Self-Supervised Learning Based on Spatial Awareness for Medical Image Analysis
Medical image analysis is one of the research fields that had huge benefits from deep learning in recent years. To earn a good performance, the learning model requires large scale data with full annotation. However, it is a big burden to collect a sufficient number of labeled data for the training....
Saved in:
Published in | IEEE access Vol. 8; pp. 162973 - 162981 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Medical image analysis is one of the research fields that had huge benefits from deep learning in recent years. To earn a good performance, the learning model requires large scale data with full annotation. However, it is a big burden to collect a sufficient number of labeled data for the training. Since there are more unlabeled data than labeled ones in most of medical applications, self-supervised learning has been utilized to improve the performance. However, most of current methods for self-supervised learning try to understand only semantic features of the data, but have not fully utilized properties inherent in medical images. Specifically, in CT or MR images, the spatial or structural information contained in the dataset has not been fully considered. In this paper, we propose a novel method for self-supervised learning in medical image analysis that can exploit both semantic and spatial features at the same time. The proposed method is experimented in the problems of organ segmentation, intracranial hemorrhage detection and the results show the effectiveness of the method. |
---|---|
AbstractList | Medical image analysis is one of the research fields that had huge benefits from deep learning in recent years. To earn a good performance, the learning model requires large scale data with full annotation. However, it is a big burden to collect a sufficient number of labeled data for the training. Since there are more unlabeled data than labeled ones in most of medical applications, self-supervised learning has been utilized to improve the performance. However, most of current methods for self-supervised learning try to understand only semantic features of the data, but have not fully utilized properties inherent in medical images. Specifically, in CT or MR images, the spatial or structural information contained in the dataset has not been fully considered. In this paper, we propose a novel method for self-supervised learning in medical image analysis that can exploit both semantic and spatial features at the same time. The proposed method is experimented in the problems of organ segmentation, intracranial hemorrhage detection and the results show the effectiveness of the method. |
Author | Lee, Guee Sang Nguyen, Xuan-Bac Kim, Soo Hyung Yang, Hyung Jeong |
Author_xml | – sequence: 1 givenname: Xuan-Bac orcidid: 0000-0001-8495-5469 surname: Nguyen fullname: Nguyen, Xuan-Bac organization: Department of Electronic and Computer Engineering, Chonnam National University, Gwangju, South Korea – sequence: 2 givenname: Guee Sang orcidid: 0000-0002-8756-1382 surname: Lee fullname: Lee, Guee Sang email: gslee@jnu.ac.kr organization: Department of Electronic and Computer Engineering, Chonnam National University, Gwangju, South Korea – sequence: 3 givenname: Soo Hyung orcidid: 0000-0003-3575-5035 surname: Kim fullname: Kim, Soo Hyung organization: Department of Electronic and Computer Engineering, Chonnam National University, Gwangju, South Korea – sequence: 4 givenname: Hyung Jeong orcidid: 0000-0003-3024-5060 surname: Yang fullname: Yang, Hyung Jeong organization: Department of Electronic and Computer Engineering, Chonnam National University, Gwangju, South Korea |
BookMark | eNpNUctOwzAQtBBIPL-gl0icU_yKYx9LxaNSgUPgbG2cTeUqjYvdgvh7UoIQe9nd0cysVnNOjvvQIyETRqeMUXMzm8_vqmrKKadTQTmTyhyRM86UyUUh1PG_-ZRcpbSmQ-kBKsoz8lxh1-bVfovxwydssiVC7H2_ym7hsIY-q7aw89Bls0-I2GNKWRti9oSNdwO62MAKs1kP3Vfy6ZKctNAlvPrtF-Tt_u51_pgvXx4W89kyd5LqXY4FoyWjDXPQ1M4IJw3WrpQNR6aE4yC4KMAZlMALXSBtjSlrNBqGoaZSXJDF6NsEWNtt9BuIXzaAtz9AiCsLceddh5Zq4EIzzikTkithChCKlaVUjZZS14PX9ei1jeF9j2ln12Efh4eS5bKQStNS64ElRpaLIaWI7d9VRu0hBzvmYA852N8cBtVkVHlE_FMYphXjTHwD59-DCQ |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s11042_024_19393_4 crossref_primary_10_1109_TIP_2022_3148814 crossref_primary_10_1016_j_media_2023_102879 crossref_primary_10_1007_s12530_024_09581_w crossref_primary_10_1117_1_JMI_9_6_064503 crossref_primary_10_1109_TMI_2022_3228254 crossref_primary_10_3390_math12050758 crossref_primary_10_1007_s11633_022_1406_4 crossref_primary_10_1016_j_ejmp_2021_04_016 crossref_primary_10_1016_j_bspc_2022_104378 crossref_primary_10_1186_s12880_024_01253_0 crossref_primary_10_1002_ima_22901 crossref_primary_10_1007_s11831_023_09884_2 crossref_primary_10_1038_s41598_023_49057_6 crossref_primary_10_7717_peerj_cs_1045 crossref_primary_10_1007_s00330_022_09184_6 crossref_primary_10_3390_rs15133427 crossref_primary_10_1109_ACCESS_2023_3262575 |
Cites_doi | 10.1016/j.media.2019.101539 10.1109/CVPR.2016.278 10.1007/978-3-030-01252-6_2 10.1109/CVPR.2017.660 10.1109/ICCV.2015.169 10.1109/CVPR.2015.7298594 10.1109/CVPR.2017.243 10.1109/CVPR.2018.00086 10.1109/CVPR.2018.00165 10.1109/ICCV.2017.244 10.1109/CVPR.2018.00975 10.1109/ICCV.2015.167 10.1109/WACV.2018.00092 10.1109/CVPR.2016.90 10.1109/ICCV.2017.79 10.1109/CVPR.2019.00201 10.1109/CVPR.2015.7298965 10.1109/TPAMI.2017.2699184 10.1007/978-3-319-46493-0_41 10.1007/978-3-319-46487-9_40 10.1117/12.2520589 10.1109/CVPR.2009.5206848 10.1109/CVPR.2017.19 10.1109/ICCV.2017.73 10.1109/TPAMI.2020.2992393 10.1109/CVPR.2014.81 10.1109/WACV.2019.00025 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2020.3021469 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 162981 |
ExternalDocumentID | oai_doaj_org_article_08a238122013426395a3617746d8448b 10_1109_ACCESS_2020_3021469 9186121 |
Genre | orig-research |
GrantInformation_xml | – fundername: Bio and Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean Government (MSIT) grantid: NRF-2019M3E5D1A02067961; HCRI 19136 funderid: 10.13039/501100003725 – fundername: Chonnam National University Hwasun Hospital Institute for Biomedical Science and National Research Foundation of Korea (NRF) funded by the Korea Government (MSIT) grantid: NRF-2020R1A4A1019191 funderid: 10.13039/501100001321 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-e510710d1cadbc93c49ebc74d2e163c2a3235ac9e4a2585e0f997be98af99b043 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:15:19 EDT 2024 Thu Oct 10 19:29:27 EDT 2024 Fri Aug 23 01:13:00 EDT 2024 Wed Jun 26 19:26:28 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-e510710d1cadbc93c49ebc74d2e163c2a3235ac9e4a2585e0f997be98af99b043 |
ORCID | 0000-0002-8756-1382 0000-0003-3024-5060 0000-0001-8495-5469 0000-0003-3575-5035 |
OpenAccessLink | https://doaj.org/article/08a238122013426395a3617746d8448b |
PQID | 2454680788 |
PQPubID | 4845423 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_08a238122013426395a3617746d8448b crossref_primary_10_1109_ACCESS_2020_3021469 ieee_primary_9186121 proquest_journals_2454680788 |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref37 ref15 kuznetsova (ref13) 2018 ref14 ren (ref5) 2015 ref30 ref33 ref11 ref10 noroozi (ref16) 2016 ref39 gidaris (ref31) 2018 ref17 krizhevsky (ref2) 2012 vondrick (ref21) 2016 ref18 korbar (ref36) 2018 kingma (ref40) 2014 ref24 srivastava (ref23) 2015 ref26 ref20 ref41 ref22 ref28 ref27 caron (ref25) 2018 sayed (ref38) 2018 ref29 mirza (ref19) 2014 ref8 ref7 ref9 ref4 misra (ref32) 2016 ref3 ref6 simonyan (ref1) 2014 |
References_xml | – ident: ref39 doi: 10.1016/j.media.2019.101539 – start-page: 7763 year: 2018 ident: ref36 article-title: Cooperative learning of audio and video models from self-supervised synchronization publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: korbar – ident: ref15 doi: 10.1109/CVPR.2016.278 – ident: ref35 doi: 10.1007/978-3-030-01252-6_2 – ident: ref9 doi: 10.1109/CVPR.2017.660 – ident: ref4 doi: 10.1109/ICCV.2015.169 – ident: ref3 doi: 10.1109/CVPR.2015.7298594 – ident: ref11 doi: 10.1109/CVPR.2017.243 – ident: ref34 doi: 10.1109/CVPR.2018.00086 – ident: ref22 doi: 10.1109/CVPR.2018.00165 – ident: ref20 doi: 10.1109/ICCV.2017.244 – ident: ref24 doi: 10.1109/CVPR.2018.00975 – start-page: 132 year: 2018 ident: ref25 article-title: Deep clustering for unsupervised learning of visual features publication-title: Proc Eur Conf Comput Vis (ECCV) contributor: fullname: caron – ident: ref30 doi: 10.1109/ICCV.2015.167 – start-page: 843 year: 2015 ident: ref23 article-title: Unsupervised learning of video representations using LSTMs publication-title: Proc Int Conf Mach Learn contributor: fullname: srivastava – start-page: 69 year: 2016 ident: ref16 article-title: Unsupervised learning of visual representations by solving jigsaw puzzles publication-title: Proc Eur Conf Comput Vis contributor: fullname: noroozi – ident: ref29 doi: 10.1109/WACV.2018.00092 – ident: ref10 doi: 10.1109/CVPR.2016.90 – start-page: 91 year: 2015 ident: ref5 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: ren – year: 2018 ident: ref31 article-title: Unsupervised representation learning by predicting image rotations publication-title: arXiv 1803 07728 contributor: fullname: gidaris – year: 2014 ident: ref1 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 contributor: fullname: simonyan – ident: ref33 doi: 10.1109/ICCV.2017.79 – year: 2014 ident: ref40 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 contributor: fullname: kingma – ident: ref28 doi: 10.1109/CVPR.2019.00201 – ident: ref7 doi: 10.1109/CVPR.2015.7298965 – ident: ref8 doi: 10.1109/TPAMI.2017.2699184 – ident: ref26 doi: 10.1007/978-3-319-46493-0_41 – start-page: 527 year: 2016 ident: ref32 article-title: Shuffle and learn: Unsupervised learning using temporal order verification publication-title: Proc Eur Conf Comput Vis contributor: fullname: misra – start-page: 1097 year: 2012 ident: ref2 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: krizhevsky – ident: ref14 doi: 10.1007/978-3-319-46487-9_40 – ident: ref41 doi: 10.1117/12.2520589 – year: 2018 ident: ref13 article-title: The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale publication-title: arXiv 1811 00982 contributor: fullname: kuznetsova – ident: ref12 doi: 10.1109/CVPR.2009.5206848 – ident: ref18 doi: 10.1109/CVPR.2017.19 – ident: ref37 doi: 10.1109/ICCV.2017.73 – start-page: 228 year: 2018 ident: ref38 article-title: Cross and learn: Cross-modal self-supervision publication-title: Proc German Conf Pattern Recognit contributor: fullname: sayed – start-page: 613 year: 2016 ident: ref21 article-title: Generating videos with scene dynamics publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: vondrick – ident: ref17 doi: 10.1109/TPAMI.2020.2992393 – ident: ref6 doi: 10.1109/CVPR.2014.81 – year: 2014 ident: ref19 article-title: Conditional generative adversarial nets publication-title: arXiv 1411 1784 contributor: fullname: mirza – ident: ref27 doi: 10.1109/WACV.2019.00025 |
SSID | ssj0000816957 |
Score | 2.4003987 |
Snippet | Medical image analysis is one of the research fields that had huge benefits from deep learning in recent years. To earn a good performance, the learning model... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 162973 |
SubjectTerms | Annotations Biomedical imaging Computed tomography convolutional neural network deep learning Feature extraction Hemorrhage Image analysis Image segmentation medical image analysis Medical imaging Medical research Performance enhancement Self-supervised learning Semantics spatial awareness Task analysis Training |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELaAU3sopbTqUlr50CNZ4tiJM0dYFUEluFAkbpYfk6pqu4vKrirx65lxvKu-Dr05UeI4Hs_4G9vzjRDvk1LYqDBUFkjdDHZtFYD0avAWQSWduhwofHnVnd-Yj7ft7ZY42sTCIGI-fIZTLua9_LSIK14qOwbVM-HVtti2AGOs1mY9hRNIQGsLsZCq4fhkNqN_IBewIc80J7CG3yafzNFfkqr8ZYnz9HK2Ky7XDRtPlXydrpZhGh_-4Gz835Y_F88KzpQn48DYE1s4fyGe_sI-uC-urvHbUF2v7thc3GOShWv1szz1fLmYS05Y_IWr-ckxY2QUJWFcWTZ35MV3MkZyTWvyUtycffg0O69KeoUqmrpfVkjqSPgiqehTiKCjAQzRmtQggbTYeN3o1kdA4xtyKrAeAGxA6D0VQm30K7EzX8zxtZChDpo8FWPJQWK2QwAcVFQ62WgH3YWJOFr3u7sbWTRc9j5qcKOYHIvJFTFNxCnLZvMoU2DnG9SnrmiUq3vPcKMhBKOZdR5arwmOWdOlnnxO-uY-y2FTSRHBRByuJe2Kut67xrSmY-b9_uDfb70RT7iB49rLodhZ_ljhW0Ijy_AuD8NHia_aDw priority: 102 providerName: IEEE |
Title | Self-Supervised Learning Based on Spatial Awareness for Medical Image Analysis |
URI | https://ieeexplore.ieee.org/document/9186121 https://www.proquest.com/docview/2454680788 https://doaj.org/article/08a238122013426395a3617746d8448b |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQUBDhJQ-MRI1jJ86NbUUFSLAAEpvlVxASlIoW8fc5O25VxMDClpcc-y73-JLcd4ScO8Z8yUybS0BzE76ucgNoV62WHpjjro6Fwrd39dWjuHmqntZafYV_wjp64E5wg6LRIaqUGKh4IBeHSnOMulLUrkFoYaL3LWANTEUf3LAaKplohvD8YDge44oQEJaIU2M7a_gRiiJjf2qx8ssvx2Az2SHbKUukw252u2TDT_fI1hp3YJ_c3fvXNr__nAVjn3tHE1PqMx3psPs-paHd8EsY5itUfKFLo5ih0vRphl6_oSuhS1KSffI4uXwYX-WpOUJuRdEsco_GhNmBY1Y7Y4FbAd5YKVzpMcWypeYlr7QFL3SJkMAXLYA0HhqNG6YQ_ID0pu9Tf0ioKQxHnCEkwpvAVQjgW2YZd9LKltcmIxdLOalZx4GhInYoQHViVUGsKok1I6Mgy9WlgcA6HkC1qqRW9ZdaM9IPmlgNAqwJXGcZOVlqRiVjm6tSVKIOvPnN0X_c-phshuV071lOSG_x8elPMfNYmLP4kJ3FIsFvGrjOqQ |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPHJttHDtxfGxXVFvo7qWt1JsV25MKAbsV3RUSv54Zx7videDmRInjeDzjb2zPNwDvopRYSd8XxpK6aWzqwlvSq74zaGVUsUmBwrN5M73UH67qqx042MbCIGI6fIZjLqa9_LgMa14qO7SyZcKrO3CXcHXbDNFa2xUVTiFha5OphWRpD48mE_oLcgIr8k1TCmv72_STWPpzWpW_bHGaYE4ewWzTtOFcyefxeuXH4ccfrI3_2_bH8DAjTXE0DI0nsIOLp_DgF_7BPZif45e-OF_fsMG4xSgy2-q1OO74crkQnLL4E1fznaPGyCwKQrkib--I069kjsSG2OQZXJ68v5hMi5xgoQi6bFcFkkISwogydNEHq4K26IPRsUKCaaHqVKXqLljUXUVuBZa9tcajbTsq-FKr57C7WC7wBQhfekW-ijYkF-Y7tBZ7GaSKJpheNX4EB5t-dzcDj4ZL_kdp3SAmx2JyWUwjOGbZbB9lEux0g_rUZZ1yZdsx4KgIwyjmnbd1pwiQGd3ElrxO-uYey2FbSRbBCPY3knZZYW9dpWvdMPd--_Lfb72Fe9OL2Zk7O51_fAX3ubHDSsw-7K6-rfE1YZOVf5OG5E8aHd1a |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Supervised+Learning+Based+on+Spatial+Awareness+for+Medical+Image+Analysis&rft.jtitle=IEEE+access&rft.au=Nguyen%2C+Xuan-Bac&rft.au=Lee%2C+Guee+Sang&rft.au=Kim%2C+Soo+Hyung&rft.au=Yang%2C+Hyung+Jeong&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=162973&rft.epage=162981&rft_id=info:doi/10.1109%2FACCESS.2020.3021469&rft.externalDocID=9186121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |