-3575-5035
  surname: Kim
  fullname: Kim, Soo Hyung
  organization: Department of Electronic and Computer Engineering, Chonnam National University, Gwangju, South Korea
– sequence: 4
  givenname: Hyung Jeong
  orcidid: 0000-0003-3024-5060
  surname: Yang
  fullname: Yang, Hyung Jeong
  organization: Department of Electronic and Computer Engineering, Chonnam National University, Gwangju, South Korea
BookMark eNpNUctOwzAQtBBIPL-gl0icU_yKYx9LxaNSgUPgbG2cTeUqjYvdgvh7UoIQe9nd0cysVnNOjvvQIyETRqeMUXMzm8_vqmrKKadTQTmTyhyRM86UyUUh1PG_-ZRcpbSmQ-kBKsoz8lxh1-bVfovxwydssiVC7H2_ym7hsIY-q7aw89Bls0-I2GNKWRti9oSNdwO62MAKs1kP3Vfy6ZKctNAlvPrtF-Tt_u51_pgvXx4W89kyd5LqXY4FoyWjDXPQ1M4IJw3WrpQNR6aE4yC4KMAZlMALXSBtjSlrNBqGoaZSXJDF6NsEWNtt9BuIXzaAtz9AiCsLceddh5Zq4EIzzikTkithChCKlaVUjZZS14PX9ei1jeF9j2ln12Efh4eS5bKQStNS64ElRpaLIaWI7d9VRu0hBzvmYA852N8cBtVkVHlE_FMYphXjTHwD59-DCQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11042_024_19393_4
crossref_primary_10_1109_TIP_2022_3148814
crossref_primary_10_1016_j_media_2023_102879
crossref_primary_10_1007_s12530_024_09581_w
crossref_primary_10_1117_1_JMI_9_6_064503
crossref_primary_10_1109_TMI_2022_3228254
crossref_primary_10_3390_math12050758
crossref_primary_10_1007_s11633_022_1406_4
crossref_primary_10_1016_j_ejmp_2021_04_016
crossref_primary_10_1016_j_bspc_2022_104378
crossref_primary_10_1186_s12880_024_01253_0
crossref_primary_10_1002_ima_22901
crossref_primary_10_1007_s11831_023_09884_2
crossref_primary_10_1038_s41598_023_49057_6
crossref_primary_10_7717_peerj_cs_1045
crossref_primary_10_1007_s00330_022_09184_6
crossref_primary_10_3390_rs15133427
crossref_primary_10_1109_ACCESS_2023_3262575
Cites_doi 10.1016/j.media.2019.101539
10.1109/CVPR.2016.278
10.1007/978-3-030-01252-6_2
10.1109/CVPR.2017.660
10.1109/ICCV.2015.169
10.1109/CVPR.2015.7298594
10.1109/CVPR.2017.243
10.1109/CVPR.2018.00086
10.1109/CVPR.2018.00165
10.1109/ICCV.2017.244
10.1109/CVPR.2018.00975
10.1109/ICCV.2015.167
10.1109/WACV.2018.00092
10.1109/CVPR.2016.90
10.1109/ICCV.2017.79
10.1109/CVPR.2019.00201
10.1109/CVPR.2015.7298965
10.1109/TPAMI.2017.2699184
10.1007/978-3-319-46493-0_41
10.1007/978-3-319-46487-9_40
10.1117/12.2520589
10.1109/CVPR.2009.5206848
10.1109/CVPR.2017.19
10.1109/ICCV.2017.73
10.1109/TPAMI.2020.2992393
10.1109/CVPR.2014.81
10.1109/WACV.2019.00025
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3021469
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 162981
ExternalDocumentID oai_doaj_org_article_08a238122013426395a3617746d8448b
10_1109_ACCESS_2020_3021469
9186121
Genre orig-research
GrantInformation_xml – fundername: Bio and Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean Government (MSIT)
  grantid: NRF-2019M3E5D1A02067961; HCRI 19136
  funderid: 10.13039/501100003725
– fundername: Chonnam National University Hwasun Hospital Institute for Biomedical Science and National Research Foundation of Korea (NRF) funded by the Korea Government (MSIT)
  grantid: NRF-2020R1A4A1019191
  funderid: 10.13039/501100001321
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-e510710d1cadbc93c49ebc74d2e163c2a3235ac9e4a2585e0f997be98af99b043
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Tue Oct 22 15:15:19 EDT 2024
Thu Oct 10 19:29:27 EDT 2024
Fri Aug 23 01:13:00 EDT 2024
Wed Jun 26 19:26:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e510710d1cadbc93c49ebc74d2e163c2a3235ac9e4a2585e0f997be98af99b043
ORCID 0000-0002-8756-1382
0000-0003-3024-5060
0000-0001-8495-5469
0000-0003-3575-5035
OpenAccessLink https://doaj.org/article/08a238122013426395a3617746d8448b
PQID 2454680788
PQPubID 4845423
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_08a238122013426395a3617746d8448b
crossref_primary_10_1109_ACCESS_2020_3021469
ieee_primary_9186121
proquest_journals_2454680788
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
kuznetsova (ref13) 2018
ref14
ren (ref5) 2015
ref30
ref33
ref11
ref10
noroozi (ref16) 2016
ref39
gidaris (ref31) 2018
ref17
krizhevsky (ref2) 2012
vondrick (ref21) 2016
ref18
korbar (ref36) 2018
kingma (ref40) 2014
ref24
srivastava (ref23) 2015
ref26
ref20
ref41
ref22
ref28
ref27
caron (ref25) 2018
sayed (ref38) 2018
ref29
mirza (ref19) 2014
ref8
ref7
ref9
ref4
misra (ref32) 2016
ref3
ref6
simonyan (ref1) 2014
References_xml – ident: ref39
  doi: 10.1016/j.media.2019.101539
– start-page: 7763
  year: 2018
  ident: ref36
  article-title: Cooperative learning of audio and video models from self-supervised synchronization
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: korbar
– ident: ref15
  doi: 10.1109/CVPR.2016.278
– ident: ref35
  doi: 10.1007/978-3-030-01252-6_2
– ident: ref9
  doi: 10.1109/CVPR.2017.660
– ident: ref4
  doi: 10.1109/ICCV.2015.169
– ident: ref3
  doi: 10.1109/CVPR.2015.7298594
– ident: ref11
  doi: 10.1109/CVPR.2017.243
– ident: ref34
  doi: 10.1109/CVPR.2018.00086
– ident: ref22
  doi: 10.1109/CVPR.2018.00165
– ident: ref20
  doi: 10.1109/ICCV.2017.244
– ident: ref24
  doi: 10.1109/CVPR.2018.00975
– start-page: 132
  year: 2018
  ident: ref25
  article-title: Deep clustering for unsupervised learning of visual features
  publication-title: Proc Eur Conf Comput Vis (ECCV)
  contributor:
    fullname: caron
– ident: ref30
  doi: 10.1109/ICCV.2015.167
– start-page: 843
  year: 2015
  ident: ref23
  article-title: Unsupervised learning of video representations using LSTMs
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: srivastava
– start-page: 69
  year: 2016
  ident: ref16
  article-title: Unsupervised learning of visual representations by solving jigsaw puzzles
  publication-title: Proc Eur Conf Comput Vis
  contributor:
    fullname: noroozi
– ident: ref29
  doi: 10.1109/WACV.2018.00092
– ident: ref10
  doi: 10.1109/CVPR.2016.90
– start-page: 91
  year: 2015
  ident: ref5
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: ren
– year: 2018
  ident: ref31
  article-title: Unsupervised representation learning by predicting image rotations
  publication-title: arXiv 1803 07728
  contributor:
    fullname: gidaris
– year: 2014
  ident: ref1
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
  contributor:
    fullname: simonyan
– ident: ref33
  doi: 10.1109/ICCV.2017.79
– year: 2014
  ident: ref40
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
  contributor:
    fullname: kingma
– ident: ref28
  doi: 10.1109/CVPR.2019.00201
– ident: ref7
  doi: 10.1109/CVPR.2015.7298965
– ident: ref8
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref26
  doi: 10.1007/978-3-319-46493-0_41
– start-page: 527
  year: 2016
  ident: ref32
  article-title: Shuffle and learn: Unsupervised learning using temporal order verification
  publication-title: Proc Eur Conf Comput Vis
  contributor:
    fullname: misra
– start-page: 1097
  year: 2012
  ident: ref2
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: krizhevsky
– ident: ref14
  doi: 10.1007/978-3-319-46487-9_40
– ident: ref41
  doi: 10.1117/12.2520589
– year: 2018
  ident: ref13
  article-title: The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale
  publication-title: arXiv 1811 00982
  contributor:
    fullname: kuznetsova
– ident: ref12
  doi: 10.1109/CVPR.2009.5206848
– ident: ref18
  doi: 10.1109/CVPR.2017.19
– ident: ref37
  doi: 10.1109/ICCV.2017.73
– start-page: 228
  year: 2018
  ident: ref38
  article-title: Cross and learn: Cross-modal self-supervision
  publication-title: Proc German Conf Pattern Recognit
  contributor:
    fullname: sayed
– start-page: 613
  year: 2016
  ident: ref21
  article-title: Generating videos with scene dynamics
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: vondrick
– ident: ref17
  doi: 10.1109/TPAMI.2020.2992393
– ident: ref6
  doi: 10.1109/CVPR.2014.81
– year: 2014
  ident: ref19
  article-title: Conditional generative adversarial nets
  publication-title: arXiv 1411 1784
  contributor:
    fullname: mirza
– ident: ref27
  doi: 10.1109/WACV.2019.00025
SSID ssj0000816957
Score 2.4003987
Snippet Medical image analysis is one of the research fields that had huge benefits from deep learning in recent years. To earn a good performance, the learning model...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 162973
SubjectTerms Annotations
Biomedical imaging
Computed tomography
convolutional neural network
deep learning
Feature extraction
Hemorrhage
Image analysis
Image segmentation
medical image analysis
Medical imaging
Medical research
Performance enhancement
Self-supervised learning
Semantics
spatial awareness
Task analysis
Training
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELaAU3sopbTqUlr50CNZ4tiJM0dYFUEluFAkbpYfk6pqu4vKrirx65lxvKu-Dr05UeI4Hs_4G9vzjRDvk1LYqDBUFkjdDHZtFYD0avAWQSWduhwofHnVnd-Yj7ft7ZY42sTCIGI-fIZTLua9_LSIK14qOwbVM-HVtti2AGOs1mY9hRNIQGsLsZCq4fhkNqN_IBewIc80J7CG3yafzNFfkqr8ZYnz9HK2Ky7XDRtPlXydrpZhGh_-4Gz835Y_F88KzpQn48DYE1s4fyGe_sI-uC-urvHbUF2v7thc3GOShWv1szz1fLmYS05Y_IWr-ckxY2QUJWFcWTZ35MV3MkZyTWvyUtycffg0O69KeoUqmrpfVkjqSPgiqehTiKCjAQzRmtQggbTYeN3o1kdA4xtyKrAeAGxA6D0VQm30K7EzX8zxtZChDpo8FWPJQWK2QwAcVFQ62WgH3YWJOFr3u7sbWTRc9j5qcKOYHIvJFTFNxCnLZvMoU2DnG9SnrmiUq3vPcKMhBKOZdR5arwmOWdOlnnxO-uY-y2FTSRHBRByuJe2Kut67xrSmY-b9_uDfb70RT7iB49rLodhZ_ljhW0Ijy_AuD8NHia_aDw
  priority: 102
  providerName: IEEE
Title Self-Supervised Learning Based on Spatial Awareness for Medical Image Analysis
URI https://ieeexplore.ieee.org/document/9186121
https://www.proquest.com/docview/2454680788
https://doaj.org/article/08a238122013426395a3617746d8448b
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQUBDhJQ-MRI1jJ86NbUUFSLAAEpvlVxASlIoW8fc5O25VxMDClpcc-y73-JLcd4ScO8Z8yUybS0BzE76ucgNoV62WHpjjro6Fwrd39dWjuHmqntZafYV_wjp64E5wg6LRIaqUGKh4IBeHSnOMulLUrkFoYaL3LWANTEUf3LAaKplohvD8YDge44oQEJaIU2M7a_gRiiJjf2qx8ssvx2Az2SHbKUukw252u2TDT_fI1hp3YJ_c3fvXNr__nAVjn3tHE1PqMx3psPs-paHd8EsY5itUfKFLo5ih0vRphl6_oSuhS1KSffI4uXwYX-WpOUJuRdEsco_GhNmBY1Y7Y4FbAd5YKVzpMcWypeYlr7QFL3SJkMAXLYA0HhqNG6YQ_ID0pu9Tf0ioKQxHnCEkwpvAVQjgW2YZd9LKltcmIxdLOalZx4GhInYoQHViVUGsKok1I6Mgy9WlgcA6HkC1qqRW9ZdaM9IPmlgNAqwJXGcZOVlqRiVjm6tSVKIOvPnN0X_c-phshuV071lOSG_x8elPMfNYmLP4kJ3FIsFvGrjOqQ
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPHJttHDtxfGxXVFvo7qWt1JsV25MKAbsV3RUSv54Zx7videDmRInjeDzjb2zPNwDvopRYSd8XxpK6aWzqwlvSq74zaGVUsUmBwrN5M73UH67qqx042MbCIGI6fIZjLqa9_LgMa14qO7SyZcKrO3CXcHXbDNFa2xUVTiFha5OphWRpD48mE_oLcgIr8k1TCmv72_STWPpzWpW_bHGaYE4ewWzTtOFcyefxeuXH4ccfrI3_2_bH8DAjTXE0DI0nsIOLp_DgF_7BPZif45e-OF_fsMG4xSgy2-q1OO74crkQnLL4E1fznaPGyCwKQrkib--I069kjsSG2OQZXJ68v5hMi5xgoQi6bFcFkkISwogydNEHq4K26IPRsUKCaaHqVKXqLljUXUVuBZa9tcajbTsq-FKr57C7WC7wBQhfekW-ijYkF-Y7tBZ7GaSKJpheNX4EB5t-dzcDj4ZL_kdp3SAmx2JyWUwjOGbZbB9lEux0g_rUZZ1yZdsx4KgIwyjmnbd1pwiQGd3ElrxO-uYey2FbSRbBCPY3knZZYW9dpWvdMPd--_Lfb72Fe9OL2Zk7O51_fAX3ubHDSsw-7K6-rfE1YZOVf5OG5E8aHd1a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Supervised+Learning+Based+on+Spatial+Awareness+for+Medical+Image+Analysis&rft.jtitle=IEEE+access&rft.au=Nguyen%2C+Xuan-Bac&rft.au=Lee%2C+Guee+Sang&rft.au=Kim%2C+Soo+Hyung&rft.au=Yang%2C+Hyung+Jeong&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=162973&rft.epage=162981&rft_id=info:doi/10.1109%2FACCESS.2020.3021469&rft.externalDocID=9186121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon