Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions?
Soil compaction occurs widely in modern agriculture, leading to reduced crop yields and enhanced soil N2O emissions. Biochar, an emerging biomass-pyrolysis product with porous structure, is hypothesized to alleviate soil compaction problems. A field mesocosm experiment involving biochar addition and...
Saved in:
Published in | Soil biology & biochemistry Vol. 104; pp. 8 - 17 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil compaction occurs widely in modern agriculture, leading to reduced crop yields and enhanced soil N2O emissions. Biochar, an emerging biomass-pyrolysis product with porous structure, is hypothesized to alleviate soil compaction problems. A field mesocosm experiment involving biochar addition and soil compaction in a factorial design was conducted on a land cultivated with wheat. The results showed that biochar had little effect on wheat grain yield, but it increased wheat vegetative growth and reduced seasonal cumulative soil N2O emissions from both compacted and non-compacted soils. Across all treatments, biochar-induced changes in individual soil N2O fluxes mainly occurred within a couple of days after nitrogen fertilization, and were sensitive to soil moisture, with an average increase of 13% under low soil moisture conditions (<70% water holding capacity (WHC)) that was likely driven by increased abundance of ammonia-oxidizing archaea and bacteria, and an average decrease of 36% under high soil moisture conditions (>70% WHC) that was likely induced by raised abundance of N2O-reducing bacteria. The stimulated population sizes of nitrifiers and denitrifiers in biochar-amended soils were more dependent on biochar's chemical mediation (a shift of soil pH from moderate acidity towards neutrality) than physical mediation. This study indicated that biochar could alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions, and to promote biochar's role in reducing soil N2O emissions, the best practice for nitrogen fertilization is before precipitation or followed by irrigation.
•Biochar alleviated soil-compaction induced negative physical effects.•Biochar increased wheat vegetative growth but not reproductive growth.•Biochar chemically-mediated effect dominated a rise in nitrifiers and denitrifiers.•Biochar impact on soil N2O flux was interactive with soil water and N fertilization.•Biochar can alleviate soil compaction stress on wheat growth and mitigate N2O flux. |
---|---|
AbstractList | Soil compaction occurs widely in modern agriculture, leading to reduced crop yields and enhanced soil N2O emissions. Biochar, an emerging biomass-pyrolysis product with porous structure, is hypothesized to alleviate soil compaction problems. A field mesocosm experiment involving biochar addition and soil compaction in a factorial design was conducted on a land cultivated with wheat. The results showed that biochar had little effect on wheat grain yield, but it increased wheat vegetative growth and reduced seasonal cumulative soil N2O emissions from both compacted and non-compacted soils. Across all treatments, biochar-induced changes in individual soil N2O fluxes mainly occurred within a couple of days after nitrogen fertilization, and were sensitive to soil moisture, with an average increase of 13% under low soil moisture conditions (<70% water holding capacity (WHC)) that was likely driven by increased abundance of ammonia-oxidizing archaea and bacteria, and an average decrease of 36% under high soil moisture conditions (>70% WHC) that was likely induced by raised abundance of N2O-reducing bacteria. The stimulated population sizes of nitrifiers and denitrifiers in biochar-amended soils were more dependent on biochar's chemical mediation (a shift of soil pH from moderate acidity towards neutrality) than physical mediation. This study indicated that biochar could alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions, and to promote biochar's role in reducing soil N2O emissions, the best practice for nitrogen fertilization is before precipitation or followed by irrigation. Soil compaction occurs widely in modern agriculture, leading to reduced crop yields and enhanced soil N2O emissions. Biochar, an emerging biomass-pyrolysis product with porous structure, is hypothesized to alleviate soil compaction problems. A field mesocosm experiment involving biochar addition and soil compaction in a factorial design was conducted on a land cultivated with wheat. The results showed that biochar had little effect on wheat grain yield, but it increased wheat vegetative growth and reduced seasonal cumulative soil N2O emissions from both compacted and non-compacted soils. Across all treatments, biochar-induced changes in individual soil N2O fluxes mainly occurred within a couple of days after nitrogen fertilization, and were sensitive to soil moisture, with an average increase of 13% under low soil moisture conditions (<70% water holding capacity (WHC)) that was likely driven by increased abundance of ammonia-oxidizing archaea and bacteria, and an average decrease of 36% under high soil moisture conditions (>70% WHC) that was likely induced by raised abundance of N2O-reducing bacteria. The stimulated population sizes of nitrifiers and denitrifiers in biochar-amended soils were more dependent on biochar's chemical mediation (a shift of soil pH from moderate acidity towards neutrality) than physical mediation. This study indicated that biochar could alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions, and to promote biochar's role in reducing soil N2O emissions, the best practice for nitrogen fertilization is before precipitation or followed by irrigation. •Biochar alleviated soil-compaction induced negative physical effects.•Biochar increased wheat vegetative growth but not reproductive growth.•Biochar chemically-mediated effect dominated a rise in nitrifiers and denitrifiers.•Biochar impact on soil N2O flux was interactive with soil water and N fertilization.•Biochar can alleviate soil compaction stress on wheat growth and mitigate N2O flux. |
Author | Liu, Gang Zhu, Tongbin Lin, Xingwu Ma, Jing Lin, Zhibin Zhang, Yanhui Xie, Zubin Sun, Ruibo Wang, Xiaojie Liu, Qi Liu, Benjuan Bei, Qicheng |
Author_xml | – sequence: 1 givenname: Qi surname: Liu fullname: Liu, Qi organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China – sequence: 2 givenname: Benjuan surname: Liu fullname: Liu, Benjuan organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China – sequence: 3 givenname: Yanhui surname: Zhang fullname: Zhang, Yanhui organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China – sequence: 4 givenname: Zhibin surname: Lin fullname: Lin, Zhibin organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China – sequence: 5 givenname: Tongbin surname: Zhu fullname: Zhu, Tongbin organization: Karst Dynamics Laboratory, Ministry of Land and Resources, Institute of Karst Geology, Chinese Academy of Geological Sciences, Qixing Road No.50, Guilin 541004, China – sequence: 6 givenname: Ruibo surname: Sun fullname: Sun, Ruibo organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China – sequence: 7 givenname: Xiaojie surname: Wang fullname: Wang, Xiaojie organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China – sequence: 8 givenname: Jing surname: Ma fullname: Ma, Jing organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China – sequence: 9 givenname: Qicheng surname: Bei fullname: Bei, Qicheng organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China – sequence: 10 givenname: Gang surname: Liu fullname: Liu, Gang organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China – sequence: 11 givenname: Xingwu surname: Lin fullname: Lin, Xingwu organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China – sequence: 12 givenname: Zubin surname: Xie fullname: Xie, Zubin email: zbxie@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No.71, Nanjing 210008, China |
BookMark | eNqFkMtKAzEUhoNUsK0-gpClmxlzmSsuihRvUOxGlxIymTNtysykJmmLb2-GFhduujrJId9P_m-CRr3pAaFbSmJKaHa_iZ3RbaVNzMI17GJCsgs0pkVeRjxhxQiNCeFFRHKaX6GJcxtCCEspH6OvuexxQNVaWizbFvZaesBDIFam20rltemx8xacw-F0WIP0eGXNwa-x7Gvcaa9Xf8w7W2LotHOBcrNrdNnI1sHNaU7R5_PTx_w1Wixf3uaPi0glpPAR8CZJy7QoKiYrBkkCGU2AQ0ZozkjNZZrKhpQlA6XCpKpqeKLq0FblFUsln6K7Y-7Wmu8dOC_CFxS0rezB7JxgoS9ltAwWpujh-FRZ45yFRijt5VDSW6lbQYkYpIqNOEkVg9RhHaQGOv1Hb63upP05y82OHAQLew1WOKWhV1BrC8qL2ugzCb8EyZd0 |
CitedBy_id | crossref_primary_10_1007_s10705_019_09983_2 crossref_primary_10_1016_j_scitotenv_2024_176218 crossref_primary_10_1016_j_jclepro_2021_126259 crossref_primary_10_1016_j_still_2021_105036 crossref_primary_10_1007_s42773_024_00323_4 crossref_primary_10_1002_tqem_70032 crossref_primary_10_36783_18069657rbcs20230046 crossref_primary_10_1007_s11104_025_07226_8 crossref_primary_10_1007_s42729_022_00877_x crossref_primary_10_1016_j_chemosphere_2021_132551 crossref_primary_10_1007_s13762_021_03267_5 crossref_primary_10_1016_j_agee_2024_109223 crossref_primary_10_1007_s13593_022_00773_9 crossref_primary_10_1007_s42773_020_00068_w crossref_primary_10_1016_j_scitotenv_2018_06_166 crossref_primary_10_1021_acs_estlett_4c00470 crossref_primary_10_1016_j_agee_2024_109188 crossref_primary_10_3390_su151813421 crossref_primary_10_1016_j_geoderma_2020_114223 crossref_primary_10_1002_ldr_5347 crossref_primary_10_1007_s11356_020_10267_4 crossref_primary_10_1007_s11356_021_12723_1 crossref_primary_10_1080_00103624_2020_1869758 crossref_primary_10_1016_j_scitotenv_2023_168530 crossref_primary_10_1038_s41598_019_53044_1 crossref_primary_10_1007_s11104_018_3619_4 crossref_primary_10_1016_j_rser_2022_112529 crossref_primary_10_3390_microorganisms9071385 crossref_primary_10_1016_j_scitotenv_2022_156076 crossref_primary_10_3390_agriculture12101704 crossref_primary_10_1016_j_envpol_2022_120823 crossref_primary_10_1016_j_jece_2023_110928 crossref_primary_10_3390_atmos11050450 crossref_primary_10_1016_j_jclepro_2022_133365 crossref_primary_10_3390_su10051403 crossref_primary_10_5433_1679_0359_2021v42n3p1049 crossref_primary_10_1016_j_scitotenv_2018_01_003 crossref_primary_10_1016_j_scitotenv_2018_08_372 crossref_primary_10_1016_j_still_2023_105686 crossref_primary_10_1021_acsagscitech_4c00114 crossref_primary_10_1016_j_chemosphere_2022_133904 crossref_primary_10_1016_j_jenvman_2024_123728 crossref_primary_10_1016_j_scitotenv_2024_176283 crossref_primary_10_1016_j_scitotenv_2018_02_046 crossref_primary_10_1007_s00374_024_01823_y crossref_primary_10_25308_aduziraat_405858 crossref_primary_10_1088_1755_1315_1262_9_092006 crossref_primary_10_3390_agronomy12081857 crossref_primary_10_1016_j_scitotenv_2018_07_224 crossref_primary_10_1007_s10653_019_00412_5 crossref_primary_10_17221_348_2022_PSE crossref_primary_10_1007_s11356_019_06567_z crossref_primary_10_1111_ejss_13131 crossref_primary_10_1016_j_agee_2022_108183 crossref_primary_10_1016_j_scitotenv_2024_175566 crossref_primary_10_1007_s44246_024_00138_9 crossref_primary_10_1016_j_ejsobi_2022_103391 crossref_primary_10_3390_w14233819 crossref_primary_10_1016_j_apsoil_2019_08_010 crossref_primary_10_3389_fpls_2022_878424 crossref_primary_10_1016_j_soilbio_2023_108970 crossref_primary_10_1111_sum_12464 crossref_primary_10_1002_rcm_8305 crossref_primary_10_3390_w14203204 crossref_primary_10_1007_s11157_024_09712_4 crossref_primary_10_1021_acs_est_1c01976 crossref_primary_10_3390_land12071353 crossref_primary_10_1016_j_jenvman_2023_118552 crossref_primary_10_1007_s42729_019_00108_w crossref_primary_10_1093_jxb_erz301 crossref_primary_10_1186_s13750_024_00326_5 crossref_primary_10_1016_j_scitotenv_2020_139180 crossref_primary_10_17221_77_2024_SWR crossref_primary_10_1016_j_chemosphere_2019_124952 crossref_primary_10_1016_j_envint_2020_105576 crossref_primary_10_1007_s11356_020_08326_x crossref_primary_10_1016_j_geoderma_2021_115572 crossref_primary_10_1002_ldr_2838 crossref_primary_10_1016_j_scitotenv_2020_144802 crossref_primary_10_3390_agronomy12020378 crossref_primary_10_1016_j_scitotenv_2024_175728 crossref_primary_10_1021_acs_est_2c06419 crossref_primary_10_1002_ldr_2829 crossref_primary_10_3390_f15020366 crossref_primary_10_1016_j_geoderma_2023_116498 crossref_primary_10_1016_j_scitotenv_2021_150444 crossref_primary_10_31015_jaefs_2024_3_9 crossref_primary_10_3390_agronomy11050969 crossref_primary_10_3390_f13122090 crossref_primary_10_1002_clen_201700346 crossref_primary_10_1016_j_scitotenv_2018_02_260 crossref_primary_10_32604_phyton_2022_020323 crossref_primary_10_1007_s11356_018_3112_x crossref_primary_10_1016_j_scitotenv_2020_138161 crossref_primary_10_1016_j_soilbio_2020_107825 crossref_primary_10_3390_agriculture14020240 crossref_primary_10_1111_sum_12760 crossref_primary_10_1007_s11368_018_2169_y crossref_primary_10_3390_agronomy12020247 crossref_primary_10_1111_gcb_17177 crossref_primary_10_1111_sum_12649 crossref_primary_10_17660_ActaHortic_2025_1416_2 crossref_primary_10_1007_s42773_023_00255_5 crossref_primary_10_1007_s40725_023_00200_6 crossref_primary_10_29136_mediterranean_804581 crossref_primary_10_3390_agronomy9040165 crossref_primary_10_1016_j_scitotenv_2018_12_450 crossref_primary_10_1016_j_soilbio_2018_01_018 crossref_primary_10_3389_fmicb_2022_834751 crossref_primary_10_1016_j_geoderma_2019_04_025 crossref_primary_10_1016_j_pedsph_2022_06_017 crossref_primary_10_1016_j_scitotenv_2019_133984 crossref_primary_10_1016_j_chemosphere_2022_133954 crossref_primary_10_1016_j_fcr_2020_108027 crossref_primary_10_1007_s10333_020_00821_8 |
Cites_doi | 10.1016/S1465-9972(00)00040-4 10.1016/S0167-1987(98)00095-6 10.1071/SR07109 10.1007/s00248-010-9638-1 10.2136/sssaj2009.0115 10.1007/s11104-013-1980-x 10.1034/j.1600-0706.2000.890203.x 10.1021/es101283d 10.1016/j.soilbio.2012.03.017 10.1016/j.biortech.2013.08.135 10.1007/s00374-013-0857-8 10.1128/AEM.00231-06 10.1128/AEM.64.10.3769-3775.1998 10.1016/j.soilbio.2012.04.022 10.1023/A:1009702832489 10.2136/sssaj2003.1213 10.1016/j.orggeochem.2010.04.007 10.1016/j.soilbio.2012.05.019 10.1007/s00374-002-0530-0 10.1111/j.1475-2743.2009.00236.x 10.1128/.61.4.533-616.1997 10.1016/S1161-0301(98)00019-7 10.1371/journal.pone.0086388 10.2136/sssaj2011.0152 10.1007/s00374-007-0229-3 10.1016/j.femsec.2004.04.011 10.5539/jas.v4n5p255 10.1016/j.fcr.2008.10.008 10.1098/rstb.2013.0122 10.1016/j.agee.2014.02.030 10.1007/s11104-013-1636-x 10.1128/MMBR.60.4.609-640.1996 10.1016/j.agee.2015.04.004 10.1016/j.still.2004.08.009 10.1111/j.1747-0765.2007.00123.x 10.1016/j.apsoil.2015.06.010 10.1016/j.agwat.2015.09.017 10.1016/j.apsoil.2013.01.006 10.1073/pnas.0506625102 10.1029/2004GB002435 10.2134/agronj1993.00021962008500030019x 10.2136/sssaj1984.03615995004800060013x 10.1016/0043-1354(90)90070-M 10.1007/s00374-005-0858-3 10.1016/j.still.2010.05.010 10.2134/jeq2009.0082 10.1016/j.geoderma.2013.06.016 10.1007/s11104-010-0359-5 10.1007/s11104-012-1468-0 10.1071/SR13359 10.1590/S0100-06832009000500014 10.1016/j.pedobi.2011.07.005 10.1128/AEM.63.12.4704-4712.1997 10.1016/S1369-5274(02)00324-7 10.1007/BF00334578 10.1021/es5021058 10.1016/S0038-0717(02)00059-7 10.1016/j.agee.2015.04.015 10.1023/A:1004757124939 10.2136/sssaj1981.03615995004500020017x 10.1046/j.1365-2486.1998.00161.x 10.1007/s11356-013-2355-9 10.1029/2004GB002282 10.2136/sssaj2014.03.0117 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2016.10.006 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
EndPage | 17 |
ExternalDocumentID | 10_1016_j_soilbio_2016_10_006 S0038071716303558 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-e3f459588b2ab2e44e614e3e601720d3a55af0992eccf091cbf34cd201c7b25a3 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Fri Jul 11 11:50:51 EDT 2025 Tue Jul 01 03:19:56 EDT 2025 Thu Apr 24 23:10:23 EDT 2025 Fri Feb 23 02:23:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mechanisms Nitrous oxide Compaction Biochar Wheat Functional genes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-e3f459588b2ab2e44e614e3e601720d3a55af0992eccf091cbf34cd201c7b25a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000121900 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000121900 crossref_citationtrail_10_1016_j_soilbio_2016_10_006 crossref_primary_10_1016_j_soilbio_2016_10_006 elsevier_sciencedirect_doi_10_1016_j_soilbio_2016_10_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Deenik, McClellan, Uehara, Antal, Campbell (bib20) 2010; 74 Abu-Hamdeh (bib1) 2003; 67 Jordan, Ponder, Hubbard (bib34) 2003; 23 Lehmann, Liang, Solomon, Lerotic, Luizão, Kinyangi, Schafer, Wirick, Jacobsen (bib37) 2005; 19 Petitjean, Hénault, Perrin, Pontet, Metay, Bernoux, Jehanno, Viard, Roggy (bib44) 2015; 208 Batey (bib11) 2009; 25 Zhang, Zhang, Huang, Ye, Cui, Eldad (bib68) 2013; 33 Song, Zhang, Ma, Chang, Gong (bib53) 2014; 50 Lee, Park, Ryu, Gang, Yang, Park, Jung, Hyun (bib36) 2013; 148 Oussible, Allmaras, Wynch, Crookston (bib43) 1993; 85 Pupin, Freddi, Nahas (bib47) 2009; 33 Francis, Roberts, Beman, Santoro, Oakley (bib25) 2005; 102 Knicker (bib35) 2010; 41 Xie, Xu, Liu, Liu, Zhu, Tu, Amonette, Cadisch, Yong, Hu (bib64) 2013; 370 Linn, Doran (bib39) 1984; 48 Mukherjee, Lal (bib41) 2014; 52 Li, Deng, Rensing, Zhu (bib38) 2014; 21 Andrenelli, Maienza, Genesio, Miglietta, Pellegrini, Vaccari, Vignozzi (bib4) 2016; 163 Herath, Camps-Arbestain, Hedley (bib31) 2013; 209 Chen, Phillips, Condron, Goloran, Xu, Chan (bib18) 2013; 367 Chan, Van Zwieten, Meszaros, Downie, Joseph (bib17) 2008; 45 Dreccer, Schapendonk, Slafer, Rabbinge (bib22) 2000; 220 Yanai, Toyota, Okazaki (bib67) 2007; 53 Asai, Samson, Stephan, Songyikhangsuthor, Homma, Kiyono, Inoue, Shiraiwa, Horie (bib6) 2009; 111 Xu, Wang, Li, Yao, Su, Zhu (bib65) 2014; 48 Jiang, Lei, Liu, Wu, Li, Wang (bib33) 2006; 22 Flowers, Lal (bib24) 1998; 48 Sánchez-García, Roig, Sánchez-Monedero, Cayuela (bib49) 2014; 2 Spokas, Baker, Reicosky (bib54) 2010; 333 Zumft (bib69) 1997; 61 Utomo, Guritno, Soehono (bib60) 2012; 4 Antoniou, Hamilton, Koopman, Jain, Holloway, Lyberatos, Svoronos (bib5) 1990; 24 Sitaula, Hansen, Sitaula, Bakken (bib51) 2000; 2 Nelissen, Rütting, Huygens, Staelens, Ruysschaert, Boeckx (bib42) 2012; 55 Tan, Chang, Kabzems (bib57) 2008; 44 Aguilar-Chávez, Díaz-Rojas, del Rosario Cárdenas-Aquino, Dendooven, Luna-Guido (bib2) 2012; 52 Conrad (bib19) 1996; 60 Hardie, Clothier, Bound, Oliver, Close (bib28) 2014; 376 Throbäck, Enwall, Jarvis, Hallin (bib58) 2004; 49 Barnard, Leadley, Hungate (bib8) 2005; 19 Anderson, Condron, Clough, Fiers, Stewart, Hill, Sherlock (bib3) 2011; 54 Taketani, Tsai (bib56) 2010; 59 Bao, Ju, Gao, Qu, Christie, Lu (bib9) 2012; 76 Butterbach-Bahl, Baggs, Dannenmann, Kiese, Zechmeister-Boltenstern (bib15) 2013; 368 Ducey, Ippolito, Cantrell, Novak, Lentz (bib23) 2013; 65 Prommer, Wanek, Hofhansl, Trojan, Offre, Urich, Schleper, Sassmann, Kitzler, Soja, Hood-Nowotny (bib46) 2014; 9 Šimek, Jíšová, Hopkins (bib50) 2002; 34 Bateman, Baggs (bib10) 2005; 41 Harter, Krause, Schuettler, Ruser, Fromme, Scholten, Kappler, Behrens (bib29) 2014; 8 Pietikäinen, Kiikkilä, Fritze (bib45) 2000; 89 Beylich, Oberholzer, Schrader, Höper, Wilke (bib12) 2010; 109 Van Zwieten, Singh, Kimber, Murphy, Macdonald, Rust, Morris (bib62) 2014; 191 Webster, Hopkins (bib63) 1996; 22 Hutchinson, Mosier (bib32) 1981; 45 Freney (bib26) 1997; 49 Gregorich, McLaughli Sohi n, Lapen, Ma, Rochette (bib27) 2014; 78 Sun, Guo, Wang, Chu (bib55) 2015; 95 Silber, Levkovitch, Graber (bib52) 2010; 44 Vaccari, Maienza, Miglietta, Baronti, Di Lonardo, Giagnoni, Lagomarsino, Pozzi, Pusceddu, Ranieri, Valboa, Genesio (bib61) 2015; 207 Rotthauwe, Witzel, Liesack (bib48) 1997; 63 Ball, MacKenzie, DeLuca, Montana (bib7) 2010; 39 Henry, Bru, Stres, Hallet, Philippot (bib30) 2006; 72 Yamulki, Jarvis (bib66) 2002; 36 Case, McNamara, Reay, Whitaker (bib16) 2012; 51 Torsvik, Øvreås (bib59) 2002; 5 Bollmann, Conrad (bib13) 1998; 4 Delogu, Cattivelli, Pecchioni, De Falcis, Maggiore, Stanca (bib21) 1998; 9 Hamza, Anderson (bib70) 2005; 82 Braker, Fesefeldt, Witzel (bib14) 1998; 64 Lu (bib40) 1999 Flowers (10.1016/j.soilbio.2016.10.006_bib24) 1998; 48 Nelissen (10.1016/j.soilbio.2016.10.006_bib42) 2012; 55 Asai (10.1016/j.soilbio.2016.10.006_bib6) 2009; 111 Butterbach-Bahl (10.1016/j.soilbio.2016.10.006_bib15) 2013; 368 Ducey (10.1016/j.soilbio.2016.10.006_bib23) 2013; 65 Barnard (10.1016/j.soilbio.2016.10.006_bib8) 2005; 19 Henry (10.1016/j.soilbio.2016.10.006_bib30) 2006; 72 Webster (10.1016/j.soilbio.2016.10.006_bib63) 1996; 22 Torsvik (10.1016/j.soilbio.2016.10.006_bib59) 2002; 5 Ball (10.1016/j.soilbio.2016.10.006_bib7) 2010; 39 Utomo (10.1016/j.soilbio.2016.10.006_bib60) 2012; 4 Braker (10.1016/j.soilbio.2016.10.006_bib14) 1998; 64 Jordan (10.1016/j.soilbio.2016.10.006_bib34) 2003; 23 Francis (10.1016/j.soilbio.2016.10.006_bib25) 2005; 102 Chen (10.1016/j.soilbio.2016.10.006_bib18) 2013; 367 Sitaula (10.1016/j.soilbio.2016.10.006_bib51) 2000; 2 Bao (10.1016/j.soilbio.2016.10.006_bib9) 2012; 76 Herath (10.1016/j.soilbio.2016.10.006_bib31) 2013; 209 Andrenelli (10.1016/j.soilbio.2016.10.006_bib4) 2016; 163 Petitjean (10.1016/j.soilbio.2016.10.006_bib44) 2015; 208 Linn (10.1016/j.soilbio.2016.10.006_bib39) 1984; 48 Spokas (10.1016/j.soilbio.2016.10.006_bib54) 2010; 333 Van Zwieten (10.1016/j.soilbio.2016.10.006_bib62) 2014; 191 Aguilar-Chávez (10.1016/j.soilbio.2016.10.006_bib2) 2012; 52 Hamza (10.1016/j.soilbio.2016.10.006_bib70) 2005; 82 Lu (10.1016/j.soilbio.2016.10.006_bib40) 1999 Bollmann (10.1016/j.soilbio.2016.10.006_bib13) 1998; 4 Chan (10.1016/j.soilbio.2016.10.006_bib17) 2008; 45 Vaccari (10.1016/j.soilbio.2016.10.006_bib61) 2015; 207 Zumft (10.1016/j.soilbio.2016.10.006_bib69) 1997; 61 Batey (10.1016/j.soilbio.2016.10.006_bib11) 2009; 25 Yanai (10.1016/j.soilbio.2016.10.006_bib67) 2007; 53 Pietikäinen (10.1016/j.soilbio.2016.10.006_bib45) 2000; 89 Jiang (10.1016/j.soilbio.2016.10.006_bib33) 2006; 22 Yamulki (10.1016/j.soilbio.2016.10.006_bib66) 2002; 36 Dreccer (10.1016/j.soilbio.2016.10.006_bib22) 2000; 220 Antoniou (10.1016/j.soilbio.2016.10.006_bib5) 1990; 24 Pupin (10.1016/j.soilbio.2016.10.006_bib47) 2009; 33 Taketani (10.1016/j.soilbio.2016.10.006_bib56) 2010; 59 Xu (10.1016/j.soilbio.2016.10.006_bib65) 2014; 48 Gregorich (10.1016/j.soilbio.2016.10.006_bib27) 2014; 78 Knicker (10.1016/j.soilbio.2016.10.006_bib35) 2010; 41 Rotthauwe (10.1016/j.soilbio.2016.10.006_bib48) 1997; 63 Abu-Hamdeh (10.1016/j.soilbio.2016.10.006_bib1) 2003; 67 Lee (10.1016/j.soilbio.2016.10.006_bib36) 2013; 148 Li (10.1016/j.soilbio.2016.10.006_bib38) 2014; 21 Harter (10.1016/j.soilbio.2016.10.006_bib29) 2014; 8 Beylich (10.1016/j.soilbio.2016.10.006_bib12) 2010; 109 Song (10.1016/j.soilbio.2016.10.006_bib53) 2014; 50 Hardie (10.1016/j.soilbio.2016.10.006_bib28) 2014; 376 Freney (10.1016/j.soilbio.2016.10.006_bib26) 1997; 49 Oussible (10.1016/j.soilbio.2016.10.006_bib43) 1993; 85 Mukherjee (10.1016/j.soilbio.2016.10.006_bib41) 2014; 52 Anderson (10.1016/j.soilbio.2016.10.006_bib3) 2011; 54 Delogu (10.1016/j.soilbio.2016.10.006_bib21) 1998; 9 Šimek (10.1016/j.soilbio.2016.10.006_bib50) 2002; 34 Silber (10.1016/j.soilbio.2016.10.006_bib52) 2010; 44 Zhang (10.1016/j.soilbio.2016.10.006_bib68) 2013; 33 Tan (10.1016/j.soilbio.2016.10.006_bib57) 2008; 44 Sun (10.1016/j.soilbio.2016.10.006_bib55) 2015; 95 Throbäck (10.1016/j.soilbio.2016.10.006_bib58) 2004; 49 Lehmann (10.1016/j.soilbio.2016.10.006_bib37) 2005; 19 Sánchez-García (10.1016/j.soilbio.2016.10.006_bib49) 2014; 2 Hutchinson (10.1016/j.soilbio.2016.10.006_bib32) 1981; 45 Prommer (10.1016/j.soilbio.2016.10.006_bib46) 2014; 9 Bateman (10.1016/j.soilbio.2016.10.006_bib10) 2005; 41 Case (10.1016/j.soilbio.2016.10.006_bib16) 2012; 51 Deenik (10.1016/j.soilbio.2016.10.006_bib20) 2010; 74 Conrad (10.1016/j.soilbio.2016.10.006_bib19) 1996; 60 Xie (10.1016/j.soilbio.2016.10.006_bib64) 2013; 370 |
References_xml | – volume: 82 start-page: 121 year: 2005 end-page: 145 ident: bib70 article-title: Soil compaction in cropping systems: a review of the nature, causes and possible solutions publication-title: Soil and Tillage Research – volume: 60 start-page: 609 year: 1996 end-page: 640 ident: bib19 article-title: Soil microorganisms as controllers of atmospheric trace gases (H publication-title: Microbiological Reviews – volume: 48 start-page: 1267 year: 1984 end-page: 1272 ident: bib39 article-title: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils publication-title: Soil Science Society of America Journal – volume: 367 start-page: 301 year: 2013 end-page: 312 ident: bib18 article-title: Impacts of greenwaste biochar on ammonia volatilisation from bauxite processing residue sand publication-title: Plant and Soil – volume: 72 start-page: 5181 year: 2006 end-page: 5189 ident: bib30 article-title: Quantitative detection of the publication-title: Applied and Environmental Microbiology – volume: 209 start-page: 188 year: 2013 end-page: 197 ident: bib31 article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol publication-title: Geoderma – volume: 368 start-page: 20130122 year: 2013 ident: bib15 article-title: Nitrous oxide emissions from soils: how well do we understand the processes and their controls? publication-title: A Philosophical Transactions of the Royal Society of London, Series B Biological Sciences – volume: 370 start-page: 527 year: 2013 end-page: 540 ident: bib64 article-title: Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China publication-title: Plant and Soil – volume: 109 start-page: 133 year: 2010 end-page: 143 ident: bib12 article-title: Evaluation of soil compaction effects on soil biota and soil biological processes in soils publication-title: Soil and Tillage Research – volume: 4 start-page: 387 year: 1998 end-page: 396 ident: bib13 article-title: Influence of O publication-title: Global Change Biology – volume: 208 start-page: 64 year: 2015 end-page: 74 ident: bib44 article-title: Soil N publication-title: Agriculture, Ecosystems and Environment – volume: 76 start-page: 130 year: 2012 end-page: 141 ident: bib9 article-title: Response of nitrous oxide and corresponding bacteria to managements in an agricultural soil publication-title: Soil Science Society of America Journal – volume: 22 start-page: 331 year: 1996 end-page: 335 ident: bib63 article-title: Contributions from different microbial processes to N publication-title: Biology and Fertility of Soils – volume: 41 start-page: 379 year: 2005 end-page: 388 ident: bib10 article-title: Contributions of nitrification and denitrification to N publication-title: Biology and Fertility of Soils – volume: 102 start-page: 14683 year: 2005 end-page: 14688 ident: bib25 article-title: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 41 start-page: 947 year: 2010 end-page: 950 ident: bib35 article-title: “Black nitrogen”–an important fraction in determining the recalcitrance of charcoal publication-title: Organic Geochemistry – volume: 19 start-page: GB1013 year: 2005 ident: bib37 article-title: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soils: application to black carbon particles publication-title: Global Biogeochemical Cycles – volume: 61 start-page: 533 year: 1997 end-page: 616 ident: bib69 article-title: Cell biology and molecular basis of denitrification publication-title: Microbiology and Molecular Biology Reviews – volume: 220 start-page: 189 year: 2000 end-page: 205 ident: bib22 article-title: Comparative response of wheat and oilseed rape to nitrogen supply: absorption and utilisation efficiency of radiation and nitrogen during the reproductive stages determining yield publication-title: Plant and Soil – volume: 33 start-page: 988 year: 2013 end-page: 995 ident: bib68 article-title: Effect of potassium application on yield and soil potassium balance in maize and wheat rotation system publication-title: Journal of Triticeae Crops – volume: 111 start-page: 81 year: 2009 end-page: 84 ident: bib6 article-title: Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield publication-title: Field Crops Research – volume: 8 start-page: 660 year: 2014 end-page: 674 ident: bib29 article-title: Linking N publication-title: The International Society for Microbial Ecology Journal – volume: 21 start-page: 3783 year: 2014 end-page: 3791 ident: bib38 article-title: Compaction stimulates denitrification in an urban park soil using publication-title: Environmental Science and Pollution Research – volume: 191 start-page: 53 year: 2014 end-page: 62 ident: bib62 article-title: An incubation study investigating the mechanisms that impact N publication-title: Agriculture, Ecosystems and Environment – volume: 376 start-page: 347 year: 2014 end-page: 361 ident: bib28 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant and Soil – volume: 22 start-page: 1 year: 2006 end-page: 5 ident: bib33 article-title: Principles and experimental verification of capillary suction method for fast measurement of field capacity publication-title: Transactions of the Agricultural Engineering – volume: 2 start-page: 367 year: 2000 end-page: 371 ident: bib51 article-title: Effects of soil compaction on N publication-title: Chemosphere Global Change Science – volume: 44 start-page: 9318 year: 2010 end-page: 9323 ident: bib52 article-title: pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications publication-title: Environmental Science and Technology – volume: 333 start-page: 443 year: 2010 end-page: 452 ident: bib54 article-title: Ethylene: potential key for biochar amendment impacts publication-title: Plant and Soil – volume: 24 start-page: 97 year: 1990 end-page: 101 ident: bib5 article-title: Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria publication-title: Water Research – volume: 78 start-page: 1913 year: 2014 end-page: 1923 ident: bib27 article-title: Soil compaction, both an Environmental and agronomic culprit: increased nitrous oxide emissions and reduced plant nitrogen uptake publication-title: Soil Science Society of America Journal – volume: 44 start-page: 471 year: 2008 end-page: 479 ident: bib57 article-title: Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil publication-title: Biology and Fertility of Soils – volume: 74 start-page: 1259 year: 2010 end-page: 1270 ident: bib20 article-title: Charcoal volatile matter content influences plant growth and soil nitrogen transformations publication-title: Soil Science Society of America Journal – volume: 2 start-page: 25 year: 2014 ident: bib49 article-title: Biochar increases soil N publication-title: Frontiers in Environmental Science – volume: 51 start-page: 125 year: 2012 end-page: 134 ident: bib16 article-title: The effect of biochar addition on N publication-title: Soil Biology and Biochemistry – volume: 36 start-page: 224 year: 2002 end-page: 231 ident: bib66 article-title: Short-term effects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane and carbon dioxide fluxes from grassland publication-title: Biology and Fertility of Soils – volume: 63 start-page: 4704 year: 1997 end-page: 4712 ident: bib48 article-title: The ammonia monooxygenase structural gene publication-title: Applied and Environmental Microbiology – volume: 207 start-page: 163 year: 2015 end-page: 170 ident: bib61 article-title: Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil publication-title: Agriculture, Ecosystems and Environment – volume: 49 start-page: 401 year: 2004 end-page: 417 ident: bib58 article-title: Reassessing PCR primers targeting publication-title: Federation of European Microbiological Societies Microbiology Ecology – volume: 54 start-page: 309 year: 2011 end-page: 320 ident: bib3 article-title: Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus publication-title: Pedobiologia – volume: 59 start-page: 734 year: 2010 end-page: 743 ident: bib56 article-title: The influence of different land uses on the structure of archaeal communities in Amazonian anthrosols based on 16S rRNA and amoA genes publication-title: Microbial Ecology – volume: 45 start-page: 629 year: 2008 end-page: 634 ident: bib17 article-title: Agronomic values of greenwaste biochar as a soil amendment publication-title: Soil Research – volume: 23 start-page: 33 year: 2003 end-page: 41 ident: bib34 article-title: Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity publication-title: Applied and Environmental Microbiology – volume: 9 start-page: 11 year: 1998 end-page: 20 ident: bib21 article-title: Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat publication-title: European Journal of Agronomy – volume: 34 start-page: 1227 year: 2002 end-page: 1234 ident: bib50 article-title: What is the so-called optimum pH for denitrification in soil? publication-title: Soil Biology and Biochemistry – volume: 55 start-page: 20 year: 2012 end-page: 27 ident: bib42 article-title: Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil publication-title: Soil Biology and Biochemistry – volume: 148 start-page: 196 year: 2013 end-page: 201 ident: bib36 article-title: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C publication-title: Bioresource Technology – volume: 89 start-page: 231 year: 2000 end-page: 242 ident: bib45 article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus publication-title: Oikos – volume: 45 start-page: 311 year: 1981 end-page: 316 ident: bib32 article-title: Improved soil cover method for field measurement of nitrous oxide fluxes publication-title: Soil Science Society of America Journal – volume: 163 start-page: 190 year: 2016 end-page: 196 ident: bib4 article-title: Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil publication-title: Agricultural Water Management – volume: 65 start-page: 65 year: 2013 end-page: 72 ident: bib23 article-title: Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances publication-title: Applied Soil Ecology – volume: 53 start-page: 181 year: 2007 end-page: 188 ident: bib67 article-title: Effects of charcoal addition on N publication-title: Soil Science and Plant Nutrition – volume: 39 start-page: 1243 year: 2010 end-page: 1253 ident: bib7 article-title: Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils publication-title: Journal of Environmental Quality – volume: 4 start-page: 255 year: 2012 ident: bib60 article-title: The effect of biochar on the growth and N fertilizer requirement of maize (Zea mays L.) in green house experiment publication-title: Journal of Agricultural Science – volume: 25 start-page: 335 year: 2009 end-page: 345 ident: bib11 article-title: Soil compaction and soil management–a review publication-title: Soil Use and Management – volume: 5 start-page: 240 year: 2002 end-page: 245 ident: bib59 article-title: Microbial diversity and function in soil: from genes to ecosystems publication-title: Current Opinion in Microbiology – volume: 67 start-page: 1213 year: 2003 end-page: 1219 ident: bib1 article-title: Compaction and subsoiling effects on corn growth and soil bulk density publication-title: Soil Science Society of America Journal – volume: 48 start-page: 21 year: 1998 end-page: 35 ident: bib24 article-title: Axle load and tillage effects on soil physical properties and soybean grain yield on a mollic ochraqualf in northwest Ohio publication-title: Soil and Tillage Research – volume: 19 start-page: GB1007 year: 2005 ident: bib8 article-title: Global change, nitrification, and denitrification: a review publication-title: Global Biogeochemical Cycles – volume: 50 start-page: 321 year: 2014 end-page: 332 ident: bib53 article-title: Biochar addition affected the dynamics of ammonia oxidizers and nitrification in mesocosms of a coastal alkaline soil publication-title: Biology and Fertility of Soils – volume: 48 start-page: 9391 year: 2014 end-page: 9399 ident: bib65 article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape publication-title: Environmental Science and Technology – volume: 33 start-page: 1207 year: 2009 end-page: 1213 ident: bib47 article-title: Microbial alterations of the soil influenced by induced compaction publication-title: Revista Brasileira de Ciência do Solo – volume: 52 start-page: 90 year: 2012 end-page: 95 ident: bib2 article-title: Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal publication-title: Soil Biology and Biochemistry – volume: 49 start-page: 1 year: 1997 end-page: 6 ident: bib26 article-title: Emission of nitrous oxide from soils used for agriculture publication-title: Nutrient Cycling in Agroecosystems – start-page: 269 year: 1999 end-page: 271 ident: bib40 article-title: Analytic Methods for Soil and Agro-chemistry – volume: 9 year: 2014 ident: bib46 article-title: Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial publication-title: PloS One – volume: 64 start-page: 3769 year: 1998 end-page: 3775 ident: bib14 article-title: Development of PCR primer systems for amplification of nitrite reductase genes ( publication-title: Applied and Environmental Microbiology – volume: 85 start-page: 619 year: 1993 end-page: 625 ident: bib43 article-title: Subsurface compaction effects on tillering and nitrogen accumulation in wheat publication-title: Agronomy Journal – volume: 52 start-page: 217 year: 2014 end-page: 230 ident: bib41 article-title: The biochar dilemma publication-title: The biochar dilemma. Soil Research – volume: 95 start-page: 171 year: 2015 end-page: 178 ident: bib55 article-title: Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle publication-title: Applied Soil Ecology – volume: 2 start-page: 367 year: 2000 ident: 10.1016/j.soilbio.2016.10.006_bib51 article-title: Effects of soil compaction on N2O emission in agricultural soil publication-title: Chemosphere Global Change Science doi: 10.1016/S1465-9972(00)00040-4 – volume: 48 start-page: 21 year: 1998 ident: 10.1016/j.soilbio.2016.10.006_bib24 article-title: Axle load and tillage effects on soil physical properties and soybean grain yield on a mollic ochraqualf in northwest Ohio publication-title: Soil and Tillage Research doi: 10.1016/S0167-1987(98)00095-6 – volume: 45 start-page: 629 year: 2008 ident: 10.1016/j.soilbio.2016.10.006_bib17 article-title: Agronomic values of greenwaste biochar as a soil amendment publication-title: Soil Research doi: 10.1071/SR07109 – volume: 59 start-page: 734 year: 2010 ident: 10.1016/j.soilbio.2016.10.006_bib56 article-title: The influence of different land uses on the structure of archaeal communities in Amazonian anthrosols based on 16S rRNA and amoA genes publication-title: Microbial Ecology doi: 10.1007/s00248-010-9638-1 – volume: 74 start-page: 1259 year: 2010 ident: 10.1016/j.soilbio.2016.10.006_bib20 article-title: Charcoal volatile matter content influences plant growth and soil nitrogen transformations publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2009.0115 – volume: 376 start-page: 347 year: 2014 ident: 10.1016/j.soilbio.2016.10.006_bib28 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant and Soil doi: 10.1007/s11104-013-1980-x – volume: 89 start-page: 231 year: 2000 ident: 10.1016/j.soilbio.2016.10.006_bib45 article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus publication-title: Oikos doi: 10.1034/j.1600-0706.2000.890203.x – volume: 44 start-page: 9318 year: 2010 ident: 10.1016/j.soilbio.2016.10.006_bib52 article-title: pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications publication-title: Environmental Science and Technology doi: 10.1021/es101283d – volume: 51 start-page: 125 year: 2012 ident: 10.1016/j.soilbio.2016.10.006_bib16 article-title: The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil–the role of soil aeration publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2012.03.017 – volume: 148 start-page: 196 year: 2013 ident: 10.1016/j.soilbio.2016.10.006_bib36 article-title: Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C publication-title: Bioresource Technology doi: 10.1016/j.biortech.2013.08.135 – volume: 50 start-page: 321 year: 2014 ident: 10.1016/j.soilbio.2016.10.006_bib53 article-title: Biochar addition affected the dynamics of ammonia oxidizers and nitrification in mesocosms of a coastal alkaline soil publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-013-0857-8 – volume: 8 start-page: 660 year: 2014 ident: 10.1016/j.soilbio.2016.10.006_bib29 article-title: Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community publication-title: The International Society for Microbial Ecology Journal – volume: 72 start-page: 5181 year: 2006 ident: 10.1016/j.soilbio.2016.10.006_bib30 article-title: Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.00231-06 – volume: 64 start-page: 3769 year: 1998 ident: 10.1016/j.soilbio.2016.10.006_bib14 article-title: Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.64.10.3769-3775.1998 – volume: 52 start-page: 90 year: 2012 ident: 10.1016/j.soilbio.2016.10.006_bib2 article-title: Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2012.04.022 – volume: 49 start-page: 1 year: 1997 ident: 10.1016/j.soilbio.2016.10.006_bib26 article-title: Emission of nitrous oxide from soils used for agriculture publication-title: Nutrient Cycling in Agroecosystems doi: 10.1023/A:1009702832489 – volume: 67 start-page: 1213 year: 2003 ident: 10.1016/j.soilbio.2016.10.006_bib1 article-title: Compaction and subsoiling effects on corn growth and soil bulk density publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2003.1213 – volume: 41 start-page: 947 year: 2010 ident: 10.1016/j.soilbio.2016.10.006_bib35 article-title: “Black nitrogen”–an important fraction in determining the recalcitrance of charcoal publication-title: Organic Geochemistry doi: 10.1016/j.orggeochem.2010.04.007 – volume: 55 start-page: 20 year: 2012 ident: 10.1016/j.soilbio.2016.10.006_bib42 article-title: Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2012.05.019 – volume: 36 start-page: 224 year: 2002 ident: 10.1016/j.soilbio.2016.10.006_bib66 article-title: Short-term effects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane and carbon dioxide fluxes from grassland publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-002-0530-0 – volume: 25 start-page: 335 year: 2009 ident: 10.1016/j.soilbio.2016.10.006_bib11 article-title: Soil compaction and soil management–a review publication-title: Soil Use and Management doi: 10.1111/j.1475-2743.2009.00236.x – volume: 61 start-page: 533 year: 1997 ident: 10.1016/j.soilbio.2016.10.006_bib69 article-title: Cell biology and molecular basis of denitrification publication-title: Microbiology and Molecular Biology Reviews doi: 10.1128/.61.4.533-616.1997 – volume: 9 start-page: 11 year: 1998 ident: 10.1016/j.soilbio.2016.10.006_bib21 article-title: Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat publication-title: European Journal of Agronomy doi: 10.1016/S1161-0301(98)00019-7 – volume: 9 year: 2014 ident: 10.1016/j.soilbio.2016.10.006_bib46 article-title: Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial publication-title: PloS One doi: 10.1371/journal.pone.0086388 – volume: 76 start-page: 130 year: 2012 ident: 10.1016/j.soilbio.2016.10.006_bib9 article-title: Response of nitrous oxide and corresponding bacteria to managements in an agricultural soil publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2011.0152 – volume: 44 start-page: 471 year: 2008 ident: 10.1016/j.soilbio.2016.10.006_bib57 article-title: Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-007-0229-3 – volume: 49 start-page: 401 year: 2004 ident: 10.1016/j.soilbio.2016.10.006_bib58 article-title: Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE publication-title: Federation of European Microbiological Societies Microbiology Ecology doi: 10.1016/j.femsec.2004.04.011 – volume: 4 start-page: 255 year: 2012 ident: 10.1016/j.soilbio.2016.10.006_bib60 article-title: The effect of biochar on the growth and N fertilizer requirement of maize (Zea mays L.) in green house experiment publication-title: Journal of Agricultural Science doi: 10.5539/jas.v4n5p255 – volume: 2 start-page: 25 year: 2014 ident: 10.1016/j.soilbio.2016.10.006_bib49 article-title: Biochar increases soil N2O emissions produced by nitrification-mediated pathways publication-title: Frontiers in Environmental Science – volume: 111 start-page: 81 year: 2009 ident: 10.1016/j.soilbio.2016.10.006_bib6 article-title: Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield publication-title: Field Crops Research doi: 10.1016/j.fcr.2008.10.008 – volume: 368 start-page: 20130122 year: 2013 ident: 10.1016/j.soilbio.2016.10.006_bib15 article-title: Nitrous oxide emissions from soils: how well do we understand the processes and their controls? publication-title: A Philosophical Transactions of the Royal Society of London, Series B Biological Sciences doi: 10.1098/rstb.2013.0122 – volume: 191 start-page: 53 year: 2014 ident: 10.1016/j.soilbio.2016.10.006_bib62 article-title: An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application publication-title: Agriculture, Ecosystems and Environment doi: 10.1016/j.agee.2014.02.030 – volume: 370 start-page: 527 year: 2013 ident: 10.1016/j.soilbio.2016.10.006_bib64 article-title: Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China publication-title: Plant and Soil doi: 10.1007/s11104-013-1636-x – volume: 60 start-page: 609 year: 1996 ident: 10.1016/j.soilbio.2016.10.006_bib19 article-title: Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO) publication-title: Microbiological Reviews doi: 10.1128/MMBR.60.4.609-640.1996 – volume: 208 start-page: 64 year: 2015 ident: 10.1016/j.soilbio.2016.10.006_bib44 article-title: Soil N2O emissions in French Guiana after the conversion of tropical forest to agriculture with the chop-and-mulch method publication-title: Agriculture, Ecosystems and Environment doi: 10.1016/j.agee.2015.04.004 – volume: 82 start-page: 121 year: 2005 ident: 10.1016/j.soilbio.2016.10.006_bib70 article-title: Soil compaction in cropping systems: a review of the nature, causes and possible solutions publication-title: Soil and Tillage Research doi: 10.1016/j.still.2004.08.009 – volume: 53 start-page: 181 year: 2007 ident: 10.1016/j.soilbio.2016.10.006_bib67 article-title: Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments publication-title: Soil Science and Plant Nutrition doi: 10.1111/j.1747-0765.2007.00123.x – volume: 95 start-page: 171 year: 2015 ident: 10.1016/j.soilbio.2016.10.006_bib55 article-title: Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2015.06.010 – volume: 163 start-page: 190 year: 2016 ident: 10.1016/j.soilbio.2016.10.006_bib4 article-title: Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2015.09.017 – volume: 65 start-page: 65 year: 2013 ident: 10.1016/j.soilbio.2016.10.006_bib23 article-title: Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2013.01.006 – volume: 102 start-page: 14683 year: 2005 ident: 10.1016/j.soilbio.2016.10.006_bib25 article-title: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0506625102 – start-page: 269 year: 1999 ident: 10.1016/j.soilbio.2016.10.006_bib40 – volume: 19 start-page: GB1013 year: 2005 ident: 10.1016/j.soilbio.2016.10.006_bib37 article-title: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soils: application to black carbon particles publication-title: Global Biogeochemical Cycles doi: 10.1029/2004GB002435 – volume: 85 start-page: 619 year: 1993 ident: 10.1016/j.soilbio.2016.10.006_bib43 article-title: Subsurface compaction effects on tillering and nitrogen accumulation in wheat publication-title: Agronomy Journal doi: 10.2134/agronj1993.00021962008500030019x – volume: 48 start-page: 1267 year: 1984 ident: 10.1016/j.soilbio.2016.10.006_bib39 article-title: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1984.03615995004800060013x – volume: 24 start-page: 97 year: 1990 ident: 10.1016/j.soilbio.2016.10.006_bib5 article-title: Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria publication-title: Water Research doi: 10.1016/0043-1354(90)90070-M – volume: 41 start-page: 379 year: 2005 ident: 10.1016/j.soilbio.2016.10.006_bib10 article-title: Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-005-0858-3 – volume: 22 start-page: 1 year: 2006 ident: 10.1016/j.soilbio.2016.10.006_bib33 article-title: Principles and experimental verification of capillary suction method for fast measurement of field capacity publication-title: Transactions of the Agricultural Engineering – volume: 109 start-page: 133 year: 2010 ident: 10.1016/j.soilbio.2016.10.006_bib12 article-title: Evaluation of soil compaction effects on soil biota and soil biological processes in soils publication-title: Soil and Tillage Research doi: 10.1016/j.still.2010.05.010 – volume: 33 start-page: 988 year: 2013 ident: 10.1016/j.soilbio.2016.10.006_bib68 article-title: Effect of potassium application on yield and soil potassium balance in maize and wheat rotation system publication-title: Journal of Triticeae Crops – volume: 39 start-page: 1243 year: 2010 ident: 10.1016/j.soilbio.2016.10.006_bib7 article-title: Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils publication-title: Journal of Environmental Quality doi: 10.2134/jeq2009.0082 – volume: 209 start-page: 188 year: 2013 ident: 10.1016/j.soilbio.2016.10.006_bib31 article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol publication-title: Geoderma doi: 10.1016/j.geoderma.2013.06.016 – volume: 23 start-page: 33 year: 2003 ident: 10.1016/j.soilbio.2016.10.006_bib34 article-title: Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity publication-title: Applied and Environmental Microbiology – volume: 333 start-page: 443 year: 2010 ident: 10.1016/j.soilbio.2016.10.006_bib54 article-title: Ethylene: potential key for biochar amendment impacts publication-title: Plant and Soil doi: 10.1007/s11104-010-0359-5 – volume: 367 start-page: 301 year: 2013 ident: 10.1016/j.soilbio.2016.10.006_bib18 article-title: Impacts of greenwaste biochar on ammonia volatilisation from bauxite processing residue sand publication-title: Plant and Soil doi: 10.1007/s11104-012-1468-0 – volume: 52 start-page: 217 issue: 3 year: 2014 ident: 10.1016/j.soilbio.2016.10.006_bib41 article-title: The biochar dilemma publication-title: The biochar dilemma. Soil Research doi: 10.1071/SR13359 – volume: 33 start-page: 1207 year: 2009 ident: 10.1016/j.soilbio.2016.10.006_bib47 article-title: Microbial alterations of the soil influenced by induced compaction publication-title: Revista Brasileira de Ciência do Solo doi: 10.1590/S0100-06832009000500014 – volume: 54 start-page: 309 year: 2011 ident: 10.1016/j.soilbio.2016.10.006_bib3 article-title: Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus publication-title: Pedobiologia doi: 10.1016/j.pedobi.2011.07.005 – volume: 63 start-page: 4704 year: 1997 ident: 10.1016/j.soilbio.2016.10.006_bib48 article-title: The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.63.12.4704-4712.1997 – volume: 5 start-page: 240 year: 2002 ident: 10.1016/j.soilbio.2016.10.006_bib59 article-title: Microbial diversity and function in soil: from genes to ecosystems publication-title: Current Opinion in Microbiology doi: 10.1016/S1369-5274(02)00324-7 – volume: 22 start-page: 331 year: 1996 ident: 10.1016/j.soilbio.2016.10.006_bib63 article-title: Contributions from different microbial processes to N2O emission from soil under different moisture regimes publication-title: Biology and Fertility of Soils doi: 10.1007/BF00334578 – volume: 48 start-page: 9391 year: 2014 ident: 10.1016/j.soilbio.2016.10.006_bib65 article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape publication-title: Environmental Science and Technology doi: 10.1021/es5021058 – volume: 34 start-page: 1227 year: 2002 ident: 10.1016/j.soilbio.2016.10.006_bib50 article-title: What is the so-called optimum pH for denitrification in soil? publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(02)00059-7 – volume: 207 start-page: 163 year: 2015 ident: 10.1016/j.soilbio.2016.10.006_bib61 article-title: Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil publication-title: Agriculture, Ecosystems and Environment doi: 10.1016/j.agee.2015.04.015 – volume: 220 start-page: 189 year: 2000 ident: 10.1016/j.soilbio.2016.10.006_bib22 article-title: Comparative response of wheat and oilseed rape to nitrogen supply: absorption and utilisation efficiency of radiation and nitrogen during the reproductive stages determining yield publication-title: Plant and Soil doi: 10.1023/A:1004757124939 – volume: 45 start-page: 311 year: 1981 ident: 10.1016/j.soilbio.2016.10.006_bib32 article-title: Improved soil cover method for field measurement of nitrous oxide fluxes publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1981.03615995004500020017x – volume: 4 start-page: 387 year: 1998 ident: 10.1016/j.soilbio.2016.10.006_bib13 article-title: Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils publication-title: Global Change Biology doi: 10.1046/j.1365-2486.1998.00161.x – volume: 21 start-page: 3783 year: 2014 ident: 10.1016/j.soilbio.2016.10.006_bib38 article-title: Compaction stimulates denitrification in an urban park soil using 15N tracing technique publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-013-2355-9 – volume: 19 start-page: GB1007 year: 2005 ident: 10.1016/j.soilbio.2016.10.006_bib8 article-title: Global change, nitrification, and denitrification: a review publication-title: Global Biogeochemical Cycles doi: 10.1029/2004GB002282 – volume: 78 start-page: 1913 year: 2014 ident: 10.1016/j.soilbio.2016.10.006_bib27 article-title: Soil compaction, both an Environmental and agronomic culprit: increased nitrous oxide emissions and reduced plant nitrogen uptake publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2014.03.0117 |
SSID | ssj0002513 |
Score | 2.5328062 |
Snippet | Soil compaction occurs widely in modern agriculture, leading to reduced crop yields and enhanced soil N2O emissions. Biochar, an emerging biomass-pyrolysis... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8 |
SubjectTerms | acidity bacteria Biochar Compaction denitrifying microorganisms fertilizer analysis fertilizer application Functional genes grain yield greenhouse gas emissions irrigation Mechanisms nitrogen nitrogen fertilizers Nitrous oxide population size soil compaction soil pH soil water vegetative growth water holding capacity Wheat |
Title | Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? |
URI | https://dx.doi.org/10.1016/j.soilbio.2016.10.006 https://www.proquest.com/docview/2000121900 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHtSDaFWsjxLB67b7SPZxklIsVbFeLPQiS5LN1pa6LX3ozd_uzG5WUZCCpw2ByS4zYWaSne8bQq6knzquFMqCbDmyWBqlMNKBJZTDlQoSR-eU-Q99vzdgd0M-rJBOiYXBskrj-wufnntrM9My2mzNx2PE-CJZOtK9gBvmHAG_jAW4y5sf32UeEL8N8W6IYJ3gG8XTmiBf7lSOEQPo-M2iyOuv-PTLU-fhp7tP9kzeSNvFpx2Qis5qZLc9WhjuDF0j252yedshee6IjMI7EVRFsV3KG5hAU_wSmped53AGWiBFKIze0SnTERzKVy9UZAl9HefsG0am7z5SXBzv1pbXR2TQvXnq9CzTScFSzA5XlvZSxiMehtIV0tWMaYjK2tM-ngDtxBOcixRyRRcMCk9HydRjKgG1qEC6XHjHpJrNMn1CaABHCmnrIEgSjyXMDyPJUxUpXzI7DT2vTlipv1gZmnHsdjGNy3qySWzUHqPacRrUXifNL7F5wbOxSSAsjRP_2DAxxIJNopelMWPQHP4hEZmerZfYkxM57iLbPv3_8mdkx8XYn9_TnJPqarHWF5C5rGQj35oNstW-ve_1PwFUu-7z |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeKl4VtBSMBMfsJo6dx6Gq0AJaXssFJC4otR0HFtEs2l266oU_1T_YmcQBgYSQkDjFsjRO8tmZGTsz3wBs6qgIuFbGQ2859USRFtiysadMII2J88BWlPnHvah7Jg7O5fkU_GtyYSis0un-WqdX2tr1tB2a7dt-n3J8iSyd6F5QDUuZuMjKQ_t3gvu20Y_9HZzkLc73dk87Xc-VFvCM8JOxZ8NCyFQmieZKcyuERTNlQxvRlsjPQyWlKtB54viGeA2MLkJhcrSWJtZcqhDH_QAzAtUFlU1o3T_GlaDD4Jh-E8oOih_ThtrXRNB7o_uUdBhErTqq7CWD-Mw0VPZubw4-O0eVbddYzMOULRfg0_bl0JF12AWY7TTV4hbhoqNKhvekLC5G9Vn-4JxbRk_Cqjj3Kn-C1akpDFsTsgLscjiYjK-YKnP2u1_RfTiZHj9hNDgd5o1-LsHZu-D7BabLQWmXgcW4h9G-jeM8D0UuoiTVsjCpibTwiyQMV0A0-GXG8ZpTeY2brAlgu84c7BnBTt0I-wq0HsRua2KP1wSSZnKyJys0Q-PzmuhGM5kZIke_ZFRpB3cjKgJKpHqp7399-_DrMNs9PT7KjvZ7h9_gIyfHozokWoXp8fDOfke3aazXqmXK4Nd7fxf_AWwZKp4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+biochar+alleviate+soil+compaction+stress+on+wheat+growth+and+mitigate+soil+N2O+emissions%3F&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Liu%2C+Qi&rft.au=Liu%2C+Benjuan&rft.au=Zhang%2C+Yanhui&rft.au=Lin%2C+Zhibin&rft.date=2017-01-01&rft.pub=Elsevier+Ltd&rft.issn=0038-0717&rft.eissn=1879-3428&rft.volume=104&rft.spage=8&rft.epage=17&rft_id=info:doi/10.1016%2Fj.soilbio.2016.10.006&rft.externalDocID=S0038071716303558 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |