Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions?

Soil compaction occurs widely in modern agriculture, leading to reduced crop yields and enhanced soil N2O emissions. Biochar, an emerging biomass-pyrolysis product with porous structure, is hypothesized to alleviate soil compaction problems. A field mesocosm experiment involving biochar addition and...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 104; pp. 8 - 17
Main Authors Liu, Qi, Liu, Benjuan, Zhang, Yanhui, Lin, Zhibin, Zhu, Tongbin, Sun, Ruibo, Wang, Xiaojie, Ma, Jing, Bei, Qicheng, Liu, Gang, Lin, Xingwu, Xie, Zubin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil compaction occurs widely in modern agriculture, leading to reduced crop yields and enhanced soil N2O emissions. Biochar, an emerging biomass-pyrolysis product with porous structure, is hypothesized to alleviate soil compaction problems. A field mesocosm experiment involving biochar addition and soil compaction in a factorial design was conducted on a land cultivated with wheat. The results showed that biochar had little effect on wheat grain yield, but it increased wheat vegetative growth and reduced seasonal cumulative soil N2O emissions from both compacted and non-compacted soils. Across all treatments, biochar-induced changes in individual soil N2O fluxes mainly occurred within a couple of days after nitrogen fertilization, and were sensitive to soil moisture, with an average increase of 13% under low soil moisture conditions (<70% water holding capacity (WHC)) that was likely driven by increased abundance of ammonia-oxidizing archaea and bacteria, and an average decrease of 36% under high soil moisture conditions (>70% WHC) that was likely induced by raised abundance of N2O-reducing bacteria. The stimulated population sizes of nitrifiers and denitrifiers in biochar-amended soils were more dependent on biochar's chemical mediation (a shift of soil pH from moderate acidity towards neutrality) than physical mediation. This study indicated that biochar could alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions, and to promote biochar's role in reducing soil N2O emissions, the best practice for nitrogen fertilization is before precipitation or followed by irrigation. •Biochar alleviated soil-compaction induced negative physical effects.•Biochar increased wheat vegetative growth but not reproductive growth.•Biochar chemically-mediated effect dominated a rise in nitrifiers and denitrifiers.•Biochar impact on soil N2O flux was interactive with soil water and N fertilization.•Biochar can alleviate soil compaction stress on wheat growth and mitigate N2O flux.
AbstractList Soil compaction occurs widely in modern agriculture, leading to reduced crop yields and enhanced soil N2O emissions. Biochar, an emerging biomass-pyrolysis product with porous structure, is hypothesized to alleviate soil compaction problems. A field mesocosm experiment involving biochar addition and soil compaction in a factorial design was conducted on a land cultivated with wheat. The results showed that biochar had little effect on wheat grain yield, but it increased wheat vegetative growth and reduced seasonal cumulative soil N2O emissions from both compacted and non-compacted soils. Across all treatments, biochar-induced changes in individual soil N2O fluxes mainly occurred within a couple of days after nitrogen fertilization, and were sensitive to soil moisture, with an average increase of 13% under low soil moisture conditions (<70% water holding capacity (WHC)) that was likely driven by increased abundance of ammonia-oxidizing archaea and bacteria, and an average decrease of 36% under high soil moisture conditions (>70% WHC) that was likely induced by raised abundance of N2O-reducing bacteria. The stimulated population sizes of nitrifiers and denitrifiers in biochar-amended soils were more dependent on biochar's chemical mediation (a shift of soil pH from moderate acidity towards neutrality) than physical mediation. This study indicated that biochar could alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions, and to promote biochar's role in reducing soil N2O emissions, the best practice for nitrogen fertilization is before precipitation or followed by irrigation.
Soil compaction occurs widely in modern agriculture, leading to reduced crop yields and enhanced soil N2O emissions. Biochar, an emerging biomass-pyrolysis product with porous structure, is hypothesized to alleviate soil compaction problems. A field mesocosm experiment involving biochar addition and soil compaction in a factorial design was conducted on a land cultivated with wheat. The results showed that biochar had little effect on wheat grain yield, but it increased wheat vegetative growth and reduced seasonal cumulative soil N2O emissions from both compacted and non-compacted soils. Across all treatments, biochar-induced changes in individual soil N2O fluxes mainly occurred within a couple of days after nitrogen fertilization, and were sensitive to soil moisture, with an average increase of 13% under low soil moisture conditions (<70% water holding capacity (WHC)) that was likely driven by increased abundance of ammonia-oxidizing archaea and bacteria, and an average decrease of 36% under high soil moisture conditions (>70% WHC) that was likely induced by raised abundance of N2O-reducing bacteria. The stimulated population sizes of nitrifiers and denitrifiers in biochar-amended soils were more dependent on biochar's chemical mediation (a shift of soil pH from moderate acidity towards neutrality) than physical mediation. This study indicated that biochar could alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions, and to promote biochar's role in reducing soil N2O emissions, the best practice for nitrogen fertilization is before precipitation or followed by irrigation. •Biochar alleviated soil-compaction induced negative physical effects.•Biochar increased wheat vegetative growth but not reproductive growth.•Biochar chemically-mediated effect dominated a rise in nitrifiers and denitrifiers.•Biochar impact on soil N2O flux was interactive with soil water and N fertilization.•Biochar can alleviate soil compaction stress on wheat growth and mitigate N2O flux.
Author Liu, Gang
Zhu, Tongbin
Lin, Xingwu
Ma, Jing
Lin, Zhibin
Zhang, Yanhui
Xie, Zubin
Sun, Ruibo
Wang, Xiaojie
Liu, Qi
Liu, Benjuan
Bei, Qicheng
Author_xml – sequence: 1
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China
– sequence: 2
  givenname: Benjuan
  surname: Liu
  fullname: Liu, Benjuan
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China
– sequence: 3
  givenname: Yanhui
  surname: Zhang
  fullname: Zhang, Yanhui
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China
– sequence: 4
  givenname: Zhibin
  surname: Lin
  fullname: Lin, Zhibin
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China
– sequence: 5
  givenname: Tongbin
  surname: Zhu
  fullname: Zhu, Tongbin
  organization: Karst Dynamics Laboratory, Ministry of Land and Resources, Institute of Karst Geology, Chinese Academy of Geological Sciences, Qixing Road No.50, Guilin 541004, China
– sequence: 6
  givenname: Ruibo
  surname: Sun
  fullname: Sun, Ruibo
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China
– sequence: 7
  givenname: Xiaojie
  surname: Wang
  fullname: Wang, Xiaojie
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China
– sequence: 8
  givenname: Jing
  surname: Ma
  fullname: Ma, Jing
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China
– sequence: 9
  givenname: Qicheng
  surname: Bei
  fullname: Bei, Qicheng
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China
– sequence: 10
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China
– sequence: 11
  givenname: Xingwu
  surname: Lin
  fullname: Lin, Xingwu
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China
– sequence: 12
  givenname: Zubin
  surname: Xie
  fullname: Xie, Zubin
  email: zbxie@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China
BookMark eNqFkMtKAzEUhoNUsK0-gpClmxlzmSsuihRvUOxGlxIymTNtysykJmmLb2-GFhduujrJId9P_m-CRr3pAaFbSmJKaHa_iZ3RbaVNzMI17GJCsgs0pkVeRjxhxQiNCeFFRHKaX6GJcxtCCEspH6OvuexxQNVaWizbFvZaesBDIFam20rltemx8xacw-F0WIP0eGXNwa-x7Gvcaa9Xf8w7W2LotHOBcrNrdNnI1sHNaU7R5_PTx_w1Wixf3uaPi0glpPAR8CZJy7QoKiYrBkkCGU2AQ0ZozkjNZZrKhpQlA6XCpKpqeKLq0FblFUsln6K7Y-7Wmu8dOC_CFxS0rezB7JxgoS9ltAwWpujh-FRZ45yFRijt5VDSW6lbQYkYpIqNOEkVg9RhHaQGOv1Hb63upP05y82OHAQLew1WOKWhV1BrC8qL2ugzCb8EyZd0
CitedBy_id crossref_primary_10_1007_s10705_019_09983_2
crossref_primary_10_1016_j_scitotenv_2024_176218
crossref_primary_10_1016_j_jclepro_2021_126259
crossref_primary_10_1016_j_still_2021_105036
crossref_primary_10_1007_s42773_024_00323_4
crossref_primary_10_1002_tqem_70032
crossref_primary_10_36783_18069657rbcs20230046
crossref_primary_10_1007_s11104_025_07226_8
crossref_primary_10_1007_s42729_022_00877_x
crossref_primary_10_1016_j_chemosphere_2021_132551
crossref_primary_10_1007_s13762_021_03267_5
crossref_primary_10_1016_j_agee_2024_109223
crossref_primary_10_1007_s13593_022_00773_9
crossref_primary_10_1007_s42773_020_00068_w
crossref_primary_10_1016_j_scitotenv_2018_06_166
crossref_primary_10_1021_acs_estlett_4c00470
crossref_primary_10_1016_j_agee_2024_109188
crossref_primary_10_3390_su151813421
crossref_primary_10_1016_j_geoderma_2020_114223
crossref_primary_10_1002_ldr_5347
crossref_primary_10_1007_s11356_020_10267_4
crossref_primary_10_1007_s11356_021_12723_1
crossref_primary_10_1080_00103624_2020_1869758
crossref_primary_10_1016_j_scitotenv_2023_168530
crossref_primary_10_1038_s41598_019_53044_1
crossref_primary_10_1007_s11104_018_3619_4
crossref_primary_10_1016_j_rser_2022_112529
crossref_primary_10_3390_microorganisms9071385
crossref_primary_10_1016_j_scitotenv_2022_156076
crossref_primary_10_3390_agriculture12101704
crossref_primary_10_1016_j_envpol_2022_120823
crossref_primary_10_1016_j_jece_2023_110928
crossref_primary_10_3390_atmos11050450
crossref_primary_10_1016_j_jclepro_2022_133365
crossref_primary_10_3390_su10051403
crossref_primary_10_5433_1679_0359_2021v42n3p1049
crossref_primary_10_1016_j_scitotenv_2018_01_003
crossref_primary_10_1016_j_scitotenv_2018_08_372
crossref_primary_10_1016_j_still_2023_105686
crossref_primary_10_1021_acsagscitech_4c00114
crossref_primary_10_1016_j_chemosphere_2022_133904
crossref_primary_10_1016_j_jenvman_2024_123728
crossref_primary_10_1016_j_scitotenv_2024_176283
crossref_primary_10_1016_j_scitotenv_2018_02_046
crossref_primary_10_1007_s00374_024_01823_y
crossref_primary_10_25308_aduziraat_405858
crossref_primary_10_1088_1755_1315_1262_9_092006
crossref_primary_10_3390_agronomy12081857
crossref_primary_10_1016_j_scitotenv_2018_07_224
crossref_primary_10_1007_s10653_019_00412_5
crossref_primary_10_17221_348_2022_PSE
crossref_primary_10_1007_s11356_019_06567_z
crossref_primary_10_1111_ejss_13131
crossref_primary_10_1016_j_agee_2022_108183
crossref_primary_10_1016_j_scitotenv_2024_175566
crossref_primary_10_1007_s44246_024_00138_9
crossref_primary_10_1016_j_ejsobi_2022_103391
crossref_primary_10_3390_w14233819
crossref_primary_10_1016_j_apsoil_2019_08_010
crossref_primary_10_3389_fpls_2022_878424
crossref_primary_10_1016_j_soilbio_2023_108970
crossref_primary_10_1111_sum_12464
crossref_primary_10_1002_rcm_8305
crossref_primary_10_3390_w14203204
crossref_primary_10_1007_s11157_024_09712_4
crossref_primary_10_1021_acs_est_1c01976
crossref_primary_10_3390_land12071353
crossref_primary_10_1016_j_jenvman_2023_118552
crossref_primary_10_1007_s42729_019_00108_w
crossref_primary_10_1093_jxb_erz301
crossref_primary_10_1186_s13750_024_00326_5
crossref_primary_10_1016_j_scitotenv_2020_139180
crossref_primary_10_17221_77_2024_SWR
crossref_primary_10_1016_j_chemosphere_2019_124952
crossref_primary_10_1016_j_envint_2020_105576
crossref_primary_10_1007_s11356_020_08326_x
crossref_primary_10_1016_j_geoderma_2021_115572
crossref_primary_10_1002_ldr_2838
crossref_primary_10_1016_j_scitotenv_2020_144802
crossref_primary_10_3390_agronomy12020378
crossref_primary_10_1016_j_scitotenv_2024_175728
crossref_primary_10_1021_acs_est_2c06419
crossref_primary_10_1002_ldr_2829
crossref_primary_10_3390_f15020366
crossref_primary_10_1016_j_geoderma_2023_116498
crossref_primary_10_1016_j_scitotenv_2021_150444
crossref_primary_10_31015_jaefs_2024_3_9
crossref_primary_10_3390_agronomy11050969
crossref_primary_10_3390_f13122090
crossref_primary_10_1002_clen_201700346
crossref_primary_10_1016_j_scitotenv_2018_02_260
crossref_primary_10_32604_phyton_2022_020323
crossref_primary_10_1007_s11356_018_3112_x
crossref_primary_10_1016_j_scitotenv_2020_138161
crossref_primary_10_1016_j_soilbio_2020_107825
crossref_primary_10_3390_agriculture14020240
crossref_primary_10_1111_sum_12760
crossref_primary_10_1007_s11368_018_2169_y
crossref_primary_10_3390_agronomy12020247
crossref_primary_10_1111_gcb_17177
crossref_primary_10_1111_sum_12649
crossref_primary_10_17660_ActaHortic_2025_1416_2
crossref_primary_10_1007_s42773_023_00255_5
crossref_primary_10_1007_s40725_023_00200_6
crossref_primary_10_29136_mediterranean_804581
crossref_primary_10_3390_agronomy9040165
crossref_primary_10_1016_j_scitotenv_2018_12_450
crossref_primary_10_1016_j_soilbio_2018_01_018
crossref_primary_10_3389_fmicb_2022_834751
crossref_primary_10_1016_j_geoderma_2019_04_025
crossref_primary_10_1016_j_pedsph_2022_06_017
crossref_primary_10_1016_j_scitotenv_2019_133984
crossref_primary_10_1016_j_chemosphere_2022_133954
crossref_primary_10_1016_j_fcr_2020_108027
crossref_primary_10_1007_s10333_020_00821_8
Cites_doi 10.1016/S1465-9972(00)00040-4
10.1016/S0167-1987(98)00095-6
10.1071/SR07109
10.1007/s00248-010-9638-1
10.2136/sssaj2009.0115
10.1007/s11104-013-1980-x
10.1034/j.1600-0706.2000.890203.x
10.1021/es101283d
10.1016/j.soilbio.2012.03.017
10.1016/j.biortech.2013.08.135
10.1007/s00374-013-0857-8
10.1128/AEM.00231-06
10.1128/AEM.64.10.3769-3775.1998
10.1016/j.soilbio.2012.04.022
10.1023/A:1009702832489
10.2136/sssaj2003.1213
10.1016/j.orggeochem.2010.04.007
10.1016/j.soilbio.2012.05.019
10.1007/s00374-002-0530-0
10.1111/j.1475-2743.2009.00236.x
10.1128/.61.4.533-616.1997
10.1016/S1161-0301(98)00019-7
10.1371/journal.pone.0086388
10.2136/sssaj2011.0152
10.1007/s00374-007-0229-3
10.1016/j.femsec.2004.04.011
10.5539/jas.v4n5p255
10.1016/j.fcr.2008.10.008
10.1098/rstb.2013.0122
10.1016/j.agee.2014.02.030
10.1007/s11104-013-1636-x
10.1128/MMBR.60.4.609-640.1996
10.1016/j.agee.2015.04.004
10.1016/j.still.2004.08.009
10.1111/j.1747-0765.2007.00123.x
10.1016/j.apsoil.2015.06.010
10.1016/j.agwat.2015.09.017
10.1016/j.apsoil.2013.01.006
10.1073/pnas.0506625102
10.1029/2004GB002435
10.2134/agronj1993.00021962008500030019x
10.2136/sssaj1984.03615995004800060013x
10.1016/0043-1354(90)90070-M
10.1007/s00374-005-0858-3
10.1016/j.still.2010.05.010
10.2134/jeq2009.0082
10.1016/j.geoderma.2013.06.016
10.1007/s11104-010-0359-5
10.1007/s11104-012-1468-0
10.1071/SR13359
10.1590/S0100-06832009000500014
10.1016/j.pedobi.2011.07.005
10.1128/AEM.63.12.4704-4712.1997
10.1016/S1369-5274(02)00324-7
10.1007/BF00334578
10.1021/es5021058
10.1016/S0038-0717(02)00059-7
10.1016/j.agee.2015.04.015
10.1023/A:1004757124939
10.2136/sssaj1981.03615995004500020017x
10.1046/j.1365-2486.1998.00161.x
10.1007/s11356-013-2355-9
10.1029/2004GB002282
10.2136/sssaj2014.03.0117
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2016.10.006
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
EndPage 17
ExternalDocumentID 10_1016_j_soilbio_2016_10_006
S0038071716303558
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c408t-e3f459588b2ab2e44e614e3e601720d3a55af0992eccf091cbf34cd201c7b25a3
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Fri Jul 11 11:50:51 EDT 2025
Tue Jul 01 03:19:56 EDT 2025
Thu Apr 24 23:10:23 EDT 2025
Fri Feb 23 02:23:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mechanisms
Nitrous oxide
Compaction
Biochar
Wheat
Functional genes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e3f459588b2ab2e44e614e3e601720d3a55af0992eccf091cbf34cd201c7b25a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000121900
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2000121900
crossref_citationtrail_10_1016_j_soilbio_2016_10_006
crossref_primary_10_1016_j_soilbio_2016_10_006
elsevier_sciencedirect_doi_10_1016_j_soilbio_2016_10_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationTitle Soil biology & biochemistry
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Deenik, McClellan, Uehara, Antal, Campbell (bib20) 2010; 74
Abu-Hamdeh (bib1) 2003; 67
Jordan, Ponder, Hubbard (bib34) 2003; 23
Lehmann, Liang, Solomon, Lerotic, Luizão, Kinyangi, Schafer, Wirick, Jacobsen (bib37) 2005; 19
Petitjean, Hénault, Perrin, Pontet, Metay, Bernoux, Jehanno, Viard, Roggy (bib44) 2015; 208
Batey (bib11) 2009; 25
Zhang, Zhang, Huang, Ye, Cui, Eldad (bib68) 2013; 33
Song, Zhang, Ma, Chang, Gong (bib53) 2014; 50
Lee, Park, Ryu, Gang, Yang, Park, Jung, Hyun (bib36) 2013; 148
Oussible, Allmaras, Wynch, Crookston (bib43) 1993; 85
Pupin, Freddi, Nahas (bib47) 2009; 33
Francis, Roberts, Beman, Santoro, Oakley (bib25) 2005; 102
Knicker (bib35) 2010; 41
Xie, Xu, Liu, Liu, Zhu, Tu, Amonette, Cadisch, Yong, Hu (bib64) 2013; 370
Linn, Doran (bib39) 1984; 48
Mukherjee, Lal (bib41) 2014; 52
Li, Deng, Rensing, Zhu (bib38) 2014; 21
Andrenelli, Maienza, Genesio, Miglietta, Pellegrini, Vaccari, Vignozzi (bib4) 2016; 163
Herath, Camps-Arbestain, Hedley (bib31) 2013; 209
Chen, Phillips, Condron, Goloran, Xu, Chan (bib18) 2013; 367
Chan, Van Zwieten, Meszaros, Downie, Joseph (bib17) 2008; 45
Dreccer, Schapendonk, Slafer, Rabbinge (bib22) 2000; 220
Yanai, Toyota, Okazaki (bib67) 2007; 53
Asai, Samson, Stephan, Songyikhangsuthor, Homma, Kiyono, Inoue, Shiraiwa, Horie (bib6) 2009; 111
Xu, Wang, Li, Yao, Su, Zhu (bib65) 2014; 48
Jiang, Lei, Liu, Wu, Li, Wang (bib33) 2006; 22
Flowers, Lal (bib24) 1998; 48
Sánchez-García, Roig, Sánchez-Monedero, Cayuela (bib49) 2014; 2
Spokas, Baker, Reicosky (bib54) 2010; 333
Zumft (bib69) 1997; 61
Utomo, Guritno, Soehono (bib60) 2012; 4
Antoniou, Hamilton, Koopman, Jain, Holloway, Lyberatos, Svoronos (bib5) 1990; 24
Sitaula, Hansen, Sitaula, Bakken (bib51) 2000; 2
Nelissen, Rütting, Huygens, Staelens, Ruysschaert, Boeckx (bib42) 2012; 55
Tan, Chang, Kabzems (bib57) 2008; 44
Aguilar-Chávez, Díaz-Rojas, del Rosario Cárdenas-Aquino, Dendooven, Luna-Guido (bib2) 2012; 52
Conrad (bib19) 1996; 60
Hardie, Clothier, Bound, Oliver, Close (bib28) 2014; 376
Throbäck, Enwall, Jarvis, Hallin (bib58) 2004; 49
Barnard, Leadley, Hungate (bib8) 2005; 19
Anderson, Condron, Clough, Fiers, Stewart, Hill, Sherlock (bib3) 2011; 54
Taketani, Tsai (bib56) 2010; 59
Bao, Ju, Gao, Qu, Christie, Lu (bib9) 2012; 76
Butterbach-Bahl, Baggs, Dannenmann, Kiese, Zechmeister-Boltenstern (bib15) 2013; 368
Ducey, Ippolito, Cantrell, Novak, Lentz (bib23) 2013; 65
Prommer, Wanek, Hofhansl, Trojan, Offre, Urich, Schleper, Sassmann, Kitzler, Soja, Hood-Nowotny (bib46) 2014; 9
Šimek, Jíšová, Hopkins (bib50) 2002; 34
Bateman, Baggs (bib10) 2005; 41
Harter, Krause, Schuettler, Ruser, Fromme, Scholten, Kappler, Behrens (bib29) 2014; 8
Pietikäinen, Kiikkilä, Fritze (bib45) 2000; 89
Beylich, Oberholzer, Schrader, Höper, Wilke (bib12) 2010; 109
Van Zwieten, Singh, Kimber, Murphy, Macdonald, Rust, Morris (bib62) 2014; 191
Webster, Hopkins (bib63) 1996; 22
Hutchinson, Mosier (bib32) 1981; 45
Freney (bib26) 1997; 49
Gregorich, McLaughli Sohi n, Lapen, Ma, Rochette (bib27) 2014; 78
Sun, Guo, Wang, Chu (bib55) 2015; 95
Silber, Levkovitch, Graber (bib52) 2010; 44
Vaccari, Maienza, Miglietta, Baronti, Di Lonardo, Giagnoni, Lagomarsino, Pozzi, Pusceddu, Ranieri, Valboa, Genesio (bib61) 2015; 207
Rotthauwe, Witzel, Liesack (bib48) 1997; 63
Ball, MacKenzie, DeLuca, Montana (bib7) 2010; 39
Henry, Bru, Stres, Hallet, Philippot (bib30) 2006; 72
Yamulki, Jarvis (bib66) 2002; 36
Case, McNamara, Reay, Whitaker (bib16) 2012; 51
Torsvik, Øvreås (bib59) 2002; 5
Bollmann, Conrad (bib13) 1998; 4
Delogu, Cattivelli, Pecchioni, De Falcis, Maggiore, Stanca (bib21) 1998; 9
Hamza, Anderson (bib70) 2005; 82
Braker, Fesefeldt, Witzel (bib14) 1998; 64
Lu (bib40) 1999
Flowers (10.1016/j.soilbio.2016.10.006_bib24) 1998; 48
Nelissen (10.1016/j.soilbio.2016.10.006_bib42) 2012; 55
Asai (10.1016/j.soilbio.2016.10.006_bib6) 2009; 111
Butterbach-Bahl (10.1016/j.soilbio.2016.10.006_bib15) 2013; 368
Ducey (10.1016/j.soilbio.2016.10.006_bib23) 2013; 65
Barnard (10.1016/j.soilbio.2016.10.006_bib8) 2005; 19
Henry (10.1016/j.soilbio.2016.10.006_bib30) 2006; 72
Webster (10.1016/j.soilbio.2016.10.006_bib63) 1996; 22
Torsvik (10.1016/j.soilbio.2016.10.006_bib59) 2002; 5
Ball (10.1016/j.soilbio.2016.10.006_bib7) 2010; 39
Utomo (10.1016/j.soilbio.2016.10.006_bib60) 2012; 4
Braker (10.1016/j.soilbio.2016.10.006_bib14) 1998; 64
Jordan (10.1016/j.soilbio.2016.10.006_bib34) 2003; 23
Francis (10.1016/j.soilbio.2016.10.006_bib25) 2005; 102
Chen (10.1016/j.soilbio.2016.10.006_bib18) 2013; 367
Sitaula (10.1016/j.soilbio.2016.10.006_bib51) 2000; 2
Bao (10.1016/j.soilbio.2016.10.006_bib9) 2012; 76
Herath (10.1016/j.soilbio.2016.10.006_bib31) 2013; 209
Andrenelli (10.1016/j.soilbio.2016.10.006_bib4) 2016; 163
Petitjean (10.1016/j.soilbio.2016.10.006_bib44) 2015; 208
Linn (10.1016/j.soilbio.2016.10.006_bib39) 1984; 48
Spokas (10.1016/j.soilbio.2016.10.006_bib54) 2010; 333
Van Zwieten (10.1016/j.soilbio.2016.10.006_bib62) 2014; 191
Aguilar-Chávez (10.1016/j.soilbio.2016.10.006_bib2) 2012; 52
Hamza (10.1016/j.soilbio.2016.10.006_bib70) 2005; 82
Lu (10.1016/j.soilbio.2016.10.006_bib40) 1999
Bollmann (10.1016/j.soilbio.2016.10.006_bib13) 1998; 4
Chan (10.1016/j.soilbio.2016.10.006_bib17) 2008; 45
Vaccari (10.1016/j.soilbio.2016.10.006_bib61) 2015; 207
Zumft (10.1016/j.soilbio.2016.10.006_bib69) 1997; 61
Batey (10.1016/j.soilbio.2016.10.006_bib11) 2009; 25
Yanai (10.1016/j.soilbio.2016.10.006_bib67) 2007; 53
Pietikäinen (10.1016/j.soilbio.2016.10.006_bib45) 2000; 89
Jiang (10.1016/j.soilbio.2016.10.006_bib33) 2006; 22
Yamulki (10.1016/j.soilbio.2016.10.006_bib66) 2002; 36
Dreccer (10.1016/j.soilbio.2016.10.006_bib22) 2000; 220
Antoniou (10.1016/j.soilbio.2016.10.006_bib5) 1990; 24
Pupin (10.1016/j.soilbio.2016.10.006_bib47) 2009; 33
Taketani (10.1016/j.soilbio.2016.10.006_bib56) 2010; 59
Xu (10.1016/j.soilbio.2016.10.006_bib65) 2014; 48
Gregorich (10.1016/j.soilbio.2016.10.006_bib27) 2014; 78
Knicker (10.1016/j.soilbio.2016.10.006_bib35) 2010; 41
Rotthauwe (10.1016/j.soilbio.2016.10.006_bib48) 1997; 63
Abu-Hamdeh (10.1016/j.soilbio.2016.10.006_bib1) 2003; 67
Lee (10.1016/j.soilbio.2016.10.006_bib36) 2013; 148
Li (10.1016/j.soilbio.2016.10.006_bib38) 2014; 21
Harter (10.1016/j.soilbio.2016.10.006_bib29) 2014; 8
Beylich (10.1016/j.soilbio.2016.10.006_bib12) 2010; 109
Song (10.1016/j.soilbio.2016.10.006_bib53) 2014; 50
Hardie (10.1016/j.soilbio.2016.10.006_bib28) 2014; 376
Freney (10.1016/j.soilbio.2016.10.006_bib26) 1997; 49
Oussible (10.1016/j.soilbio.2016.10.006_bib43) 1993; 85
Mukherjee (10.1016/j.soilbio.2016.10.006_bib41) 2014; 52
Anderson (10.1016/j.soilbio.2016.10.006_bib3) 2011; 54
Delogu (10.1016/j.soilbio.2016.10.006_bib21) 1998; 9
Šimek (10.1016/j.soilbio.2016.10.006_bib50) 2002; 34
Silber (10.1016/j.soilbio.2016.10.006_bib52) 2010; 44
Zhang (10.1016/j.soilbio.2016.10.006_bib68) 2013; 33
Tan (10.1016/j.soilbio.2016.10.006_bib57) 2008; 44
Sun (10.1016/j.soilbio.2016.10.006_bib55) 2015; 95
Throbäck (10.1016/j.soilbio.2016.10.006_bib58) 2004; 49
Lehmann (10.1016/j.soilbio.2016.10.006_bib37) 2005; 19
Sánchez-García (10.1016/j.soilbio.2016.10.006_bib49) 2014; 2
Hutchinson (10.1016/j.soilbio.2016.10.006_bib32) 1981; 45
Prommer (10.1016/j.soilbio.2016.10.006_bib46) 2014; 9
Bateman (10.1016/j.soilbio.2016.10.006_bib10) 2005; 41
Case (10.1016/j.soilbio.2016.10.006_bib16) 2012; 51
Deenik (10.1016/j.soilbio.2016.10.006_bib20) 2010; 74
Conrad (10.1016/j.soilbio.2016.10.006_bib19) 1996; 60
Xie (10.1016/j.soilbio.2016.10.006_bib64) 2013; 370
References_xml – volume: 82
  start-page: 121
  year: 2005
  end-page: 145
  ident: bib70
  article-title: Soil compaction in cropping systems: a review of the nature, causes and possible solutions
  publication-title: Soil and Tillage Research
– volume: 60
  start-page: 609
  year: 1996
  end-page: 640
  ident: bib19
  article-title: Soil microorganisms as controllers of atmospheric trace gases (H
  publication-title: Microbiological Reviews
– volume: 48
  start-page: 1267
  year: 1984
  end-page: 1272
  ident: bib39
  article-title: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils
  publication-title: Soil Science Society of America Journal
– volume: 367
  start-page: 301
  year: 2013
  end-page: 312
  ident: bib18
  article-title: Impacts of greenwaste biochar on ammonia volatilisation from bauxite processing residue sand
  publication-title: Plant and Soil
– volume: 72
  start-page: 5181
  year: 2006
  end-page: 5189
  ident: bib30
  article-title: Quantitative detection of the
  publication-title: Applied and Environmental Microbiology
– volume: 209
  start-page: 188
  year: 2013
  end-page: 197
  ident: bib31
  article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol
  publication-title: Geoderma
– volume: 368
  start-page: 20130122
  year: 2013
  ident: bib15
  article-title: Nitrous oxide emissions from soils: how well do we understand the processes and their controls?
  publication-title: A Philosophical Transactions of the Royal Society of London, Series B Biological Sciences
– volume: 370
  start-page: 527
  year: 2013
  end-page: 540
  ident: bib64
  article-title: Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China
  publication-title: Plant and Soil
– volume: 109
  start-page: 133
  year: 2010
  end-page: 143
  ident: bib12
  article-title: Evaluation of soil compaction effects on soil biota and soil biological processes in soils
  publication-title: Soil and Tillage Research
– volume: 4
  start-page: 387
  year: 1998
  end-page: 396
  ident: bib13
  article-title: Influence of O
  publication-title: Global Change Biology
– volume: 208
  start-page: 64
  year: 2015
  end-page: 74
  ident: bib44
  article-title: Soil N
  publication-title: Agriculture, Ecosystems and Environment
– volume: 76
  start-page: 130
  year: 2012
  end-page: 141
  ident: bib9
  article-title: Response of nitrous oxide and corresponding bacteria to managements in an agricultural soil
  publication-title: Soil Science Society of America Journal
– volume: 22
  start-page: 331
  year: 1996
  end-page: 335
  ident: bib63
  article-title: Contributions from different microbial processes to N
  publication-title: Biology and Fertility of Soils
– volume: 41
  start-page: 379
  year: 2005
  end-page: 388
  ident: bib10
  article-title: Contributions of nitrification and denitrification to N
  publication-title: Biology and Fertility of Soils
– volume: 102
  start-page: 14683
  year: 2005
  end-page: 14688
  ident: bib25
  article-title: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 41
  start-page: 947
  year: 2010
  end-page: 950
  ident: bib35
  article-title: “Black nitrogen”–an important fraction in determining the recalcitrance of charcoal
  publication-title: Organic Geochemistry
– volume: 19
  start-page: GB1013
  year: 2005
  ident: bib37
  article-title: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soils: application to black carbon particles
  publication-title: Global Biogeochemical Cycles
– volume: 61
  start-page: 533
  year: 1997
  end-page: 616
  ident: bib69
  article-title: Cell biology and molecular basis of denitrification
  publication-title: Microbiology and Molecular Biology Reviews
– volume: 220
  start-page: 189
  year: 2000
  end-page: 205
  ident: bib22
  article-title: Comparative response of wheat and oilseed rape to nitrogen supply: absorption and utilisation efficiency of radiation and nitrogen during the reproductive stages determining yield
  publication-title: Plant and Soil
– volume: 33
  start-page: 988
  year: 2013
  end-page: 995
  ident: bib68
  article-title: Effect of potassium application on yield and soil potassium balance in maize and wheat rotation system
  publication-title: Journal of Triticeae Crops
– volume: 111
  start-page: 81
  year: 2009
  end-page: 84
  ident: bib6
  article-title: Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield
  publication-title: Field Crops Research
– volume: 8
  start-page: 660
  year: 2014
  end-page: 674
  ident: bib29
  article-title: Linking N
  publication-title: The International Society for Microbial Ecology Journal
– volume: 21
  start-page: 3783
  year: 2014
  end-page: 3791
  ident: bib38
  article-title: Compaction stimulates denitrification in an urban park soil using
  publication-title: Environmental Science and Pollution Research
– volume: 191
  start-page: 53
  year: 2014
  end-page: 62
  ident: bib62
  article-title: An incubation study investigating the mechanisms that impact N
  publication-title: Agriculture, Ecosystems and Environment
– volume: 376
  start-page: 347
  year: 2014
  end-page: 361
  ident: bib28
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant and Soil
– volume: 22
  start-page: 1
  year: 2006
  end-page: 5
  ident: bib33
  article-title: Principles and experimental verification of capillary suction method for fast measurement of field capacity
  publication-title: Transactions of the Agricultural Engineering
– volume: 2
  start-page: 367
  year: 2000
  end-page: 371
  ident: bib51
  article-title: Effects of soil compaction on N
  publication-title: Chemosphere Global Change Science
– volume: 44
  start-page: 9318
  year: 2010
  end-page: 9323
  ident: bib52
  article-title: pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications
  publication-title: Environmental Science and Technology
– volume: 333
  start-page: 443
  year: 2010
  end-page: 452
  ident: bib54
  article-title: Ethylene: potential key for biochar amendment impacts
  publication-title: Plant and Soil
– volume: 24
  start-page: 97
  year: 1990
  end-page: 101
  ident: bib5
  article-title: Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria
  publication-title: Water Research
– volume: 78
  start-page: 1913
  year: 2014
  end-page: 1923
  ident: bib27
  article-title: Soil compaction, both an Environmental and agronomic culprit: increased nitrous oxide emissions and reduced plant nitrogen uptake
  publication-title: Soil Science Society of America Journal
– volume: 44
  start-page: 471
  year: 2008
  end-page: 479
  ident: bib57
  article-title: Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil
  publication-title: Biology and Fertility of Soils
– volume: 74
  start-page: 1259
  year: 2010
  end-page: 1270
  ident: bib20
  article-title: Charcoal volatile matter content influences plant growth and soil nitrogen transformations
  publication-title: Soil Science Society of America Journal
– volume: 2
  start-page: 25
  year: 2014
  ident: bib49
  article-title: Biochar increases soil N
  publication-title: Frontiers in Environmental Science
– volume: 51
  start-page: 125
  year: 2012
  end-page: 134
  ident: bib16
  article-title: The effect of biochar addition on N
  publication-title: Soil Biology and Biochemistry
– volume: 36
  start-page: 224
  year: 2002
  end-page: 231
  ident: bib66
  article-title: Short-term effects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane and carbon dioxide fluxes from grassland
  publication-title: Biology and Fertility of Soils
– volume: 63
  start-page: 4704
  year: 1997
  end-page: 4712
  ident: bib48
  article-title: The ammonia monooxygenase structural gene
  publication-title: Applied and Environmental Microbiology
– volume: 207
  start-page: 163
  year: 2015
  end-page: 170
  ident: bib61
  article-title: Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil
  publication-title: Agriculture, Ecosystems and Environment
– volume: 49
  start-page: 401
  year: 2004
  end-page: 417
  ident: bib58
  article-title: Reassessing PCR primers targeting
  publication-title: Federation of European Microbiological Societies Microbiology Ecology
– volume: 54
  start-page: 309
  year: 2011
  end-page: 320
  ident: bib3
  article-title: Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus
  publication-title: Pedobiologia
– volume: 59
  start-page: 734
  year: 2010
  end-page: 743
  ident: bib56
  article-title: The influence of different land uses on the structure of archaeal communities in Amazonian anthrosols based on 16S rRNA and amoA genes
  publication-title: Microbial Ecology
– volume: 45
  start-page: 629
  year: 2008
  end-page: 634
  ident: bib17
  article-title: Agronomic values of greenwaste biochar as a soil amendment
  publication-title: Soil Research
– volume: 23
  start-page: 33
  year: 2003
  end-page: 41
  ident: bib34
  article-title: Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity
  publication-title: Applied and Environmental Microbiology
– volume: 9
  start-page: 11
  year: 1998
  end-page: 20
  ident: bib21
  article-title: Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat
  publication-title: European Journal of Agronomy
– volume: 34
  start-page: 1227
  year: 2002
  end-page: 1234
  ident: bib50
  article-title: What is the so-called optimum pH for denitrification in soil?
  publication-title: Soil Biology and Biochemistry
– volume: 55
  start-page: 20
  year: 2012
  end-page: 27
  ident: bib42
  article-title: Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil
  publication-title: Soil Biology and Biochemistry
– volume: 148
  start-page: 196
  year: 2013
  end-page: 201
  ident: bib36
  article-title: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C
  publication-title: Bioresource Technology
– volume: 89
  start-page: 231
  year: 2000
  end-page: 242
  ident: bib45
  article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus
  publication-title: Oikos
– volume: 45
  start-page: 311
  year: 1981
  end-page: 316
  ident: bib32
  article-title: Improved soil cover method for field measurement of nitrous oxide fluxes
  publication-title: Soil Science Society of America Journal
– volume: 163
  start-page: 190
  year: 2016
  end-page: 196
  ident: bib4
  article-title: Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil
  publication-title: Agricultural Water Management
– volume: 65
  start-page: 65
  year: 2013
  end-page: 72
  ident: bib23
  article-title: Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances
  publication-title: Applied Soil Ecology
– volume: 53
  start-page: 181
  year: 2007
  end-page: 188
  ident: bib67
  article-title: Effects of charcoal addition on N
  publication-title: Soil Science and Plant Nutrition
– volume: 39
  start-page: 1243
  year: 2010
  end-page: 1253
  ident: bib7
  article-title: Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils
  publication-title: Journal of Environmental Quality
– volume: 4
  start-page: 255
  year: 2012
  ident: bib60
  article-title: The effect of biochar on the growth and N fertilizer requirement of maize (Zea mays L.) in green house experiment
  publication-title: Journal of Agricultural Science
– volume: 25
  start-page: 335
  year: 2009
  end-page: 345
  ident: bib11
  article-title: Soil compaction and soil management–a review
  publication-title: Soil Use and Management
– volume: 5
  start-page: 240
  year: 2002
  end-page: 245
  ident: bib59
  article-title: Microbial diversity and function in soil: from genes to ecosystems
  publication-title: Current Opinion in Microbiology
– volume: 67
  start-page: 1213
  year: 2003
  end-page: 1219
  ident: bib1
  article-title: Compaction and subsoiling effects on corn growth and soil bulk density
  publication-title: Soil Science Society of America Journal
– volume: 48
  start-page: 21
  year: 1998
  end-page: 35
  ident: bib24
  article-title: Axle load and tillage effects on soil physical properties and soybean grain yield on a mollic ochraqualf in northwest Ohio
  publication-title: Soil and Tillage Research
– volume: 19
  start-page: GB1007
  year: 2005
  ident: bib8
  article-title: Global change, nitrification, and denitrification: a review
  publication-title: Global Biogeochemical Cycles
– volume: 50
  start-page: 321
  year: 2014
  end-page: 332
  ident: bib53
  article-title: Biochar addition affected the dynamics of ammonia oxidizers and nitrification in mesocosms of a coastal alkaline soil
  publication-title: Biology and Fertility of Soils
– volume: 48
  start-page: 9391
  year: 2014
  end-page: 9399
  ident: bib65
  article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape
  publication-title: Environmental Science and Technology
– volume: 33
  start-page: 1207
  year: 2009
  end-page: 1213
  ident: bib47
  article-title: Microbial alterations of the soil influenced by induced compaction
  publication-title: Revista Brasileira de Ciência do Solo
– volume: 52
  start-page: 90
  year: 2012
  end-page: 95
  ident: bib2
  article-title: Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal
  publication-title: Soil Biology and Biochemistry
– volume: 49
  start-page: 1
  year: 1997
  end-page: 6
  ident: bib26
  article-title: Emission of nitrous oxide from soils used for agriculture
  publication-title: Nutrient Cycling in Agroecosystems
– start-page: 269
  year: 1999
  end-page: 271
  ident: bib40
  article-title: Analytic Methods for Soil and Agro-chemistry
– volume: 9
  year: 2014
  ident: bib46
  article-title: Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial
  publication-title: PloS One
– volume: 64
  start-page: 3769
  year: 1998
  end-page: 3775
  ident: bib14
  article-title: Development of PCR primer systems for amplification of nitrite reductase genes (
  publication-title: Applied and Environmental Microbiology
– volume: 85
  start-page: 619
  year: 1993
  end-page: 625
  ident: bib43
  article-title: Subsurface compaction effects on tillering and nitrogen accumulation in wheat
  publication-title: Agronomy Journal
– volume: 52
  start-page: 217
  year: 2014
  end-page: 230
  ident: bib41
  article-title: The biochar dilemma
  publication-title: The biochar dilemma. Soil Research
– volume: 95
  start-page: 171
  year: 2015
  end-page: 178
  ident: bib55
  article-title: Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle
  publication-title: Applied Soil Ecology
– volume: 2
  start-page: 367
  year: 2000
  ident: 10.1016/j.soilbio.2016.10.006_bib51
  article-title: Effects of soil compaction on N2O emission in agricultural soil
  publication-title: Chemosphere Global Change Science
  doi: 10.1016/S1465-9972(00)00040-4
– volume: 48
  start-page: 21
  year: 1998
  ident: 10.1016/j.soilbio.2016.10.006_bib24
  article-title: Axle load and tillage effects on soil physical properties and soybean grain yield on a mollic ochraqualf in northwest Ohio
  publication-title: Soil and Tillage Research
  doi: 10.1016/S0167-1987(98)00095-6
– volume: 45
  start-page: 629
  year: 2008
  ident: 10.1016/j.soilbio.2016.10.006_bib17
  article-title: Agronomic values of greenwaste biochar as a soil amendment
  publication-title: Soil Research
  doi: 10.1071/SR07109
– volume: 59
  start-page: 734
  year: 2010
  ident: 10.1016/j.soilbio.2016.10.006_bib56
  article-title: The influence of different land uses on the structure of archaeal communities in Amazonian anthrosols based on 16S rRNA and amoA genes
  publication-title: Microbial Ecology
  doi: 10.1007/s00248-010-9638-1
– volume: 74
  start-page: 1259
  year: 2010
  ident: 10.1016/j.soilbio.2016.10.006_bib20
  article-title: Charcoal volatile matter content influences plant growth and soil nitrogen transformations
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2009.0115
– volume: 376
  start-page: 347
  year: 2014
  ident: 10.1016/j.soilbio.2016.10.006_bib28
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant and Soil
  doi: 10.1007/s11104-013-1980-x
– volume: 89
  start-page: 231
  year: 2000
  ident: 10.1016/j.soilbio.2016.10.006_bib45
  article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2000.890203.x
– volume: 44
  start-page: 9318
  year: 2010
  ident: 10.1016/j.soilbio.2016.10.006_bib52
  article-title: pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications
  publication-title: Environmental Science and Technology
  doi: 10.1021/es101283d
– volume: 51
  start-page: 125
  year: 2012
  ident: 10.1016/j.soilbio.2016.10.006_bib16
  article-title: The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil–the role of soil aeration
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2012.03.017
– volume: 148
  start-page: 196
  year: 2013
  ident: 10.1016/j.soilbio.2016.10.006_bib36
  article-title: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2013.08.135
– volume: 50
  start-page: 321
  year: 2014
  ident: 10.1016/j.soilbio.2016.10.006_bib53
  article-title: Biochar addition affected the dynamics of ammonia oxidizers and nitrification in mesocosms of a coastal alkaline soil
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-013-0857-8
– volume: 8
  start-page: 660
  year: 2014
  ident: 10.1016/j.soilbio.2016.10.006_bib29
  article-title: Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community
  publication-title: The International Society for Microbial Ecology Journal
– volume: 72
  start-page: 5181
  year: 2006
  ident: 10.1016/j.soilbio.2016.10.006_bib30
  article-title: Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.00231-06
– volume: 64
  start-page: 3769
  year: 1998
  ident: 10.1016/j.soilbio.2016.10.006_bib14
  article-title: Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.64.10.3769-3775.1998
– volume: 52
  start-page: 90
  year: 2012
  ident: 10.1016/j.soilbio.2016.10.006_bib2
  article-title: Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2012.04.022
– volume: 49
  start-page: 1
  year: 1997
  ident: 10.1016/j.soilbio.2016.10.006_bib26
  article-title: Emission of nitrous oxide from soils used for agriculture
  publication-title: Nutrient Cycling in Agroecosystems
  doi: 10.1023/A:1009702832489
– volume: 67
  start-page: 1213
  year: 2003
  ident: 10.1016/j.soilbio.2016.10.006_bib1
  article-title: Compaction and subsoiling effects on corn growth and soil bulk density
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2003.1213
– volume: 41
  start-page: 947
  year: 2010
  ident: 10.1016/j.soilbio.2016.10.006_bib35
  article-title: “Black nitrogen”–an important fraction in determining the recalcitrance of charcoal
  publication-title: Organic Geochemistry
  doi: 10.1016/j.orggeochem.2010.04.007
– volume: 55
  start-page: 20
  year: 2012
  ident: 10.1016/j.soilbio.2016.10.006_bib42
  article-title: Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2012.05.019
– volume: 36
  start-page: 224
  year: 2002
  ident: 10.1016/j.soilbio.2016.10.006_bib66
  article-title: Short-term effects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane and carbon dioxide fluxes from grassland
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-002-0530-0
– volume: 25
  start-page: 335
  year: 2009
  ident: 10.1016/j.soilbio.2016.10.006_bib11
  article-title: Soil compaction and soil management–a review
  publication-title: Soil Use and Management
  doi: 10.1111/j.1475-2743.2009.00236.x
– volume: 61
  start-page: 533
  year: 1997
  ident: 10.1016/j.soilbio.2016.10.006_bib69
  article-title: Cell biology and molecular basis of denitrification
  publication-title: Microbiology and Molecular Biology Reviews
  doi: 10.1128/.61.4.533-616.1997
– volume: 9
  start-page: 11
  year: 1998
  ident: 10.1016/j.soilbio.2016.10.006_bib21
  article-title: Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat
  publication-title: European Journal of Agronomy
  doi: 10.1016/S1161-0301(98)00019-7
– volume: 9
  year: 2014
  ident: 10.1016/j.soilbio.2016.10.006_bib46
  article-title: Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial
  publication-title: PloS One
  doi: 10.1371/journal.pone.0086388
– volume: 76
  start-page: 130
  year: 2012
  ident: 10.1016/j.soilbio.2016.10.006_bib9
  article-title: Response of nitrous oxide and corresponding bacteria to managements in an agricultural soil
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2011.0152
– volume: 44
  start-page: 471
  year: 2008
  ident: 10.1016/j.soilbio.2016.10.006_bib57
  article-title: Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-007-0229-3
– volume: 49
  start-page: 401
  year: 2004
  ident: 10.1016/j.soilbio.2016.10.006_bib58
  article-title: Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE
  publication-title: Federation of European Microbiological Societies Microbiology Ecology
  doi: 10.1016/j.femsec.2004.04.011
– volume: 4
  start-page: 255
  year: 2012
  ident: 10.1016/j.soilbio.2016.10.006_bib60
  article-title: The effect of biochar on the growth and N fertilizer requirement of maize (Zea mays L.) in green house experiment
  publication-title: Journal of Agricultural Science
  doi: 10.5539/jas.v4n5p255
– volume: 2
  start-page: 25
  year: 2014
  ident: 10.1016/j.soilbio.2016.10.006_bib49
  article-title: Biochar increases soil N2O emissions produced by nitrification-mediated pathways
  publication-title: Frontiers in Environmental Science
– volume: 111
  start-page: 81
  year: 2009
  ident: 10.1016/j.soilbio.2016.10.006_bib6
  article-title: Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2008.10.008
– volume: 368
  start-page: 20130122
  year: 2013
  ident: 10.1016/j.soilbio.2016.10.006_bib15
  article-title: Nitrous oxide emissions from soils: how well do we understand the processes and their controls?
  publication-title: A Philosophical Transactions of the Royal Society of London, Series B Biological Sciences
  doi: 10.1098/rstb.2013.0122
– volume: 191
  start-page: 53
  year: 2014
  ident: 10.1016/j.soilbio.2016.10.006_bib62
  article-title: An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application
  publication-title: Agriculture, Ecosystems and Environment
  doi: 10.1016/j.agee.2014.02.030
– volume: 370
  start-page: 527
  year: 2013
  ident: 10.1016/j.soilbio.2016.10.006_bib64
  article-title: Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China
  publication-title: Plant and Soil
  doi: 10.1007/s11104-013-1636-x
– volume: 60
  start-page: 609
  year: 1996
  ident: 10.1016/j.soilbio.2016.10.006_bib19
  article-title: Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)
  publication-title: Microbiological Reviews
  doi: 10.1128/MMBR.60.4.609-640.1996
– volume: 208
  start-page: 64
  year: 2015
  ident: 10.1016/j.soilbio.2016.10.006_bib44
  article-title: Soil N2O emissions in French Guiana after the conversion of tropical forest to agriculture with the chop-and-mulch method
  publication-title: Agriculture, Ecosystems and Environment
  doi: 10.1016/j.agee.2015.04.004
– volume: 82
  start-page: 121
  year: 2005
  ident: 10.1016/j.soilbio.2016.10.006_bib70
  article-title: Soil compaction in cropping systems: a review of the nature, causes and possible solutions
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2004.08.009
– volume: 53
  start-page: 181
  year: 2007
  ident: 10.1016/j.soilbio.2016.10.006_bib67
  article-title: Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments
  publication-title: Soil Science and Plant Nutrition
  doi: 10.1111/j.1747-0765.2007.00123.x
– volume: 95
  start-page: 171
  year: 2015
  ident: 10.1016/j.soilbio.2016.10.006_bib55
  article-title: Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2015.06.010
– volume: 163
  start-page: 190
  year: 2016
  ident: 10.1016/j.soilbio.2016.10.006_bib4
  article-title: Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2015.09.017
– volume: 65
  start-page: 65
  year: 2013
  ident: 10.1016/j.soilbio.2016.10.006_bib23
  article-title: Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2013.01.006
– volume: 102
  start-page: 14683
  year: 2005
  ident: 10.1016/j.soilbio.2016.10.006_bib25
  article-title: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0506625102
– start-page: 269
  year: 1999
  ident: 10.1016/j.soilbio.2016.10.006_bib40
– volume: 19
  start-page: GB1013
  year: 2005
  ident: 10.1016/j.soilbio.2016.10.006_bib37
  article-title: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soils: application to black carbon particles
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/2004GB002435
– volume: 85
  start-page: 619
  year: 1993
  ident: 10.1016/j.soilbio.2016.10.006_bib43
  article-title: Subsurface compaction effects on tillering and nitrogen accumulation in wheat
  publication-title: Agronomy Journal
  doi: 10.2134/agronj1993.00021962008500030019x
– volume: 48
  start-page: 1267
  year: 1984
  ident: 10.1016/j.soilbio.2016.10.006_bib39
  article-title: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1984.03615995004800060013x
– volume: 24
  start-page: 97
  year: 1990
  ident: 10.1016/j.soilbio.2016.10.006_bib5
  article-title: Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria
  publication-title: Water Research
  doi: 10.1016/0043-1354(90)90070-M
– volume: 41
  start-page: 379
  year: 2005
  ident: 10.1016/j.soilbio.2016.10.006_bib10
  article-title: Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s00374-005-0858-3
– volume: 22
  start-page: 1
  year: 2006
  ident: 10.1016/j.soilbio.2016.10.006_bib33
  article-title: Principles and experimental verification of capillary suction method for fast measurement of field capacity
  publication-title: Transactions of the Agricultural Engineering
– volume: 109
  start-page: 133
  year: 2010
  ident: 10.1016/j.soilbio.2016.10.006_bib12
  article-title: Evaluation of soil compaction effects on soil biota and soil biological processes in soils
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2010.05.010
– volume: 33
  start-page: 988
  year: 2013
  ident: 10.1016/j.soilbio.2016.10.006_bib68
  article-title: Effect of potassium application on yield and soil potassium balance in maize and wheat rotation system
  publication-title: Journal of Triticeae Crops
– volume: 39
  start-page: 1243
  year: 2010
  ident: 10.1016/j.soilbio.2016.10.006_bib7
  article-title: Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils
  publication-title: Journal of Environmental Quality
  doi: 10.2134/jeq2009.0082
– volume: 209
  start-page: 188
  year: 2013
  ident: 10.1016/j.soilbio.2016.10.006_bib31
  article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.06.016
– volume: 23
  start-page: 33
  year: 2003
  ident: 10.1016/j.soilbio.2016.10.006_bib34
  article-title: Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity
  publication-title: Applied and Environmental Microbiology
– volume: 333
  start-page: 443
  year: 2010
  ident: 10.1016/j.soilbio.2016.10.006_bib54
  article-title: Ethylene: potential key for biochar amendment impacts
  publication-title: Plant and Soil
  doi: 10.1007/s11104-010-0359-5
– volume: 367
  start-page: 301
  year: 2013
  ident: 10.1016/j.soilbio.2016.10.006_bib18
  article-title: Impacts of greenwaste biochar on ammonia volatilisation from bauxite processing residue sand
  publication-title: Plant and Soil
  doi: 10.1007/s11104-012-1468-0
– volume: 52
  start-page: 217
  issue: 3
  year: 2014
  ident: 10.1016/j.soilbio.2016.10.006_bib41
  article-title: The biochar dilemma
  publication-title: The biochar dilemma. Soil Research
  doi: 10.1071/SR13359
– volume: 33
  start-page: 1207
  year: 2009
  ident: 10.1016/j.soilbio.2016.10.006_bib47
  article-title: Microbial alterations of the soil influenced by induced compaction
  publication-title: Revista Brasileira de Ciência do Solo
  doi: 10.1590/S0100-06832009000500014
– volume: 54
  start-page: 309
  year: 2011
  ident: 10.1016/j.soilbio.2016.10.006_bib3
  article-title: Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2011.07.005
– volume: 63
  start-page: 4704
  year: 1997
  ident: 10.1016/j.soilbio.2016.10.006_bib48
  article-title: The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.63.12.4704-4712.1997
– volume: 5
  start-page: 240
  year: 2002
  ident: 10.1016/j.soilbio.2016.10.006_bib59
  article-title: Microbial diversity and function in soil: from genes to ecosystems
  publication-title: Current Opinion in Microbiology
  doi: 10.1016/S1369-5274(02)00324-7
– volume: 22
  start-page: 331
  year: 1996
  ident: 10.1016/j.soilbio.2016.10.006_bib63
  article-title: Contributions from different microbial processes to N2O emission from soil under different moisture regimes
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/BF00334578
– volume: 48
  start-page: 9391
  year: 2014
  ident: 10.1016/j.soilbio.2016.10.006_bib65
  article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape
  publication-title: Environmental Science and Technology
  doi: 10.1021/es5021058
– volume: 34
  start-page: 1227
  year: 2002
  ident: 10.1016/j.soilbio.2016.10.006_bib50
  article-title: What is the so-called optimum pH for denitrification in soil?
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(02)00059-7
– volume: 207
  start-page: 163
  year: 2015
  ident: 10.1016/j.soilbio.2016.10.006_bib61
  article-title: Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil
  publication-title: Agriculture, Ecosystems and Environment
  doi: 10.1016/j.agee.2015.04.015
– volume: 220
  start-page: 189
  year: 2000
  ident: 10.1016/j.soilbio.2016.10.006_bib22
  article-title: Comparative response of wheat and oilseed rape to nitrogen supply: absorption and utilisation efficiency of radiation and nitrogen during the reproductive stages determining yield
  publication-title: Plant and Soil
  doi: 10.1023/A:1004757124939
– volume: 45
  start-page: 311
  year: 1981
  ident: 10.1016/j.soilbio.2016.10.006_bib32
  article-title: Improved soil cover method for field measurement of nitrous oxide fluxes
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1981.03615995004500020017x
– volume: 4
  start-page: 387
  year: 1998
  ident: 10.1016/j.soilbio.2016.10.006_bib13
  article-title: Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils
  publication-title: Global Change Biology
  doi: 10.1046/j.1365-2486.1998.00161.x
– volume: 21
  start-page: 3783
  year: 2014
  ident: 10.1016/j.soilbio.2016.10.006_bib38
  article-title: Compaction stimulates denitrification in an urban park soil using 15N tracing technique
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-013-2355-9
– volume: 19
  start-page: GB1007
  year: 2005
  ident: 10.1016/j.soilbio.2016.10.006_bib8
  article-title: Global change, nitrification, and denitrification: a review
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/2004GB002282
– volume: 78
  start-page: 1913
  year: 2014
  ident: 10.1016/j.soilbio.2016.10.006_bib27
  article-title: Soil compaction, both an Environmental and agronomic culprit: increased nitrous oxide emissions and reduced plant nitrogen uptake
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2014.03.0117
SSID ssj0002513
Score 2.5328062
Snippet Soil compaction occurs widely in modern agriculture, leading to reduced crop yields and enhanced soil N2O emissions. Biochar, an emerging biomass-pyrolysis...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8
SubjectTerms acidity
bacteria
Biochar
Compaction
denitrifying microorganisms
fertilizer analysis
fertilizer application
Functional genes
grain yield
greenhouse gas emissions
irrigation
Mechanisms
nitrogen
nitrogen fertilizers
Nitrous oxide
population size
soil compaction
soil pH
soil water
vegetative growth
water holding capacity
Wheat
Title Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions?
URI https://dx.doi.org/10.1016/j.soilbio.2016.10.006
https://www.proquest.com/docview/2000121900
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHtSDaFWsjxLB67b7SPZxklIsVbFeLPQiS5LN1pa6LX3ozd_uzG5WUZCCpw2ByS4zYWaSne8bQq6knzquFMqCbDmyWBqlMNKBJZTDlQoSR-eU-Q99vzdgd0M-rJBOiYXBskrj-wufnntrM9My2mzNx2PE-CJZOtK9gBvmHAG_jAW4y5sf32UeEL8N8W6IYJ3gG8XTmiBf7lSOEQPo-M2iyOuv-PTLU-fhp7tP9kzeSNvFpx2Qis5qZLc9WhjuDF0j252yedshee6IjMI7EVRFsV3KG5hAU_wSmped53AGWiBFKIze0SnTERzKVy9UZAl9HefsG0am7z5SXBzv1pbXR2TQvXnq9CzTScFSzA5XlvZSxiMehtIV0tWMaYjK2tM-ngDtxBOcixRyRRcMCk9HydRjKgG1qEC6XHjHpJrNMn1CaABHCmnrIEgSjyXMDyPJUxUpXzI7DT2vTlipv1gZmnHsdjGNy3qySWzUHqPacRrUXifNL7F5wbOxSSAsjRP_2DAxxIJNopelMWPQHP4hEZmerZfYkxM57iLbPv3_8mdkx8XYn9_TnJPqarHWF5C5rGQj35oNstW-ve_1PwFUu-7z
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeKl4VtBSMBMfsJo6dx6Gq0AJaXssFJC4otR0HFtEs2l266oU_1T_YmcQBgYSQkDjFsjRO8tmZGTsz3wBs6qgIuFbGQ2859USRFtiysadMII2J88BWlPnHvah7Jg7O5fkU_GtyYSis0un-WqdX2tr1tB2a7dt-n3J8iSyd6F5QDUuZuMjKQ_t3gvu20Y_9HZzkLc73dk87Xc-VFvCM8JOxZ8NCyFQmieZKcyuERTNlQxvRlsjPQyWlKtB54viGeA2MLkJhcrSWJtZcqhDH_QAzAtUFlU1o3T_GlaDD4Jh-E8oOih_ThtrXRNB7o_uUdBhErTqq7CWD-Mw0VPZubw4-O0eVbddYzMOULRfg0_bl0JF12AWY7TTV4hbhoqNKhvekLC5G9Vn-4JxbRk_Cqjj3Kn-C1akpDFsTsgLscjiYjK-YKnP2u1_RfTiZHj9hNDgd5o1-LsHZu-D7BabLQWmXgcW4h9G-jeM8D0UuoiTVsjCpibTwiyQMV0A0-GXG8ZpTeY2brAlgu84c7BnBTt0I-wq0HsRua2KP1wSSZnKyJys0Q-PzmuhGM5kZIke_ZFRpB3cjKgJKpHqp7399-_DrMNs9PT7KjvZ7h9_gIyfHozokWoXp8fDOfke3aazXqmXK4Nd7fxf_AWwZKp4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+biochar+alleviate+soil+compaction+stress+on+wheat+growth+and+mitigate+soil+N2O+emissions%3F&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Liu%2C+Qi&rft.au=Liu%2C+Benjuan&rft.au=Zhang%2C+Yanhui&rft.au=Lin%2C+Zhibin&rft.date=2017-01-01&rft.pub=Elsevier+Ltd&rft.issn=0038-0717&rft.eissn=1879-3428&rft.volume=104&rft.spage=8&rft.epage=17&rft_id=info:doi/10.1016%2Fj.soilbio.2016.10.006&rft.externalDocID=S0038071716303558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon