Modeling the Local and Global Evolution Pattern of Community Structures for Dynamic Networks Analysis

Exploring and understanding the temporal structure of dynamic networks attract extensive attention over the past few years. Most of these current research focuses on temporal community detection, evolution analysis or link prediction from a mission-oriented perspective. In fact, these three tasks sh...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 71350 - 71360
Main Authors Yu, Wei, Wang, Wenjun, Jiao, Pengfei, Wu, Huaming, Sun, Yueheng, Tang, Minghu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exploring and understanding the temporal structure of dynamic networks attract extensive attention over the past few years. Most of these current research focuses on temporal community detection, evolution analysis or link prediction from a mission-oriented perspective. In fact, these three tasks should be not isolated but mutually reinforcing. Transforming these three tasks into a unified framework, it is crucial to extract the evolution pattern, which helps to understand the time-varying characteristics of temporal structure in essence. In addition, to the best of our knowledge, there is no work focusing on modeling and uncovering the local and global evolution pattern hidden in temporal community structure, simultaneously. In this paper, we propose a novel framework based on Orthogonal Nonnegative Matrix Factorization to Explore the Evolution Pattern (ONMF-EEP) for analyzing and predicting the time-varying structures in dynamic networks from local and global perspectives. The nature of this framework assumes that community structures are subject to a local evolution pattern (LEP) at each snapshot, and these LEPs are from a common global evolution pattern (GEP). The framework can synchronously detect temporal community structure, extract evolution pattern, and predict structure including communities and future snapshot links. The extensive experiments on real-world networks and artificial networks demonstrate that our proposed framework is highly effective on the tasks of dynamic network analysis.
AbstractList Exploring and understanding the temporal structure of dynamic networks attract extensive attention over the past few years. Most of these current research focuses on temporal community detection, evolution analysis or link prediction from a mission-oriented perspective. In fact, these three tasks should be not isolated but mutually reinforcing. Transforming these three tasks into a unified framework, it is crucial to extract the evolution pattern, which helps to understand the time-varying characteristics of temporal structure in essence. In addition, to the best of our knowledge, there is no work focusing on modeling and uncovering the local and global evolution pattern hidden in temporal community structure, simultaneously. In this paper, we propose a novel framework based on Orthogonal Nonnegative Matrix Factorization to Explore the Evolution Pattern (ONMF-EEP) for analyzing and predicting the time-varying structures in dynamic networks from local and global perspectives. The nature of this framework assumes that community structures are subject to a local evolution pattern (LEP) at each snapshot, and these LEPs are from a common global evolution pattern (GEP). The framework can synchronously detect temporal community structure, extract evolution pattern, and predict structure including communities and future snapshot links. The extensive experiments on real-world networks and artificial networks demonstrate that our proposed framework is highly effective on the tasks of dynamic network analysis.
Author Sun, Yueheng
Tang, Minghu
Wang, Wenjun
Jiao, Pengfei
Wu, Huaming
Yu, Wei
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0003-3459-3695
  surname: Yu
  fullname: Yu, Wei
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Wenjun
  surname: Wang
  fullname: Wang, Wenjun
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Pengfei
  orcidid: 0000-0003-1049-1002
  surname: Jiao
  fullname: Jiao, Pengfei
  organization: Center of Biosafety Research and Strategy, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Huaming
  orcidid: 0000-0002-4761-9973
  surname: Wu
  fullname: Wu, Huaming
  organization: Center for Applied Mathematics, Tianjin University, Tianjin, China
– sequence: 5
  givenname: Yueheng
  surname: Sun
  fullname: Sun, Yueheng
  email: yhs@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 6
  givenname: Minghu
  surname: Tang
  fullname: Tang, Minghu
  organization: School of Computer Science and Technology, Qinghai Nationalities University, Qinghai, China
BookMark eNp9kU1vEzEQhi1UJErpL-jFEucEf67Xx2gJpVL4kAJny-sdF4eNXWwvKP-eDVsQ4sBcZjSa59XMvM_RRUwRELqhZE0p0a82Xbfd79eMUL1mmhHG1RN0yWijV1zy5uKv-hm6LuVA5mjnllSXCN6lAcYQ73H9AniXnB2xjQO-HVM_l9vvaZxqSBF_tLVCjjh53KXjcYqhnvC-5snVKUPBPmX8-hTtMTj8HuqPlL8WvIl2PJVQXqCn3o4Frh_zFfr8Zvupe7vafbi96za7lROkrStg4BntheuBcAFCyZ5qzaD3UjFF1SBUI7mTPVMatBVEC86GhnvRKC0Z8Ct0t-gOyR7MQw5Hm08m2WB-NVK-NzbX4EYwlknvnVBeEia8FZaTtpWWDn7o21YNs9bLReshp28TlGoOacrzQcUwIWUjqOBqntLLlMuplAzeuFDt-WM12zAaSszZJLOYZM4mmUeTZpb_w_7e-P_UzUIFAPhDtPODhOT8JxACn24
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TCSS_2021_3114419
crossref_primary_10_1186_s13677_020_00181_y
crossref_primary_10_1177_08944393211055813
crossref_primary_10_3233_IDA_216485
crossref_primary_10_1109_ACCESS_2020_2978522
Cites_doi 10.1007/978-3-319-49487-6_9
10.24963/ijcai.2017/467
10.1155/2015/109671
10.1103/PhysRevE.92.012805
10.1016/j.physrep.2016.09.002
10.1109/TEVC.2017.2737600
10.1109/TNSE.2018.2815686
10.1145/3018661.3018669
10.1109/ICDM.2008.125
10.1126/science.1184819
10.1145/1367497.1367590
10.1016/j.patcog.2017.06.025
10.1145/2601412
10.1016/j.engappai.2016.06.003
10.1198/016214501753208735
10.1109/ASONAM.2012.183
10.1109/ACCESS.2018.2838568
10.1016/j.jocs.2014.01.003
10.1145/1631162.1631164
10.1109/TASL.2009.2036813
10.1109/TPAMI.2018.2821146
10.1145/1150402.1150467
10.1016/j.neucom.2017.09.013
10.1109/ICDE.2014.6816635
10.1016/j.neucom.2018.03.065
10.1109/TKDE.2013.131
10.2172/1160097
10.1109/TKDE.2018.2851586
10.1016/j.ipm.2018.03.005
10.1142/S0217979217501028
10.1038/nature05670
10.1145/3172867
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2920237
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 71360
ExternalDocumentID oai_doaj_org_article_a25ffc47f5024fa4a30885a1dfdb887d
10_1109_ACCESS_2019_2920237
8727453
Genre orig-research
GrantInformation_xml – fundername: National Key R & D Program of China
  grantid: 2018YFC0809800
– fundername: Project of National Social Science Fund
  grantid: 15BTQ056
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-e2ef21b4cbe034e475b1992ebf572717d47653c5b279e9a409432d63f467952e3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:23:39 EDT 2025
Mon Jun 30 03:49:28 EDT 2025
Tue Jul 01 02:41:34 EDT 2025
Thu Apr 24 23:05:48 EDT 2025
Wed Aug 27 05:56:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e2ef21b4cbe034e475b1992ebf572717d47653c5b279e9a409432d63f467952e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1049-1002
0000-0002-4761-9973
0000-0003-3459-3695
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8727453
PQID 2455641437
PQPubID 4845423
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_a25ffc47f5024fa4a30885a1dfdb887d
crossref_citationtrail_10_1109_ACCESS_2019_2920237
ieee_primary_8727453
proquest_journals_2455641437
crossref_primary_10_1109_ACCESS_2019_2920237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ranshous (ref21) 2015; 7
ref19
ref18
ref24
ref23
liu (ref25) 2018
ref26
ref20
ref22
(ref35) 2011
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1007/978-3-319-49487-6_9
– ident: ref14
  doi: 10.24963/ijcai.2017/467
– ident: ref4
  doi: 10.1155/2015/109671
– ident: ref33
  doi: 10.1103/PhysRevE.92.012805
– ident: ref3
  doi: 10.1016/j.physrep.2016.09.002
– ident: ref18
  doi: 10.1109/TEVC.2017.2737600
– ident: ref15
  doi: 10.1109/TNSE.2018.2815686
– ident: ref10
  doi: 10.1145/3018661.3018669
– ident: ref11
  doi: 10.1109/ICDM.2008.125
– volume: 7
  start-page: 223
  year: 2015
  ident: ref21
  article-title: Anomaly detection in dynamic networks: A survey
  publication-title: Statistics and Computing
– ident: ref26
  doi: 10.1126/science.1184819
– ident: ref31
  doi: 10.1145/1367497.1367590
– ident: ref13
  doi: 10.1016/j.patcog.2017.06.025
– ident: ref1
  doi: 10.1145/2601412
– ident: ref24
  doi: 10.1016/j.engappai.2016.06.003
– ident: ref34
  doi: 10.1198/016214501753208735
– ident: ref9
  doi: 10.1109/ASONAM.2012.183
– ident: ref5
  doi: 10.1109/ACCESS.2018.2838568
– ident: ref12
  doi: 10.1016/j.jocs.2014.01.003
– ident: ref23
  doi: 10.1145/1631162.1631164
– ident: ref28
  doi: 10.1109/TASL.2009.2036813
– ident: ref16
  doi: 10.1109/TPAMI.2018.2821146
– ident: ref7
  doi: 10.1145/1150402.1150467
– year: 2011
  ident: ref35
  publication-title: Karlsruhe Institue of Technology Dynamic Network of Email Communication at Department of Informatics at Karlsruhe Institue of Technology (kit)
– ident: ref30
  doi: 10.1016/j.neucom.2017.09.013
– ident: ref6
  doi: 10.1109/ICDE.2014.6816635
– year: 2018
  ident: ref25
  article-title: Using machine learning to predict the evolution of physics research
  publication-title: arXiv 1810 12116
– ident: ref29
  doi: 10.1016/j.neucom.2018.03.065
– ident: ref32
  doi: 10.1109/TKDE.2013.131
– ident: ref20
  doi: 10.2172/1160097
– ident: ref27
  doi: 10.1109/TKDE.2018.2851586
– ident: ref19
  doi: 10.1016/j.ipm.2018.03.005
– ident: ref8
  doi: 10.1142/S0217979217501028
– ident: ref22
  doi: 10.1038/nature05670
– ident: ref2
  doi: 10.1145/3172867
SSID ssj0000816957
Score 2.1729546
Snippet Exploring and understanding the temporal structure of dynamic networks attract extensive attention over the past few years. Most of these current research...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 71350
SubjectTerms Analytical models
Complex systems
Evolution
Evolution (biology)
evolutionary pattern extraction
Feature extraction
Heuristic algorithms
Modelling
Network analysis
Orthogonal non-negative matrix factorization (ONMF)
Pattern analysis
Predictive models
structure prediction
Task analysis
temporal community detection
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA7iSQ_iinUjB4_WabM07VHHGURUBBXmFpI0OUkVHAX_ve81maEg6MVrSbe3v_bl-wg5NY2BtCBsXjvuc1GbCl1K5q6xItTWMW9wo_DdfXX9LG5mcjag-sKZsAgPHAU3MkyG4IQKErJJMMJw8Atpyja0FhykxegLOW_QTPUxuC6rRqoEM1QWzehiPIY3wlmu5hwZmhgynw9SUY_YnyhWfsTlPtlMN8lGqhLpRXy6LbLiu22yPsAO3CEeWcxwLzmFEo7eYkqipmtpBPGnk89kU_ShR9Ds6GugaTfI_Is-9rCxH9BrU6ha6VXkpaf3cSj8nS6wSnbJ83TyNL7OE2dC7kRRz3PPfGClFc76ggsvlLQ4YOptkFCplKoVqpLcSctU40FPOFjI2ooHCJiNZJ7vkdXutfP7hBrnuDFKQO-Nf9dKq0CTsrQhSO95qzLCFuLTLgGKI6_Fi-4bi6LRUeYaZa6TzDNytjzpLeJp_L78EvWyXIpg2P0BMBGdTET_ZSIZ2UGtLi9SgySE5Bk5WmhZJ8d910xIWQkoItXBf9z6kKzh68RvNkdkFZTrj6GKmduT3mC_AdY17ZM
  priority: 102
  providerName: Directory of Open Access Journals
Title Modeling the Local and Global Evolution Pattern of Community Structures for Dynamic Networks Analysis
URI https://ieeexplore.ieee.org/document/8727453
https://www.proquest.com/docview/2455641437
https://doaj.org/article/a25ffc47f5024fa4a30885a1dfdb887d
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcGBr4LYUiofODbbjT_i5FiWVhWiFRJU6i2ynfEFlK3UXST665mxvVEFCHGLojiy9caesT3zHsA71zlyC9pXbVBY6dY1PKVMFTqvY-uDRMeFwpdXzcW1_nhjbnbgeKqFQcSUfIZzfkx3-cMqbPio7KQlZ6uN2oVd2rjlWq3pPIUFJDpjC7FQvehOTpdLGgNnb3Vz1mSSrHX-wPkkjv4iqvLHSpzcy_lTuNx2LGeVfJtv1n4e7n_jbPzfnj-DJyXOFKfZMJ7DDo4v4PED9sF9QNZB42p0QUGg-MROTbhxEFkGQJz9KFYpPicOzlGsoij1JOuf4ksint3Qbl1Q3Cs-ZGV7cZXTyu_Elu3kJVyfn31dXlRFdaEKetGuK5QYZe118LhQGrU1nlNU0UdDg6jtoG1jVDBe2g4JaU5NlEOjIi25nZGoXsHeuBrxNQgXgnLOatq98_1c7S3Zgql9jAZRDXYGcgtHHwolOStjfO_T1mTR9RnDnjHsC4YzOJ4a3WZGjn9__p5xnj5lOu30gvDpy-zsnTQxBm2joZAlOu0ULb7G1UMcPK3Cwwz2GdPpJwXOGRxuraYvU_-ul9qYRlMYag_-3uoNPOIO5nOcQ9gjuPAtRTZrf5ROBI6SYf8CVL_3Nw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VcgAOFCgVCwV84NhsN44dJ8eybbXA7gqJVurNsp3xBZSt1N1K5euZSbxRBQhxi6I4svXGnrE98x7AB1c7cgvKZ1UoMFOVK3lK6SzUXsXKB4mOC4UXy3J2qT5f6asdOBpqYRCxSz7DMT92d_nNKmz4qOy4ImerdPEAHpLf13lfrTWcqLCERK1NohbKJ_XxyXRKo-D8rXrMqkyS1c7vuZ-OpT_JqvyxFncO5nwPFtuu9Xkl38ebtR-Hn7-xNv5v35_B0xRpipPeNJ7DDrYv4Mk9_sF9QFZC43p0QWGgmLNbE65tRC8EIM5uk12Krx0LZytWUaSKkvWd-NZRz25ovy4o8hWnvba9WPaJ5Tdiy3fyEi7Pzy6msyzpLmRBTap1hhKjzL0KHieFQmW05yRV9FHTIHLTKFPqImgvTY2ENScnyqYsIi26tZZYHMBuu2rxFQgXQuGcUbR_5xu63BuyBp37GDVi0ZgRyC0cNiRSctbG-GG7zcmktj2GljG0CcMRHA2NrntOjn9__pFxHj5lQu3uBeFj0_y0TuoYgzJRU9ASnXIFLb_a5U1sPK3DzQj2GdPhJwnOERxurcamyX9jJRlnqSgQNa__3uo9PJpdLOZ2_mn55Q085s72pzqHsEvQ4VuKc9b-XWfevwCHBPmL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Local+and+Global+Evolution+Pattern+of+Community+Structures+for+Dynamic+Networks+Analysis&rft.jtitle=IEEE+access&rft.au=Yu%2C+Wei&rft.au=Wang%2C+Wenjun&rft.au=Jiao%2C+Pengfei&rft.au=Wu%2C+Huaming&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=71350&rft.epage=71360&rft_id=info:doi/10.1109%2FACCESS.2019.2920237&rft.externalDocID=8727453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon