Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection

Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called backgro...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 13; pp. 5887 - 5897
Main Authors Xie, Weiying, Zhang, Xin, Li, Yunsong, Wang, Keyan, Du, Qian
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate.
AbstractList Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate.
Author Zhang, Xin
Xie, Weiying
Li, Yunsong
Du, Qian
Wang, Keyan
Author_xml – sequence: 1
  givenname: Weiying
  orcidid: 0000-0001-8310-024X
  surname: Xie
  fullname: Xie, Weiying
  email: wyxie@xidian.edu.cn
  organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China
– sequence: 2
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  email: xinzhang_xd@163.com
  organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China
– sequence: 3
  givenname: Yunsong
  orcidid: 0000-0002-0234-6270
  surname: Li
  fullname: Li, Yunsong
  email: ysli@mail.xidian.edu.cn
  organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China
– sequence: 4
  givenname: Keyan
  orcidid: 0000-0002-9545-718X
  surname: Wang
  fullname: Wang, Keyan
  email: kywang@mail.xidian.edu.cn
  organization: State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China
– sequence: 5
  givenname: Qian
  orcidid: 0000-0001-8354-7500
  surname: Du
  fullname: Du, Qian
  email: du@ece.msstate.edu
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA
BookMark eNqFUctO4zAUtUaMNIWZL2ATiXWKn0m8hMLwUCUk2lmOrBv7pkopdrDTBX8_LmFYsGF1paPzuDrnmBz54JGQU0bnjFF9fr9aXzyu5pxyOheUS03FNzLjTLGSKaGOyIxpoUsmqfxBjlPaUlrxWosZ-XsJ9mkTw967YokQfe83xSUkdEXwxRriBsditR-GiCn1GVoEn8YIvR-LLsTi9nXAmAa0Gdv951_hmIHM_km-d7BL-Ov9npA_v6_Xi9ty-XBzt7hYllbSZixRyE62tEJtGa9BtRYboZxy2IpOKQccmK5bzbmoeIXSqQ4EtC3WsuOyrcQJuZt8XYCtGWL_DPHVBOjNGxDixkAce7tD0zaN66izkslGOuq0AFU7yTigVNkqe51NXkMML3tMo9mGffT5fcOl1FqxmuvMEhPLxpBSxO4jlVFz2MRMm5jDJuZ9k6zSn1S2H-HQ1KHS3Rfa00nbI-JHmuaU1nUl_gHVLp1z
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_JSTARS_2022_3209204
crossref_primary_10_1109_TGRS_2022_3225902
crossref_primary_10_1016_j_jag_2023_103405
crossref_primary_10_1109_JSTARS_2024_3387985
crossref_primary_10_1109_JSTARS_2024_3357732
crossref_primary_10_1109_TGRS_2025_3547019
crossref_primary_10_3390_rs16040718
crossref_primary_10_1109_TGRS_2024_3423781
crossref_primary_10_1016_j_jag_2025_104374
crossref_primary_10_1109_TGRS_2021_3103964
crossref_primary_10_1016_j_ijleo_2021_166267
crossref_primary_10_1109_TGRS_2024_3379380
crossref_primary_10_1109_TGRS_2023_3317033
crossref_primary_10_3390_rs15133223
crossref_primary_10_1016_j_ipm_2025_104106
crossref_primary_10_1109_TNNLS_2023_3236641
crossref_primary_10_1109_TGRS_2023_3270324
crossref_primary_10_3390_electronics12183937
crossref_primary_10_3390_rs16010153
crossref_primary_10_1016_j_infrared_2024_105623
crossref_primary_10_1109_JSTARS_2024_3447729
crossref_primary_10_3390_rs14174369
crossref_primary_10_1109_TGRS_2022_3199261
crossref_primary_10_1109_TGRS_2024_3393931
crossref_primary_10_1016_j_neucom_2021_08_130
crossref_primary_10_3390_rs14030481
crossref_primary_10_1109_TGRS_2024_3385448
crossref_primary_10_1109_TNNLS_2022_3152252
crossref_primary_10_3390_rs16193638
crossref_primary_10_1109_TGRS_2023_3261302
crossref_primary_10_1109_TGRS_2022_3163173
crossref_primary_10_1109_JSTARS_2023_3329771
crossref_primary_10_1080_01431161_2024_2370500
crossref_primary_10_1109_TGRS_2023_3302950
crossref_primary_10_1109_TGRS_2024_3381719
crossref_primary_10_1016_j_neunet_2025_107283
crossref_primary_10_1016_j_patcog_2022_109125
crossref_primary_10_1109_TGRS_2023_3339718
crossref_primary_10_1109_TGRS_2024_3390946
crossref_primary_10_1109_TGRS_2024_3392847
crossref_primary_10_1016_j_asr_2024_04_017
crossref_primary_10_1109_TGRS_2024_3507207
crossref_primary_10_1109_TGRS_2023_3346923
crossref_primary_10_1109_TGRS_2024_3436084
crossref_primary_10_1088_1742_6596_2679_1_012040
crossref_primary_10_1109_JSTARS_2022_3205211
crossref_primary_10_1109_JSTARS_2021_3080919
crossref_primary_10_1080_01431161_2022_2114110
crossref_primary_10_1051_jeos_2023045
crossref_primary_10_1109_TGRS_2023_3307071
crossref_primary_10_1109_TGRS_2022_3169171
crossref_primary_10_1109_TNNLS_2023_3298145
crossref_primary_10_3390_rs14051260
crossref_primary_10_1109_TGRS_2023_3336688
crossref_primary_10_1109_JSTARS_2021_3068727
crossref_primary_10_3390_rs14051265
crossref_primary_10_1109_TGRS_2022_3169970
Cites_doi 10.1109/ACCESS.2019.2904788
10.3390/rs11192326
10.1016/S0034-4257(96)00080-6
10.1016/j.patcog.2015.05.024
10.3390/rs10010096
10.1111/pce.13544
10.1080/10408398.2016.1205548
10.1109/JSTARS.2013.2251863
10.1109/TGRS.2020.2965961
10.1109/JSTARS.2019.2902430
10.1109/BigComp.2018.00019
10.1109/TGRS.2015.2456957
10.1109/TGRS.2018.2815613
10.1007/s10916-019-1347-9
10.1016/j.neunet.2019.08.012
10.1080/02564602.2018.1503569
10.1109/LGRS.2019.2893395
10.1016/j.isprsjprs.2017.11.003
10.18653/v1/N19-1386
10.1109/78.301849
10.3390/f10050415
10.1109/TCSVT.2019.2920407
10.1109/TGRS.2020.2965995
10.1109/78.890324
10.1016/j.pdpdt.2018.11.017
10.1109/36.298007
10.1016/j.neucom.2019.08.044
10.1109/MSP.2013.2278992
10.3389/fpls.2019.00453
10.1016/j.patcog.2016.10.019
10.1109/CVPR.2018.00916
10.1109/7.135446
10.3390/rs11111310
10.1109/ICCV.2017.629
10.1038/s41467-019-12242-1
10.1109/LGRS.2019.2901019
10.1109/IJCNN.2017.7966273
10.1109/ACII.2017.8273626
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2020.3024903
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 5897
ExternalDocumentID oai_doaj_org_article_b88df0dc41484d0d93a57d412ae45b63
10_1109_JSTARS_2020_3024903
9200776
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61801359; 61571345; 91538101; 61501346; 61502367; 61701360
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: JB180104
  funderid: 10.13039/501100012226
– fundername: Natural Science Basic Research Plan in Shaanxi Province of China
  grantid: 2019JQ153; 2016JQ6023; 2016JQ6018
– fundername: China Postdoctoral Science Foundation
  grantid: 2019T120878
  funderid: 10.13039/501100002858
– fundername: Aeronautical Science Foundation of China
  grantid: 6142504190206
– fundername: Higher Education Discipline Innovation Project; 111 Project
  grantid: B08038
  funderid: 10.13039/501100013314
– fundername: China Postdoctoral Science Foundation
  grantid: 2017M620440
  funderid: 10.13039/501100002858
– fundername: Yangtse Rive Scholar Bonus Schemes
  grantid: CJT160102
– fundername: University Association for Science and Technology in Shaanxi of China
  grantid: 20190103
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-e34f4b06e9c127a5bce835d5deb3f55da2a197b9223626e4d5fa3abbe74f24b63
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Wed Aug 27 01:30:17 EDT 2025
Fri Jul 25 10:40:49 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Tue Jul 01 03:16:15 EDT 2025
Wed Aug 27 02:50:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e34f4b06e9c127a5bce835d5deb3f55da2a197b9223626e4d5fa3abbe74f24b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0234-6270
0000-0001-8310-024X
0000-0001-8354-7500
0000-0002-9545-718X
OpenAccessLink https://doaj.org/article/b88df0dc41484d0d93a57d412ae45b63
PQID 2449951729
PQPubID 75722
PageCount 11
ParticipantIDs proquest_journals_2449951729
crossref_citationtrail_10_1109_JSTARS_2020_3024903
ieee_primary_9200776
doaj_primary_oai_doaj_org_article_b88df0dc41484d0d93a57d412ae45b63
crossref_primary_10_1109_JSTARS_2020_3024903
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
Ferri (ref44) 2011
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
ref18
Manolakis (ref22) 2003; 14
ref24
ref23
ref26
Makhzani (ref34) 2015
ref25
ref20
ref42
ref41
ref21
ref43
Goodfellow (ref29) 2014
ref28
ref27
ref8
ref7
Chalapathy (ref38) 2019
ref9
ref4
ref3
ref6
ref5
ref40
Donahue (ref33) 2016
References_xml – ident: ref3
  doi: 10.1109/ACCESS.2019.2904788
– ident: ref7
  doi: 10.3390/rs11192326
– ident: ref14
  doi: 10.1016/S0034-4257(96)00080-6
– ident: ref20
  doi: 10.1016/j.patcog.2015.05.024
– ident: ref16
  doi: 10.3390/rs10010096
– ident: ref4
  doi: 10.1111/pce.13544
– ident: ref5
  doi: 10.1080/10408398.2016.1205548
– ident: ref17
  doi: 10.1109/JSTARS.2013.2251863
– start-page: 2672
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2014
  ident: ref29
  article-title: Generative adversarial nets
– ident: ref40
  doi: 10.1109/TGRS.2020.2965961
– ident: ref11
  doi: 10.1109/JSTARS.2019.2902430
– ident: ref36
  doi: 10.1109/BigComp.2018.00019
– year: 2015
  ident: ref34
  article-title: Adversarial autoencoders
– ident: ref18
  doi: 10.1109/TGRS.2015.2456957
– start-page: 657
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2011
  ident: ref44
  article-title: A coherent interpretation of AUC as a measure of aggregated classification performance
– ident: ref26
  doi: 10.1109/TGRS.2018.2815613
– ident: ref27
  doi: 10.1007/s10916-019-1347-9
– ident: ref37
  doi: 10.1016/j.neunet.2019.08.012
– ident: ref9
  doi: 10.1080/02564602.2018.1503569
– ident: ref13
  doi: 10.1109/LGRS.2019.2893395
– ident: ref28
  doi: 10.1016/j.isprsjprs.2017.11.003
– volume-title: Proc. ICLR
  year: 2016
  ident: ref33
  article-title: Adversarial feature learning
– ident: ref43
  doi: 10.18653/v1/N19-1386
– ident: ref24
  doi: 10.1109/78.301849
– ident: ref8
  doi: 10.3390/f10050415
– ident: ref32
  doi: 10.1109/TCSVT.2019.2920407
– ident: ref39
  doi: 10.1109/TGRS.2020.2965995
– ident: ref21
  doi: 10.1109/78.890324
– year: 2019
  ident: ref38
  article-title: Deep learning for anomaly detection: A survey
– ident: ref2
  doi: 10.1016/j.pdpdt.2018.11.017
– ident: ref19
  doi: 10.1109/36.298007
– ident: ref35
  doi: 10.1016/j.neucom.2019.08.044
– volume: 14
  start-page: 79
  issue: 1
  year: 2003
  ident: ref22
  article-title: Hyperspectral image processing for automatic target detection applications
  publication-title: Lincoln Lab. J.
– ident: ref12
  doi: 10.1109/MSP.2013.2278992
– ident: ref6
  doi: 10.3389/fpls.2019.00453
– ident: ref25
  doi: 10.1016/j.patcog.2016.10.019
– ident: ref31
  doi: 10.1109/CVPR.2018.00916
– ident: ref23
  doi: 10.1109/7.135446
– ident: ref15
  doi: 10.3390/rs11111310
– ident: ref30
  doi: 10.1109/ICCV.2017.629
– ident: ref1
  doi: 10.1038/s41467-019-12242-1
– ident: ref10
  doi: 10.1109/LGRS.2019.2901019
– ident: ref41
  doi: 10.1109/IJCNN.2017.7966273
– ident: ref42
  doi: 10.1109/ACII.2017.8273626
SSID ssj0062793
Score 2.4929776
Snippet Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5887
SubjectTerms Background learning
Detection
False alarms
Feature extraction
Gallium nitride
Generative adversarial networks
hyperspectral image (HSI)
Hyperspectral imaging
Image reconstruction
Learning
Military applications
Object detection
Target detection
Target recognition
target suppression constraint
Training
Vectors
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZC4UEpBLLSVDxybbeJHEh-70HaF1B5KK_WCLD8mHIqyqGQP5dczdpw9AEI9JYrsZKxvbM84M98AfFDSoeUYCqtqX8iuUUUrlS2EcpoH2rB9qjx3eVUvb-XnO3W3BcebXBhETMFnOI-36V9-WPl1PCo70Tyxz2zDNjluY67WtOrWvEkEu2SP6CJSxmSGoarUJ6Tip9dfyBfk5KJGirypQlbehRJZf66u8teSnPaZ8124nCQcw0vu5-vBzf2vP8gbnzqEl_AiG5zsdNSQPdjC_hU8u0gFfR_34evC-vuY2tEHlrlWv7EFbW2BrXp2k-LEWSz9OcbL9ixW-Ex1JQZG9i5bkh87pms-0Fdy-084pAiv_jXcnp_dfFwWueRC4WXZDgUK2UlX1qh9xRurnEcy0YIK5HN3SgXLbaUbgpFHGhuUQXVWWOewkR2XrhZvYKdf9fgWWOT28k6Irm2cFHVnpUCyh-hayVBZPwM-QWB85iOP4n83yS8ptRlxMxE3k3GbwfGm04-RjuP_zRcR203TyKWdHhAmJk9N49o2dGXwJFcrQxm0sKoJsuIWpaIhzWA_4rh5SYZwBgeTppg8738aMpY02azksbz7d6_38DwKOB7iHMDO8LDGQzJrBneU9Pk3tsXzhw
  priority: 102
  providerName: IEEE
Title Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection
URI https://ieeexplore.ieee.org/document/9200776
https://www.proquest.com/docview/2449951729
https://doaj.org/article/b88df0dc41484d0d93a57d412ae45b63
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF5EXcX6IgePFtt00sdx19ci6EF3wYuEvOpBqaL14L938ugiCHrxVChpk06mmW_C5PsIOeKgrGTWpJKXOoW24mkNXKYFVw0zGLC1V567vimnc7i65_ffpL5cTVigBw6GO1F1bdrMaEDcDiYzTSF5ZSBn0gJXpef5xJg3JFNhDS4Zul3kGMqz5gSdfHx7h9kgwyTVkeQNGlkxDnm6_qiv8mNR9pHmYp2sRYhIx2FoG2TJdptk5dJL8H6OyMNE6id3GKMzNLKjPtIJBiNDXzo685Xd1Il1hgrXjjpNTq8E0VNEqHSKmWc4YPmGvcT2Z7b3NVndFplfnM9Op2kUSUg1ZHWf2gJaUFlpG52zSnKlLYIqww1myS3nRjKZNxUanjniGQuGt7KQStkKWgZowG2y3L10dodQx8alVVG0daWgKFsJhUUEg9ccTC51QthgMqEjg7gb_rPwmUTWiGBn4ewsop0Tcrx46DUQaPzefOLmYtHUsV_7G-gTIvqE-MsnEjJyM7l4ScM8a1FC9oeZFfFPfRcIbxpEmZhj7P5H13tk1X1O2KTZJ8v924c9QNjSq0PvoYf-hOEXaZLpQQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RUFUulJYilkfrQ49kSfxI4iPblm5blkO7SFwqy6_0QJVFkD3Ar2fsOHtoq4pToshOxvpsz4wz8w3Ae8GN19S7TIvSZrypRFZzoTMmjKQOFbaNledmF-X0kn-9EldrcLzKhfHex-AzPw638V--W9hlOCo7kTSyzzyDDdT7ouiztYZ9t6RVpNhFi0RmgTQmcQwVuTzBSX76_Qd6gxSd1ECSN9TISnoo0vWn-ip_bcpR05y9hNkgYx9gcj1edmZsH_6gb3zqILZhK5mc5LSfI69gzbev4fnnWNL3fgd-TrS9DskdrSOJbfUXmaByc2TRknmMFCeh-GcfMduSUOMzVpboCFq8ZIqebJ-weYtfSe0_-i7GeLVv4PLs0_zDNEtFFzLL87rLPOMNN3nppS1opYWxHo00Jxx63Y0QTlNdyAqBpIHIxnMnGs20Mb7iDeWmZLuw3i5avwcksHtZw1hTV4azstGcebSI8FpwV2g7AjpAoGxiJA_i_1bRM8ml6nFTATeVcBvB8arTTU_I8f_mk4Dtqmlg044PEBOVFqcyde2a3FmUq-Yud5JpUTleUO25wCGNYCfguHpJgnAEh8NMUWnl3yk0lyRareiz7P-71zt4MZ3PztX5l4tvB7AZhO2PdA5hvbtd-iM0cjrzNs7tR47I9tA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Background+Learning+Based+on+Target+Suppression+Constraint+for+Hyperspectral+Target+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Xie%2C+Weiying&rft.au=Zhang%2C+Xin&rft.au=Li%2C+Yunsong&rft.au=Wang%2C+Keyan&rft.date=2020&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=13&rft.spage=5887&rft.epage=5897&rft_id=info:doi/10.1109%2FJSTARS.2020.3024903&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2020_3024903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon