Modeling the Local and Global Evolution Pattern of Community Structures for Dynamic Networks Analysis
Exploring and understanding the temporal structure of dynamic networks attract extensive attention over the past few years. Most of these current research focuses on temporal community detection, evolution analysis or link prediction from a mission-oriented perspective. In fact, these three tasks sh...
Saved in:
Published in | IEEE access Vol. 7; pp. 71350 - 71360 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exploring and understanding the temporal structure of dynamic networks attract extensive attention over the past few years. Most of these current research focuses on temporal community detection, evolution analysis or link prediction from a mission-oriented perspective. In fact, these three tasks should be not isolated but mutually reinforcing. Transforming these three tasks into a unified framework, it is crucial to extract the evolution pattern, which helps to understand the time-varying characteristics of temporal structure in essence. In addition, to the best of our knowledge, there is no work focusing on modeling and uncovering the local and global evolution pattern hidden in temporal community structure, simultaneously. In this paper, we propose a novel framework based on Orthogonal Nonnegative Matrix Factorization to Explore the Evolution Pattern (ONMF-EEP) for analyzing and predicting the time-varying structures in dynamic networks from local and global perspectives. The nature of this framework assumes that community structures are subject to a local evolution pattern (LEP) at each snapshot, and these LEPs are from a common global evolution pattern (GEP). The framework can synchronously detect temporal community structure, extract evolution pattern, and predict structure including communities and future snapshot links. The extensive experiments on real-world networks and artificial networks demonstrate that our proposed framework is highly effective on the tasks of dynamic network analysis. |
---|---|
AbstractList | Exploring and understanding the temporal structure of dynamic networks attract extensive attention over the past few years. Most of these current research focuses on temporal community detection, evolution analysis or link prediction from a mission-oriented perspective. In fact, these three tasks should be not isolated but mutually reinforcing. Transforming these three tasks into a unified framework, it is crucial to extract the evolution pattern, which helps to understand the time-varying characteristics of temporal structure in essence. In addition, to the best of our knowledge, there is no work focusing on modeling and uncovering the local and global evolution pattern hidden in temporal community structure, simultaneously. In this paper, we propose a novel framework based on Orthogonal Nonnegative Matrix Factorization to Explore the Evolution Pattern (ONMF-EEP) for analyzing and predicting the time-varying structures in dynamic networks from local and global perspectives. The nature of this framework assumes that community structures are subject to a local evolution pattern (LEP) at each snapshot, and these LEPs are from a common global evolution pattern (GEP). The framework can synchronously detect temporal community structure, extract evolution pattern, and predict structure including communities and future snapshot links. The extensive experiments on real-world networks and artificial networks demonstrate that our proposed framework is highly effective on the tasks of dynamic network analysis. |
Author | Sun, Yueheng Tang, Minghu Wang, Wenjun Jiao, Pengfei Wu, Huaming Yu, Wei |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0003-3459-3695 surname: Yu fullname: Yu, Wei organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 2 givenname: Wenjun surname: Wang fullname: Wang, Wenjun organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 3 givenname: Pengfei orcidid: 0000-0003-1049-1002 surname: Jiao fullname: Jiao, Pengfei organization: Center of Biosafety Research and Strategy, Tianjin University, Tianjin, China – sequence: 4 givenname: Huaming orcidid: 0000-0002-4761-9973 surname: Wu fullname: Wu, Huaming organization: Center for Applied Mathematics, Tianjin University, Tianjin, China – sequence: 5 givenname: Yueheng surname: Sun fullname: Sun, Yueheng email: yhs@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 6 givenname: Minghu surname: Tang fullname: Tang, Minghu organization: School of Computer Science and Technology, Qinghai Nationalities University, Qinghai, China |
BookMark | eNp9kU1vEzEQhi1UJErpL-jFEucEf67Xx2gJpVL4kAJny-sdF4eNXWwvKP-eDVsQ4sBcZjSa59XMvM_RRUwRELqhZE0p0a82Xbfd79eMUL1mmhHG1RN0yWijV1zy5uKv-hm6LuVA5mjnllSXCN6lAcYQ73H9AniXnB2xjQO-HVM_l9vvaZxqSBF_tLVCjjh53KXjcYqhnvC-5snVKUPBPmX8-hTtMTj8HuqPlL8WvIl2PJVQXqCn3o4Frh_zFfr8Zvupe7vafbi96za7lROkrStg4BntheuBcAFCyZ5qzaD3UjFF1SBUI7mTPVMatBVEC86GhnvRKC0Z8Ct0t-gOyR7MQw5Hm08m2WB-NVK-NzbX4EYwlknvnVBeEia8FZaTtpWWDn7o21YNs9bLReshp28TlGoOacrzQcUwIWUjqOBqntLLlMuplAzeuFDt-WM12zAaSszZJLOYZM4mmUeTZpb_w_7e-P_UzUIFAPhDtPODhOT8JxACn24 |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_TCSS_2021_3114419 crossref_primary_10_1186_s13677_020_00181_y crossref_primary_10_1177_08944393211055813 crossref_primary_10_3233_IDA_216485 crossref_primary_10_1109_ACCESS_2020_2978522 |
Cites_doi | 10.1007/978-3-319-49487-6_9 10.24963/ijcai.2017/467 10.1155/2015/109671 10.1103/PhysRevE.92.012805 10.1016/j.physrep.2016.09.002 10.1109/TEVC.2017.2737600 10.1109/TNSE.2018.2815686 10.1145/3018661.3018669 10.1109/ICDM.2008.125 10.1126/science.1184819 10.1145/1367497.1367590 10.1016/j.patcog.2017.06.025 10.1145/2601412 10.1016/j.engappai.2016.06.003 10.1198/016214501753208735 10.1109/ASONAM.2012.183 10.1109/ACCESS.2018.2838568 10.1016/j.jocs.2014.01.003 10.1145/1631162.1631164 10.1109/TASL.2009.2036813 10.1109/TPAMI.2018.2821146 10.1145/1150402.1150467 10.1016/j.neucom.2017.09.013 10.1109/ICDE.2014.6816635 10.1016/j.neucom.2018.03.065 10.1109/TKDE.2013.131 10.2172/1160097 10.1109/TKDE.2018.2851586 10.1016/j.ipm.2018.03.005 10.1142/S0217979217501028 10.1038/nature05670 10.1145/3172867 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2920237 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 71360 |
ExternalDocumentID | oai_doaj_org_article_a25ffc47f5024fa4a30885a1dfdb887d 10_1109_ACCESS_2019_2920237 8727453 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key R & D Program of China grantid: 2018YFC0809800 – fundername: Project of National Social Science Fund grantid: 15BTQ056 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-e2ef21b4cbe034e475b1992ebf572717d47653c5b279e9a409432d63f467952e3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:23:39 EDT 2025 Mon Jun 30 03:49:28 EDT 2025 Tue Jul 01 02:41:34 EDT 2025 Thu Apr 24 23:05:48 EDT 2025 Wed Aug 27 05:56:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-e2ef21b4cbe034e475b1992ebf572717d47653c5b279e9a409432d63f467952e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1049-1002 0000-0002-4761-9973 0000-0003-3459-3695 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8727453 |
PQID | 2455641437 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a25ffc47f5024fa4a30885a1dfdb887d crossref_citationtrail_10_1109_ACCESS_2019_2920237 ieee_primary_8727453 proquest_journals_2455641437 crossref_primary_10_1109_ACCESS_2019_2920237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ranshous (ref21) 2015; 7 ref19 ref18 ref24 ref23 liu (ref25) 2018 ref26 ref20 ref22 (ref35) 2011 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref17 doi: 10.1007/978-3-319-49487-6_9 – ident: ref14 doi: 10.24963/ijcai.2017/467 – ident: ref4 doi: 10.1155/2015/109671 – ident: ref33 doi: 10.1103/PhysRevE.92.012805 – ident: ref3 doi: 10.1016/j.physrep.2016.09.002 – ident: ref18 doi: 10.1109/TEVC.2017.2737600 – ident: ref15 doi: 10.1109/TNSE.2018.2815686 – ident: ref10 doi: 10.1145/3018661.3018669 – ident: ref11 doi: 10.1109/ICDM.2008.125 – volume: 7 start-page: 223 year: 2015 ident: ref21 article-title: Anomaly detection in dynamic networks: A survey publication-title: Statistics and Computing – ident: ref26 doi: 10.1126/science.1184819 – ident: ref31 doi: 10.1145/1367497.1367590 – ident: ref13 doi: 10.1016/j.patcog.2017.06.025 – ident: ref1 doi: 10.1145/2601412 – ident: ref24 doi: 10.1016/j.engappai.2016.06.003 – ident: ref34 doi: 10.1198/016214501753208735 – ident: ref9 doi: 10.1109/ASONAM.2012.183 – ident: ref5 doi: 10.1109/ACCESS.2018.2838568 – ident: ref12 doi: 10.1016/j.jocs.2014.01.003 – ident: ref23 doi: 10.1145/1631162.1631164 – ident: ref28 doi: 10.1109/TASL.2009.2036813 – ident: ref16 doi: 10.1109/TPAMI.2018.2821146 – ident: ref7 doi: 10.1145/1150402.1150467 – year: 2011 ident: ref35 publication-title: Karlsruhe Institue of Technology Dynamic Network of Email Communication at Department of Informatics at Karlsruhe Institue of Technology (kit) – ident: ref30 doi: 10.1016/j.neucom.2017.09.013 – ident: ref6 doi: 10.1109/ICDE.2014.6816635 – year: 2018 ident: ref25 article-title: Using machine learning to predict the evolution of physics research publication-title: arXiv 1810 12116 – ident: ref29 doi: 10.1016/j.neucom.2018.03.065 – ident: ref32 doi: 10.1109/TKDE.2013.131 – ident: ref20 doi: 10.2172/1160097 – ident: ref27 doi: 10.1109/TKDE.2018.2851586 – ident: ref19 doi: 10.1016/j.ipm.2018.03.005 – ident: ref8 doi: 10.1142/S0217979217501028 – ident: ref22 doi: 10.1038/nature05670 – ident: ref2 doi: 10.1145/3172867 |
SSID | ssj0000816957 |
Score | 2.1729546 |
Snippet | Exploring and understanding the temporal structure of dynamic networks attract extensive attention over the past few years. Most of these current research... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 71350 |
SubjectTerms | Analytical models Complex systems Evolution Evolution (biology) evolutionary pattern extraction Feature extraction Heuristic algorithms Modelling Network analysis Orthogonal non-negative matrix factorization (ONMF) Pattern analysis Predictive models structure prediction Task analysis temporal community detection |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA7iSQ_iinUjB4_WabM07VHHGURUBBXmFpI0OUkVHAX_ve81maEg6MVrSbe3v_bl-wg5NY2BtCBsXjvuc1GbCl1K5q6xItTWMW9wo_DdfXX9LG5mcjag-sKZsAgPHAU3MkyG4IQKErJJMMJw8Atpyja0FhykxegLOW_QTPUxuC6rRqoEM1QWzehiPIY3wlmu5hwZmhgynw9SUY_YnyhWfsTlPtlMN8lGqhLpRXy6LbLiu22yPsAO3CEeWcxwLzmFEo7eYkqipmtpBPGnk89kU_ShR9Ds6GugaTfI_Is-9rCxH9BrU6ha6VXkpaf3cSj8nS6wSnbJ83TyNL7OE2dC7kRRz3PPfGClFc76ggsvlLQ4YOptkFCplKoVqpLcSctU40FPOFjI2ooHCJiNZJ7vkdXutfP7hBrnuDFKQO-Nf9dKq0CTsrQhSO95qzLCFuLTLgGKI6_Fi-4bi6LRUeYaZa6TzDNytjzpLeJp_L78EvWyXIpg2P0BMBGdTET_ZSIZ2UGtLi9SgySE5Bk5WmhZJ8d910xIWQkoItXBf9z6kKzh68RvNkdkFZTrj6GKmduT3mC_AdY17ZM priority: 102 providerName: Directory of Open Access Journals |
Title | Modeling the Local and Global Evolution Pattern of Community Structures for Dynamic Networks Analysis |
URI | https://ieeexplore.ieee.org/document/8727453 https://www.proquest.com/docview/2455641437 https://doaj.org/article/a25ffc47f5024fa4a30885a1dfdb887d |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcGBr4LYUiofODbbjT_i5FiWVhWiFRJU6i2ynfEFlK3UXST665mxvVEFCHGLojiy9caesT3zHsA71zlyC9pXbVBY6dY1PKVMFTqvY-uDRMeFwpdXzcW1_nhjbnbgeKqFQcSUfIZzfkx3-cMqbPio7KQlZ6uN2oVd2rjlWq3pPIUFJDpjC7FQvehOTpdLGgNnb3Vz1mSSrHX-wPkkjv4iqvLHSpzcy_lTuNx2LGeVfJtv1n4e7n_jbPzfnj-DJyXOFKfZMJ7DDo4v4PED9sF9QNZB42p0QUGg-MROTbhxEFkGQJz9KFYpPicOzlGsoij1JOuf4ksint3Qbl1Q3Cs-ZGV7cZXTyu_Elu3kJVyfn31dXlRFdaEKetGuK5QYZe118LhQGrU1nlNU0UdDg6jtoG1jVDBe2g4JaU5NlEOjIi25nZGoXsHeuBrxNQgXgnLOatq98_1c7S3Zgql9jAZRDXYGcgtHHwolOStjfO_T1mTR9RnDnjHsC4YzOJ4a3WZGjn9__p5xnj5lOu30gvDpy-zsnTQxBm2joZAlOu0ULb7G1UMcPK3Cwwz2GdPpJwXOGRxuraYvU_-ul9qYRlMYag_-3uoNPOIO5nOcQ9gjuPAtRTZrf5ROBI6SYf8CVL_3Nw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VcgAOFCgVCwV84NhsN44dJ8eybbXA7gqJVurNsp3xBZSt1N1K5euZSbxRBQhxi6I4svXGnrE98x7AB1c7cgvKZ1UoMFOVK3lK6SzUXsXKB4mOC4UXy3J2qT5f6asdOBpqYRCxSz7DMT92d_nNKmz4qOy4ImerdPEAHpLf13lfrTWcqLCERK1NohbKJ_XxyXRKo-D8rXrMqkyS1c7vuZ-OpT_JqvyxFncO5nwPFtuu9Xkl38ebtR-Hn7-xNv5v35_B0xRpipPeNJ7DDrYv4Mk9_sF9QFZC43p0QWGgmLNbE65tRC8EIM5uk12Krx0LZytWUaSKkvWd-NZRz25ovy4o8hWnvba9WPaJ5Tdiy3fyEi7Pzy6msyzpLmRBTap1hhKjzL0KHieFQmW05yRV9FHTIHLTKFPqImgvTY2ENScnyqYsIi26tZZYHMBuu2rxFQgXQuGcUbR_5xu63BuyBp37GDVi0ZgRyC0cNiRSctbG-GG7zcmktj2GljG0CcMRHA2NrntOjn9__pFxHj5lQu3uBeFj0_y0TuoYgzJRU9ASnXIFLb_a5U1sPK3DzQj2GdPhJwnOERxurcamyX9jJRlnqSgQNa__3uo9PJpdLOZ2_mn55Q085s72pzqHsEvQ4VuKc9b-XWfevwCHBPmL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Local+and+Global+Evolution+Pattern+of+Community+Structures+for+Dynamic+Networks+Analysis&rft.jtitle=IEEE+access&rft.au=Yu%2C+Wei&rft.au=Wang%2C+Wenjun&rft.au=Jiao%2C+Pengfei&rft.au=Wu%2C+Huaming&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=71350&rft.epage=71360&rft_id=info:doi/10.1109%2FACCESS.2019.2920237&rft.externalDocID=8727453 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |