Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection
Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called backgro...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 13; pp. 5887 - 5897 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate. |
---|---|
AbstractList | Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate. |
Author | Zhang, Xin Xie, Weiying Li, Yunsong Du, Qian Wang, Keyan |
Author_xml | – sequence: 1 givenname: Weiying orcidid: 0000-0001-8310-024X surname: Xie fullname: Xie, Weiying email: wyxie@xidian.edu.cn organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China – sequence: 2 givenname: Xin surname: Zhang fullname: Zhang, Xin email: xinzhang_xd@163.com organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China – sequence: 3 givenname: Yunsong orcidid: 0000-0002-0234-6270 surname: Li fullname: Li, Yunsong email: ysli@mail.xidian.edu.cn organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China – sequence: 4 givenname: Keyan orcidid: 0000-0002-9545-718X surname: Wang fullname: Wang, Keyan email: kywang@mail.xidian.edu.cn organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China – sequence: 5 givenname: Qian orcidid: 0000-0001-8354-7500 surname: Du fullname: Du, Qian email: du@ece.msstate.edu organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA |
BookMark | eNqFUctO4zAUtUaMNIWZL2ATiXWKn0m8hMLwUCUk2lmOrBv7pkopdrDTBX8_LmFYsGF1paPzuDrnmBz54JGQU0bnjFF9fr9aXzyu5pxyOheUS03FNzLjTLGSKaGOyIxpoUsmqfxBjlPaUlrxWosZ-XsJ9mkTw967YokQfe83xSUkdEXwxRriBsditR-GiCn1GVoEn8YIvR-LLsTi9nXAmAa0Gdv951_hmIHM_km-d7BL-Ov9npA_v6_Xi9ty-XBzt7hYllbSZixRyE62tEJtGa9BtRYboZxy2IpOKQccmK5bzbmoeIXSqQ4EtC3WsuOyrcQJuZt8XYCtGWL_DPHVBOjNGxDixkAce7tD0zaN66izkslGOuq0AFU7yTigVNkqe51NXkMML3tMo9mGffT5fcOl1FqxmuvMEhPLxpBSxO4jlVFz2MRMm5jDJuZ9k6zSn1S2H-HQ1KHS3Rfa00nbI-JHmuaU1nUl_gHVLp1z |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1109_JSTARS_2022_3209204 crossref_primary_10_1109_TGRS_2022_3225902 crossref_primary_10_1016_j_jag_2023_103405 crossref_primary_10_1109_JSTARS_2024_3387985 crossref_primary_10_1109_JSTARS_2024_3357732 crossref_primary_10_1109_TGRS_2025_3547019 crossref_primary_10_3390_rs16040718 crossref_primary_10_1109_TGRS_2024_3423781 crossref_primary_10_1016_j_jag_2025_104374 crossref_primary_10_1109_TGRS_2021_3103964 crossref_primary_10_1016_j_ijleo_2021_166267 crossref_primary_10_1109_TGRS_2024_3379380 crossref_primary_10_1109_TGRS_2023_3317033 crossref_primary_10_3390_rs15133223 crossref_primary_10_1016_j_ipm_2025_104106 crossref_primary_10_1109_TNNLS_2023_3236641 crossref_primary_10_1109_TGRS_2023_3270324 crossref_primary_10_3390_electronics12183937 crossref_primary_10_3390_rs16010153 crossref_primary_10_1016_j_infrared_2024_105623 crossref_primary_10_1109_JSTARS_2024_3447729 crossref_primary_10_3390_rs14174369 crossref_primary_10_1109_TGRS_2022_3199261 crossref_primary_10_1109_TGRS_2024_3393931 crossref_primary_10_1016_j_neucom_2021_08_130 crossref_primary_10_3390_rs14030481 crossref_primary_10_1109_TGRS_2024_3385448 crossref_primary_10_1109_TNNLS_2022_3152252 crossref_primary_10_3390_rs16193638 crossref_primary_10_1109_TGRS_2023_3261302 crossref_primary_10_1109_TGRS_2022_3163173 crossref_primary_10_1109_JSTARS_2023_3329771 crossref_primary_10_1080_01431161_2024_2370500 crossref_primary_10_1109_TGRS_2023_3302950 crossref_primary_10_1109_TGRS_2024_3381719 crossref_primary_10_1016_j_neunet_2025_107283 crossref_primary_10_1016_j_patcog_2022_109125 crossref_primary_10_1109_TGRS_2023_3339718 crossref_primary_10_1109_TGRS_2024_3390946 crossref_primary_10_1109_TGRS_2024_3392847 crossref_primary_10_1016_j_asr_2024_04_017 crossref_primary_10_1109_TGRS_2024_3507207 crossref_primary_10_1109_TGRS_2023_3346923 crossref_primary_10_1109_TGRS_2024_3436084 crossref_primary_10_1088_1742_6596_2679_1_012040 crossref_primary_10_1109_JSTARS_2022_3205211 crossref_primary_10_1109_JSTARS_2021_3080919 crossref_primary_10_1080_01431161_2022_2114110 crossref_primary_10_1051_jeos_2023045 crossref_primary_10_1109_TGRS_2023_3307071 crossref_primary_10_1109_TGRS_2022_3169171 crossref_primary_10_1109_TNNLS_2023_3298145 crossref_primary_10_3390_rs14051260 crossref_primary_10_1109_TGRS_2023_3336688 crossref_primary_10_1109_JSTARS_2021_3068727 crossref_primary_10_3390_rs14051265 crossref_primary_10_1109_TGRS_2022_3169970 |
Cites_doi | 10.1109/ACCESS.2019.2904788 10.3390/rs11192326 10.1016/S0034-4257(96)00080-6 10.1016/j.patcog.2015.05.024 10.3390/rs10010096 10.1111/pce.13544 10.1080/10408398.2016.1205548 10.1109/JSTARS.2013.2251863 10.1109/TGRS.2020.2965961 10.1109/JSTARS.2019.2902430 10.1109/BigComp.2018.00019 10.1109/TGRS.2015.2456957 10.1109/TGRS.2018.2815613 10.1007/s10916-019-1347-9 10.1016/j.neunet.2019.08.012 10.1080/02564602.2018.1503569 10.1109/LGRS.2019.2893395 10.1016/j.isprsjprs.2017.11.003 10.18653/v1/N19-1386 10.1109/78.301849 10.3390/f10050415 10.1109/TCSVT.2019.2920407 10.1109/TGRS.2020.2965995 10.1109/78.890324 10.1016/j.pdpdt.2018.11.017 10.1109/36.298007 10.1016/j.neucom.2019.08.044 10.1109/MSP.2013.2278992 10.3389/fpls.2019.00453 10.1016/j.patcog.2016.10.019 10.1109/CVPR.2018.00916 10.1109/7.135446 10.3390/rs11111310 10.1109/ICCV.2017.629 10.1038/s41467-019-12242-1 10.1109/LGRS.2019.2901019 10.1109/IJCNN.2017.7966273 10.1109/ACII.2017.8273626 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2020.3024903 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 5897 |
ExternalDocumentID | oai_doaj_org_article_b88df0dc41484d0d93a57d412ae45b63 10_1109_JSTARS_2020_3024903 9200776 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61801359; 61571345; 91538101; 61501346; 61502367; 61701360 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: JB180104 funderid: 10.13039/501100012226 – fundername: Natural Science Basic Research Plan in Shaanxi Province of China grantid: 2019JQ153; 2016JQ6023; 2016JQ6018 – fundername: China Postdoctoral Science Foundation grantid: 2019T120878 funderid: 10.13039/501100002858 – fundername: Aeronautical Science Foundation of China grantid: 6142504190206 – fundername: Higher Education Discipline Innovation Project; 111 Project grantid: B08038 funderid: 10.13039/501100013314 – fundername: China Postdoctoral Science Foundation grantid: 2017M620440 funderid: 10.13039/501100002858 – fundername: Yangtse Rive Scholar Bonus Schemes grantid: CJT160102 – fundername: University Association for Science and Technology in Shaanxi of China grantid: 20190103 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c408t-e34f4b06e9c127a5bce835d5deb3f55da2a197b9223626e4d5fa3abbe74f24b63 |
IEDL.DBID | DOA |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:30:17 EDT 2025 Fri Jul 25 10:40:49 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Tue Jul 01 03:16:15 EDT 2025 Wed Aug 27 02:50:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-e34f4b06e9c127a5bce835d5deb3f55da2a197b9223626e4d5fa3abbe74f24b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0234-6270 0000-0001-8310-024X 0000-0001-8354-7500 0000-0002-9545-718X |
OpenAccessLink | https://doaj.org/article/b88df0dc41484d0d93a57d412ae45b63 |
PQID | 2449951729 |
PQPubID | 75722 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2449951729 crossref_citationtrail_10_1109_JSTARS_2020_3024903 ieee_primary_9200776 doaj_primary_oai_doaj_org_article_b88df0dc41484d0d93a57d412ae45b63 crossref_primary_10_1109_JSTARS_2020_3024903 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref15 ref37 Ferri (ref44) 2011 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 ref18 Manolakis (ref22) 2003; 14 ref24 ref23 ref26 Makhzani (ref34) 2015 ref25 ref20 ref42 ref41 ref21 ref43 Goodfellow (ref29) 2014 ref28 ref27 ref8 ref7 Chalapathy (ref38) 2019 ref9 ref4 ref3 ref6 ref5 ref40 Donahue (ref33) 2016 |
References_xml | – ident: ref3 doi: 10.1109/ACCESS.2019.2904788 – ident: ref7 doi: 10.3390/rs11192326 – ident: ref14 doi: 10.1016/S0034-4257(96)00080-6 – ident: ref20 doi: 10.1016/j.patcog.2015.05.024 – ident: ref16 doi: 10.3390/rs10010096 – ident: ref4 doi: 10.1111/pce.13544 – ident: ref5 doi: 10.1080/10408398.2016.1205548 – ident: ref17 doi: 10.1109/JSTARS.2013.2251863 – start-page: 2672 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2014 ident: ref29 article-title: Generative adversarial nets – ident: ref40 doi: 10.1109/TGRS.2020.2965961 – ident: ref11 doi: 10.1109/JSTARS.2019.2902430 – ident: ref36 doi: 10.1109/BigComp.2018.00019 – year: 2015 ident: ref34 article-title: Adversarial autoencoders – ident: ref18 doi: 10.1109/TGRS.2015.2456957 – start-page: 657 volume-title: Proc. Int. Conf. Mach. Learn. year: 2011 ident: ref44 article-title: A coherent interpretation of AUC as a measure of aggregated classification performance – ident: ref26 doi: 10.1109/TGRS.2018.2815613 – ident: ref27 doi: 10.1007/s10916-019-1347-9 – ident: ref37 doi: 10.1016/j.neunet.2019.08.012 – ident: ref9 doi: 10.1080/02564602.2018.1503569 – ident: ref13 doi: 10.1109/LGRS.2019.2893395 – ident: ref28 doi: 10.1016/j.isprsjprs.2017.11.003 – volume-title: Proc. ICLR year: 2016 ident: ref33 article-title: Adversarial feature learning – ident: ref43 doi: 10.18653/v1/N19-1386 – ident: ref24 doi: 10.1109/78.301849 – ident: ref8 doi: 10.3390/f10050415 – ident: ref32 doi: 10.1109/TCSVT.2019.2920407 – ident: ref39 doi: 10.1109/TGRS.2020.2965995 – ident: ref21 doi: 10.1109/78.890324 – year: 2019 ident: ref38 article-title: Deep learning for anomaly detection: A survey – ident: ref2 doi: 10.1016/j.pdpdt.2018.11.017 – ident: ref19 doi: 10.1109/36.298007 – ident: ref35 doi: 10.1016/j.neucom.2019.08.044 – volume: 14 start-page: 79 issue: 1 year: 2003 ident: ref22 article-title: Hyperspectral image processing for automatic target detection applications publication-title: Lincoln Lab. J. – ident: ref12 doi: 10.1109/MSP.2013.2278992 – ident: ref6 doi: 10.3389/fpls.2019.00453 – ident: ref25 doi: 10.1016/j.patcog.2016.10.019 – ident: ref31 doi: 10.1109/CVPR.2018.00916 – ident: ref23 doi: 10.1109/7.135446 – ident: ref15 doi: 10.3390/rs11111310 – ident: ref30 doi: 10.1109/ICCV.2017.629 – ident: ref1 doi: 10.1038/s41467-019-12242-1 – ident: ref10 doi: 10.1109/LGRS.2019.2901019 – ident: ref41 doi: 10.1109/IJCNN.2017.7966273 – ident: ref42 doi: 10.1109/ACII.2017.8273626 |
SSID | ssj0062793 |
Score | 2.4929776 |
Snippet | Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5887 |
SubjectTerms | Background learning Detection False alarms Feature extraction Gallium nitride Generative adversarial networks hyperspectral image (HSI) Hyperspectral imaging Image reconstruction Learning Military applications Object detection Target detection Target recognition target suppression constraint Training Vectors |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZC4UEpBLLSVDxybbeJHEh-70HaF1B5KK_WCLD8mHIqyqGQP5dczdpw9AEI9JYrsZKxvbM84M98AfFDSoeUYCqtqX8iuUUUrlS2EcpoH2rB9qjx3eVUvb-XnO3W3BcebXBhETMFnOI-36V9-WPl1PCo70Tyxz2zDNjluY67WtOrWvEkEu2SP6CJSxmSGoarUJ6Tip9dfyBfk5KJGirypQlbehRJZf66u8teSnPaZ8124nCQcw0vu5-vBzf2vP8gbnzqEl_AiG5zsdNSQPdjC_hU8u0gFfR_34evC-vuY2tEHlrlWv7EFbW2BrXp2k-LEWSz9OcbL9ixW-Ex1JQZG9i5bkh87pms-0Fdy-084pAiv_jXcnp_dfFwWueRC4WXZDgUK2UlX1qh9xRurnEcy0YIK5HN3SgXLbaUbgpFHGhuUQXVWWOewkR2XrhZvYKdf9fgWWOT28k6Irm2cFHVnpUCyh-hayVBZPwM-QWB85iOP4n83yS8ptRlxMxE3k3GbwfGm04-RjuP_zRcR203TyKWdHhAmJk9N49o2dGXwJFcrQxm0sKoJsuIWpaIhzWA_4rh5SYZwBgeTppg8738aMpY02azksbz7d6_38DwKOB7iHMDO8LDGQzJrBneU9Pk3tsXzhw priority: 102 providerName: IEEE |
Title | Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection |
URI | https://ieeexplore.ieee.org/document/9200776 https://www.proquest.com/docview/2449951729 https://doaj.org/article/b88df0dc41484d0d93a57d412ae45b63 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF5EXcX6IgePFtt00sdx19ci6EF3wYuEvOpBqaL14L938ugiCHrxVChpk06mmW_C5PsIOeKgrGTWpJKXOoW24mkNXKYFVw0zGLC1V567vimnc7i65_ffpL5cTVigBw6GO1F1bdrMaEDcDiYzTSF5ZSBn0gJXpef5xJg3JFNhDS4Zul3kGMqz5gSdfHx7h9kgwyTVkeQNGlkxDnm6_qiv8mNR9pHmYp2sRYhIx2FoG2TJdptk5dJL8H6OyMNE6id3GKMzNLKjPtIJBiNDXzo685Xd1Il1hgrXjjpNTq8E0VNEqHSKmWc4YPmGvcT2Z7b3NVndFplfnM9Op2kUSUg1ZHWf2gJaUFlpG52zSnKlLYIqww1myS3nRjKZNxUanjniGQuGt7KQStkKWgZowG2y3L10dodQx8alVVG0daWgKFsJhUUEg9ccTC51QthgMqEjg7gb_rPwmUTWiGBn4ewsop0Tcrx46DUQaPzefOLmYtHUsV_7G-gTIvqE-MsnEjJyM7l4ScM8a1FC9oeZFfFPfRcIbxpEmZhj7P5H13tk1X1O2KTZJ8v924c9QNjSq0PvoYf-hOEXaZLpQQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RUFUulJYilkfrQ49kSfxI4iPblm5blkO7SFwqy6_0QJVFkD3Ar2fsOHtoq4pToshOxvpsz4wz8w3Ae8GN19S7TIvSZrypRFZzoTMmjKQOFbaNledmF-X0kn-9EldrcLzKhfHex-AzPw638V--W9hlOCo7kTSyzzyDDdT7ouiztYZ9t6RVpNhFi0RmgTQmcQwVuTzBSX76_Qd6gxSd1ECSN9TISnoo0vWn-ip_bcpR05y9hNkgYx9gcj1edmZsH_6gb3zqILZhK5mc5LSfI69gzbev4fnnWNL3fgd-TrS9DskdrSOJbfUXmaByc2TRknmMFCeh-GcfMduSUOMzVpboCFq8ZIqebJ-weYtfSe0_-i7GeLVv4PLs0_zDNEtFFzLL87rLPOMNN3nppS1opYWxHo00Jxx63Y0QTlNdyAqBpIHIxnMnGs20Mb7iDeWmZLuw3i5avwcksHtZw1hTV4azstGcebSI8FpwV2g7AjpAoGxiJA_i_1bRM8ml6nFTATeVcBvB8arTTU_I8f_mk4Dtqmlg044PEBOVFqcyde2a3FmUq-Yud5JpUTleUO25wCGNYCfguHpJgnAEh8NMUWnl3yk0lyRareiz7P-71zt4MZ3PztX5l4tvB7AZhO2PdA5hvbtd-iM0cjrzNs7tR47I9tA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Background+Learning+Based+on+Target+Suppression+Constraint+for+Hyperspectral+Target+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Xie%2C+Weiying&rft.au=Zhang%2C+Xin&rft.au=Li%2C+Yunsong&rft.au=Wang%2C+Keyan&rft.date=2020&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=13&rft.spage=5887&rft.epage=5897&rft_id=info:doi/10.1109%2FJSTARS.2020.3024903&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2020_3024903 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |