The Internet of Federated Things (IoFT)

The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the "cloud" will be substituted by the "crowd" where model training is brought to the edge, allowing IoT devices to collaboratively extract knowledge and build smart ana...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 156071 - 156113
Main Authors Kontar, Raed, Shi, Naichen, Yue, Xubo, Chung, Seokhyun, Byon, Eunshin, Chowdhury, Mosharaf, Jin, Jionghua, Kontar, Wissam, Masoud, Neda, Nouiehed, Maher, Okwudire, Chinedum E., Raskutti, Garvesh, Saigal, Romesh, Singh, Karandeep, Ye, Zhi-Sheng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the "cloud" will be substituted by the "crowd" where model training is brought to the edge, allowing IoT devices to collaboratively extract knowledge and build smart analytics/models while keeping their personal data stored locally. This paradigm shift was set into motion by the tremendous increase in computational power on IoT devices and the recent advances in decentralized and privacy-preserving model training, coined as federated learning (FL). This article provides a vision for IoFT and a systematic overview of current efforts towards realizing this vision. Specifically, we first introduce the defining characteristics of IoFT and discuss FL data-driven approaches, opportunities, and challenges that allow decentralized inference within three dimensions: (i) a global model that maximizes utility across all IoT devices, (ii) a personalized model that borrows strengths across all devices yet retains its own model, (iii) a meta-learning model that quickly adapts to new devices or learning tasks. We end by describing the vision and challenges of IoFT in reshaping different industries through the lens of domain experts. Those industries include manufacturing, transportation, energy, healthcare, quality & reliability, business, and computing.
AbstractList The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the “cloud” will be substituted by the “crowd” where model training is brought to the edge, allowing IoT devices to collaboratively extract knowledge and build smart analytics/models while keeping their personal data stored locally. This paradigm shift was set into motion by the tremendous increase in computational power on IoT devices and the recent advances in decentralized and privacy-preserving model training, coined as federated learning (FL). This article provides a vision for IoFT and a systematic overview of current efforts towards realizing this vision. Specifically, we first introduce the defining characteristics of IoFT and discuss FL data-driven approaches, opportunities, and challenges that allow decentralized inference within three dimensions: (i) a global model that maximizes utility across all IoT devices, (ii) a personalized model that borrows strengths across all devices yet retains its own model, (iii) a meta-learning model that quickly adapts to new devices or learning tasks. We end by describing the vision and challenges of IoFT in reshaping different industries through the lens of domain experts. Those industries include manufacturing, transportation, energy, healthcare, quality & reliability, business, and computing.
Author Kontar, Raed
Yue, Xubo
Saigal, Romesh
Chung, Seokhyun
Masoud, Neda
Jin, Jionghua
Ye, Zhi-Sheng
Okwudire, Chinedum E.
Singh, Karandeep
Byon, Eunshin
Kontar, Wissam
Shi, Naichen
Nouiehed, Maher
Raskutti, Garvesh
Chowdhury, Mosharaf
Author_xml – sequence: 1
  givenname: Raed
  orcidid: 0000-0002-4546-324X
  surname: Kontar
  fullname: Kontar, Raed
  email: alkontar@umich.edu
  organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 2
  givenname: Naichen
  surname: Shi
  fullname: Shi, Naichen
  organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 3
  givenname: Xubo
  orcidid: 0000-0001-9929-8895
  surname: Yue
  fullname: Yue, Xubo
  organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 4
  givenname: Seokhyun
  orcidid: 0000-0001-5176-4180
  surname: Chung
  fullname: Chung, Seokhyun
  organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 5
  givenname: Eunshin
  orcidid: 0000-0002-2506-1606
  surname: Byon
  fullname: Byon, Eunshin
  organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 6
  givenname: Mosharaf
  orcidid: 0000-0003-0884-6740
  surname: Chowdhury
  fullname: Chowdhury, Mosharaf
  organization: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
– sequence: 7
  givenname: Jionghua
  orcidid: 0000-0002-7786-8110
  surname: Jin
  fullname: Jin, Jionghua
  organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 8
  givenname: Wissam
  surname: Kontar
  fullname: Kontar, Wissam
  organization: Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
– sequence: 9
  givenname: Neda
  orcidid: 0000-0002-6526-3317
  surname: Masoud
  fullname: Masoud, Neda
  organization: Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 10
  givenname: Maher
  orcidid: 0000-0001-8089-7011
  surname: Nouiehed
  fullname: Nouiehed, Maher
  organization: Department of Industrial Engineering, American University of Beirut, Beirut, Lebanon
– sequence: 11
  givenname: Chinedum E.
  orcidid: 0000-0001-6910-8827
  surname: Okwudire
  fullname: Okwudire, Chinedum E.
  organization: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 12
  givenname: Garvesh
  surname: Raskutti
  fullname: Raskutti, Garvesh
  organization: Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
– sequence: 13
  givenname: Romesh
  orcidid: 0000-0001-8086-9328
  surname: Saigal
  fullname: Saigal, Romesh
  organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 14
  givenname: Karandeep
  surname: Singh
  fullname: Singh, Karandeep
  organization: Department of Learning Health Sciences, University of Michigan, Ann Arbor, MI, USA
– sequence: 15
  givenname: Zhi-Sheng
  orcidid: 0000-0001-5731-3911
  surname: Ye
  fullname: Ye, Zhi-Sheng
  organization: Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore
BookMark eNpNULFOwzAQtVCRKKVf0CUSAzCk2Gc7sccqaiFSJYaG2TLJpU1V4uKkA3-PSyrELXd6uvfu3bslo9a1SMiM0TljVD8vsmy52cyBAptzBqkQ6oqMgSU65pIno3_zDZl23Z6GUgGS6Zg8FDuM8rZH32IfuTpaYYXe9lhFxa5pt130mLtV8XRHrmt76HB66RPyvloW2Wu8fnvJs8U6LgVVfYzUymCA1alKP7iCtCqRayt1RbmqVFlKkYKlWHMqpaWJqAQwLhLGKiZsQvmE5INu5ezeHH3zaf23cbYxv4DzW2N935QHNDQBqWktoUQqAGoLIHnKaqu0shx00LoftI7efZ2w683enXwb7BtIqNCQgGZhiw9bpXdd57H-u8qoOQdshoDNOWBzCTiwZgOrQcQ_hg6PBFP8B45Aczk
CODEN IAECCG
CitedBy_id crossref_primary_10_1080_00224065_2023_2246600
crossref_primary_10_1016_j_comcom_2022_09_016
crossref_primary_10_1080_24725854_2024_2367224
crossref_primary_10_1016_j_cose_2023_103106
crossref_primary_10_1080_24725579_2024_2333261
crossref_primary_10_1080_24725854_2024_2360619
crossref_primary_10_1016_j_jmsy_2022_06_010
crossref_primary_10_1080_00401706_2024_2365732
crossref_primary_10_1109_JIOT_2023_3299573
crossref_primary_10_1109_ACCESS_2023_3244194
crossref_primary_10_1080_00401706_2024_2333506
crossref_primary_10_1080_24725854_2024_2337068
crossref_primary_10_3390_app14135454
crossref_primary_10_3390_app132312776
crossref_primary_10_1016_j_jmsy_2023_05_012
crossref_primary_10_1016_j_jmsy_2024_04_031
crossref_primary_10_1109_TPAMI_2024_3355289
crossref_primary_10_1287_ijds_2022_0022
crossref_primary_10_1080_24725854_2022_2157912
crossref_primary_10_1080_24725854_2024_2352578
crossref_primary_10_1080_00401706_2022_2157882
crossref_primary_10_3390_s22031084
crossref_primary_10_1080_00401706_2023_2238834
crossref_primary_10_1007_s12559_024_10310_3
crossref_primary_10_1109_ACCESS_2022_3165551
Cites_doi 10.1137/1.9780898718768
10.1609/aaai.v33i01.33017858
10.1201/b18401
10.1007/978-3-030-32692-0_16
10.1038/s41746-020-00308-0
10.1016/j.ijmedinf.2018.01.007
10.1109/JIOT.2019.2940820
10.1080/00401706.2018.1451390
10.1093/jamia/ocaa341
10.1109/ETFA.2016.7733661
10.1002/qre.2077
10.1016/j.apenergy.2021.117068
10.1016/j.trc.2020.102830
10.1016/j.rser.2020.109861
10.1080/01621459.2016.1211016
10.1109/JIOT.2020.3030072
10.1080/24725854.2021.1875520
10.1109/TPAMI.2021.3057446
10.1007/s00211-010-0331-6
10.1073/pnas.0803205106
10.1080/00401706.2013.869263
10.1080/00031305.2019.1700163
10.1016/j.jbi.2015.04.012
10.1080/00401706.2015.1096827
10.1109/TEC.2013.2295301
10.1198/TECH.2011.08132
10.1109/TR.2017.2717190
10.1007/978-3-030-32381-3_16
10.1109/TSTE.2020.2965444
10.1073/pnas.1611835114
10.1109/TASE.2020.2986269
10.1137/1.9781611976700.21
10.1145/3318464.3389711
10.1007/s10479-007-0170-8
10.1145/2785956.2787505
10.1561/2200000024
10.1016/j.apenergy.2017.06.066
10.1109/ICC.2019.8761187
10.1145/3386367.3433030
10.1201/9780367815493
10.1007/s11837-019-03549-x
10.1155/2015/431047
10.7551/mitpress/9780262017091.001.0001
10.1109/LSP.2018.2810121
10.1155/2018/6430950
10.1145/3230543.3230554
10.1145/3357384.3357902
10.1016/j.enbuild.2020.110450
10.1109/MNET.2019.1800286
10.7326/M18-1376
10.1145/2783258.2783311
10.1214/13-AOAS666
10.1115/1.4041833
10.1080/03052150902852999
10.1109/ICCD46524.2019.00038
10.1002/net.21736
10.1115/1.4030009
10.1561/9781680837896
10.1016/j.trc.2020.02.008
10.1109/WorldS450073.2020.9210355
10.1016/S0378-3758(00)00179-8
10.1016/j.energy.2014.01.073
10.1145/3308558.3313433
10.1016/j.buildenv.2020.106879
10.1002/asmb.2019
10.1080/0740817X.2016.1204489
10.1115/1.4024661
10.3390/inventions3030056
10.1161/CIRCOUTCOMES.121.007858
10.1145/3298981
10.1109/TASE.2013.2287101
10.1145/3230543.3230574
10.1016/j.trb.2019.01.012
10.1109/TKDE.2009.191
10.1016/j.trb.2017.01.004
10.1016/S0140-6736(21)00722-4
10.1016/j.apenergy.2018.11.072
10.1016/j.comnet.2010.05.010
10.1023/A:1007379606734
10.1145/3152434.3152441
10.1016/j.mechatronics.2017.09.002
10.3390/math9010019
10.1109/ICMLANT50963.2020.9355973
10.1109/TCST.2021.3056751
10.1371/journal.pone.0230706
10.1109/IEEECONF44664.2019.9049023
10.1080/24725854.2019.1628374
10.1038/s41598-020-69250-1
10.1016/j.compenvurbsys.2017.07.006
10.3390/en13020494
10.1007/s10898-012-9951-y
10.1109/TSTE.2015.2497283
10.1137/0103003
10.1007/s10107-018-1303-3
10.1111/rssb.12314
10.1145/3128572.3140448
10.1007/BF02759761
10.1097/01.CCM.0000215112.84523.F0
10.1109/WF-IoT48130.2020.9221089
10.1109/JAS.2019.1911462
10.1137/140954362
10.1145/2018436.2018448
10.2307/j.ctv7h0rwr
10.1109/ACCESS.2020.3013541
10.1109/MCOM.001.1900461
10.1007/978-3-642-20192-9
10.1109/HICSS.2014.304
10.1080/00401706.2016.1172027
10.20485/jsaeijae.9.3_158
10.1016/j.ress.2018.03.013
10.1145/3098822.3098843
10.1109/TPAMI.2020.2987482
10.3390/atmos10120727
10.1109/TIP.2012.2205006
10.1109/BigData50022.2020.9378043
10.1080/00207543.2016.1192302
10.1126/science.abg4924
10.3390/app10114004
10.1145/3132747.3132769
10.1186/s13174-015-0029-1
10.4236/jcc.2015.35021
10.1109/ACCESS.2017.2682499
10.1109/TR.2016.2611625
10.1080/24725854.2017.1299955
10.1007/s10994-007-5040-8
10.2307/2297484
10.1214/10-AOS825
10.1109/TPAMI.2018.2889774
10.1145/3376897.3377862
10.1109/MSP.2020.2975749
10.1093/biomet/asm018
10.1016/j.apenergy.2016.06.052
10.1111/1475-6773.12654
10.3390/jmmp1020015
10.1109/COMST.2020.2986024
10.1145/3183713.3196909
10.1016/j.enbuild.2012.01.033
10.1016/j.rcim.2019.101880
10.1145/3349614.3356026
10.1109/TITS.2014.2320133
10.1109/TPDS.2020.2975189
10.1109/TIE.2019.2907440
10.1093/jamia/ocy017
10.5220/0010243202360242
10.1109/TITS.2015.2413453
10.1109/TCOMM.2019.2956472
10.1049/iet-its.2018.0064
10.1109/TWC.2020.3031503
10.1080/00401706.2017.1383310
10.18653/v1/K19-1012
10.2172/1508212
10.1513/AnnalsATS.202006-698OC
10.1080/01621459.2017.1285773
10.1109/TSTE.2021.3069111
10.3390/su10103491
10.1016/j.promfg.2018.07.132
10.1111/j.1467-937X.2008.00486.x
10.1016/j.energy.2020.117205
10.1016/j.trc.2019.04.008
10.1145/2486001.2486020
10.1214/11-EJS631
10.1109/TASE.2015.2440093
10.1197/jamia.M3191
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3127448
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 156113
ExternalDocumentID oai_doaj_org_article_062590f52ce0422fa225371fa898a329
10_1109_ACCESS_2021_3127448
9611259
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CPS1931950
  funderid: 10.13039/100000001
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-e0a57441f787b3827dce39a59d038d8cc5472a0ef3055a064d42134611d14a603
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Tue Oct 22 15:14:33 EDT 2024
Thu Oct 10 19:17:01 EDT 2024
Fri Aug 23 00:57:37 EDT 2024
Wed Jun 26 19:25:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e0a57441f787b3827dce39a59d038d8cc5472a0ef3055a064d42134611d14a603
ORCID 0000-0001-6910-8827
0000-0003-0884-6740
0000-0001-5176-4180
0000-0001-8086-9328
0000-0002-4546-324X
0000-0001-8089-7011
0000-0002-2506-1606
0000-0002-7786-8110
0000-0001-9929-8895
0000-0002-6526-3317
0000-0001-5731-3911
OpenAccessLink https://doaj.org/article/062590f52ce0422fa225371fa898a329
PQID 2604926291
PQPubID 4845423
PageCount 43
ParticipantIDs proquest_journals_2604926291
doaj_primary_oai_doaj_org_article_062590f52ce0422fa225371fa898a329
crossref_primary_10_1109_ACCESS_2021_3127448
ieee_primary_9611259
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref329
ref59
ref326
ref205
ref58
kumar (ref156) 2012
ref325
ref204
ref55
(ref99) 2019
ref54
ref202
hardt (ref107) 2016; 29
liu (ref185) 2020
kim (ref141) 2019
ref209
grant (ref104) 2018
(ref142) 2019
li (ref174) 2020
yang (ref331) 2018
(ref293) 2020
beimel (ref20) 2019
ref210
lian (ref177) 2017
liu (ref181) 2009; 10
ref46
ref339
ref218
ref45
ref48
ref216
ref47
yurochkin (ref343) 2019
ref338
ref335
chen (ref51) 2020
ref44
ref333
hanzely (ref105) 2020
ref213
ramaswamy (ref257) 2019
(ref79) 2020
ref49
rusu (ref270) 2019
ref9
ref4
drineas (ref73) 2005; 6
huang (ref118) 2018
ref6
baharlouei (ref15) 2020
ref5
ref221
ref40
ref220
yuan (ref337) 2020
yampikulsakul (ref327) 2014; 29
kone?ný (ref149) 2016
ref35
ref34
ref307
ref37
ref304
ref36
ref305
ref31
ref30
ref33
ref32
(ref292) 2020
nichol (ref225) 2018
ref38
chen (ref43) 2019
(ref350) 2019
ref309
hsieh (ref115) 2018
wu (ref322) 2011; 552
wu (ref323) 2020
peter bartlett (ref16) 2002; 3
denson (ref66) 2014
(ref212) 2019
ref310
ref24
ref318
ref26
ref25
ref316
ref313
k williams (ref317) 2006; 2
ref22
ref311
namkoong (ref219) 2017
nichol (ref226) 2018
ref28
ref27
ryu (ref272) 2016; 16
ref319
ref29
(ref60) 2019
bellet (ref21) 2018
goodfellow (ref98) 2014; 27
laaper (ref157) 2020
zhao (ref355) 2018
ref321
(ref67) 2017
ref200
deng (ref65) 2020
kang (ref136) 2011
chen (ref42) 2021
bhowmick (ref23) 2018
ref128
pearl (ref245) 2000; 29
ref249
ref129
ref126
ref247
ref96
ref127
ref248
ref125
ref246
rasmussen (ref261) 2006
mai (ref201) 2012
hospedales (ref112) 2020
lin (ref180) 2020
mahar (ref199) 2011
(ref302) 2019
gonçalves (ref97) 2016; 17
liu (ref184) 2016
ref93
ref254
munkhdalai (ref217) 2017
ref134
ref132
ref253
ref250
(ref57) 2020
finn (ref88) 2017
ref130
ref251
(ref164) 2019
ref89
ref139
salimans (ref273) 2017
ref86
ref85
ref135
ref256
yaz (ref332) 2019
yang (ref330) 2019
gordon (ref101) 2018
vaswani (ref301) 2017; 30
garnelo (ref95) 2018
patacchiola (ref242) 2020
wu (ref324) 2018
ref144
ref145
chen (ref52) 2017
ref263
ref264
zou (ref361) 2020
seward (ref282) 2018
mohri (ref214) 2019; 97
ref140
pu liang (ref178) 2020
dinh (ref70) 2020
reisizadeh (ref267) 2019
zhu (ref357) 2019
farooq (ref83) 2020
ref348
(ref215) 2017
ref227
ref228
ref346
ref75
ref347
ref74
ref77
ref223
ref102
radford (ref255) 2019
ref76
ref224
ref103
(ref11) 2021
louizos (ref189) 2019
wellener (ref314) 2019
ref232
ref111
li (ref169) 2020
ref354
ref233
yoon (ref334) 2018
ref110
kone?ný (ref150) 2016
koloskova (ref147) 2019
ref238
ref117
ref69
ref239
ref64
ref358
ref237
ref234
huang (ref119) 2020
ref113
ref356
ref114
shamir (ref283) 2014; 32
jee cho (ref53) 2020
hardy (ref108) 2017
liu (ref187) 2017
dolezal (ref71) 2020
raskutti (ref260) 2014; 15
(ref12) 2018
li (ref176) 2017
kingma (ref143) 2015
chen (ref50) 2019
ref122
ref244
schmidt (ref281) 2013
ref62
ref120
ref61
ref360
madakam (ref195) 2015; 3
patacchiola (ref241) 2019
(ref165) 2019
(ref236) 2009
ref168
singh (ref286) 2019
(ref56) 2020
garnelo (ref94) 2018
behrendt (ref19) 2017
zhang (ref353) 2012
jiang (ref131) 2019
ref290
ref291
ref299
ref175
ref296
ref173
ref294
ref295
ravi (ref262) 2019
ref171
lacoste (ref158) 2017
lyu (ref193) 2020
meeker (ref211) 1998
ref179
chen (ref39) 2018
ma (ref194) 2019
yan (ref328) 2020
(ref10) 2019
ghuhan arivazhagan (ref8) 2019
(ref1) 2020
ref188
mansour (ref203) 2020
ref186
mcdonald (ref206) 2009; 22
nock (ref230) 2018
(ref269) 2021
ref182
yu (ref336) 2020
ref183
luo (ref191) 2019
ref148
ref268
lacoste (ref159) 2018
edwards (ref78) 2017
li (ref172) 2019
(ref231) 2009
sattler (ref279) 2019
mcmahan (ref208) 2017
acar (ref3) 2019
(ref84) 2020
wang (ref303) 2020
ref155
maddox (ref196) 2019; 32
ref277
ref274
ref153
(ref235) 2021
ref275
ref154
ref151
ref152
ref271
smith (ref288) 2017
chen (ref41) 2020
ref278
(ref276) 2021
porter (ref252) 2014; 92
ref280
zafar (ref344) 2017
kairouz (ref133) 2019
hartmann (ref109) 2019
ref287
ref167
snell (ref289) 2017
foster (ref91) 2017
hard (ref106) 2018
reddi (ref266) 2021
ref284
ref163
bach (ref13) 2008; 9
ref160
bauer (ref17) 2017
tang (ref297) 2019
nguyen (ref222) 2018; 210
raskutti (ref258) 2016; 17
zinkevich (ref359) 2010; 23
ref18
li (ref170) 2018
zhang (ref351) 2021
ding (ref68) 2017
fitzgerald (ref90) 2016
huo (ref121) 2018
bagdasaryan (ref14) 2020
katharopoulos (ref138) 2018
lai (ref161) 2020
pathak (ref243) 2020
hu (ref116) 2020
culver (ref63) 2020
zeng (ref345) 2021
wang (ref308) 2019
yue (ref340) 2019
field (ref87) 2000
raskutti (ref259) 2012; 13
mckinsey (ref207) 2016
zhang (ref349) 2018; 1
madry (ref198) 2017
(ref229) 2021
reddi (ref265) 2018
(ref81) 2021
(ref7) 2019
koller (ref146) 2009
(ref320) 2019
ref2
fallah (ref82) 2020; 33
leurent (ref166) 2018
wei (ref312) 2019
ref192
ref190
yue (ref341) 2019
ref197
(ref100) 2021
park (ref240) 2015
friedman (ref92) 2001; 1
yue (ref342) 2021
izmailov (ref124) 2018
(ref80) 2020
karimireddy (ref137) 2020
dong (ref72) 2015
wang (ref306) 2019
tossou (ref298) 2019
(ref123) 2020
lai (ref162) 2020
welling (ref315) 2011
zhang (ref352) 2020
shi (ref285) 2021
vanschoren (ref300) 2018
References_xml – ident: ref59
  doi: 10.1137/1.9780898718768
– year: 2020
  ident: ref15
  article-title: Rényi fair inference
  publication-title: arXiv 1906 12005
  contributor:
    fullname: baharlouei
– ident: ref122
  doi: 10.1609/aaai.v33i01.33017858
– ident: ref110
  doi: 10.1201/b18401
– year: 2020
  ident: ref56
  publication-title: Ford Temporarily Closes Two Plants After Three Workers Test Positive for Coronavirus
– year: 2018
  ident: ref226
  article-title: On first-order meta-learning algorithms
  publication-title: arXiv 1803 02999
  contributor:
    fullname: nichol
– year: 2018
  ident: ref106
  article-title: Federated learning for mobile keyboard prediction
  publication-title: arXiv 1811 03604
  contributor:
    fullname: hard
– year: 2020
  ident: ref178
  article-title: Think locally, act globally: Federated learning with local and global representations
  publication-title: arXiv 2001 01523
  contributor:
    fullname: pu liang
– ident: ref175
  doi: 10.1007/978-3-030-32692-0_16
– ident: ref28
  doi: 10.1038/s41746-020-00308-0
– volume: 6
  start-page: 2153
  year: 2005
  ident: ref73
  article-title: On the Nyström method for approximating a Gram matrix for improved kernel-based learning
  publication-title: J Mach Learn Res
  contributor:
    fullname: drineas
– start-page: 8388
  year: 2019
  ident: ref267
  article-title: Robust and communication-efficient collaborative learning
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: reisizadeh
– volume: 92
  start-page: 64
  year: 2014
  ident: ref252
  article-title: How smart, connected products are transforming competition
  publication-title: Harvard Bus Rev
  contributor:
    fullname: porter
– ident: ref29
  doi: 10.1016/j.ijmedinf.2018.01.007
– ident: ref134
  doi: 10.1109/JIOT.2019.2940820
– volume: 32
  start-page: 1000
  year: 2014
  ident: ref283
  article-title: Communication-efficient distributed optimization using an approximate newton-type method
  publication-title: Proc 31st Int Conf Mach Learn
  contributor:
    fullname: shamir
– year: 2021
  ident: ref345
  article-title: Improving fairness via federated learning
  publication-title: arXiv 2110 15545
  contributor:
    fullname: zeng
– start-page: 4222
  year: 2019
  ident: ref194
  article-title: Variational implicit processes
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: ma
– ident: ref132
  doi: 10.1080/00401706.2018.1451390
– start-page: 2525
  year: 2018
  ident: ref138
  article-title: Not all samples are created equal: Deep learning with importance sampling
  publication-title: Proc 35 th Int Conf Mach Learn
  contributor:
    fullname: katharopoulos
– ident: ref278
  doi: 10.1093/jamia/ocaa341
– ident: ref111
  doi: 10.1109/ETFA.2016.7733661
– ident: ref54
  doi: 10.1002/qre.2077
– ident: ref304
  doi: 10.1016/j.apenergy.2021.117068
– year: 2019
  ident: ref7
  publication-title: Designing for Privacy
– year: 2018
  ident: ref118
  article-title: LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data
  publication-title: arXiv 1811 12629
  contributor:
    fullname: huang
– start-page: 273
  year: 2020
  ident: ref161
  article-title: Sol: A federated execution engine for fast distributed computation over slow networks
  publication-title: Proc USENIX NSDI
  contributor:
    fullname: lai
– year: 2019
  ident: ref109
  article-title: Federated learning for ranking browser history suggestions
  publication-title: arXiv 1911 11807
  contributor:
    fullname: hartmann
– ident: ref4
  doi: 10.1016/j.trc.2020.102830
– ident: ref237
  doi: 10.1016/j.rser.2020.109861
– year: 2019
  ident: ref298
  article-title: Adaptive deep kernel learning
  publication-title: arXiv 1905 12131
  contributor:
    fullname: tossou
– ident: ref249
  doi: 10.1080/01621459.2016.1211016
– start-page: 3571
  year: 2017
  ident: ref68
  article-title: Collecting telemetry data privately
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: ding
– volume: 33
  start-page: 3557
  year: 2020
  ident: ref82
  article-title: Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: fallah
– ident: ref256
  doi: 10.1109/JIOT.2020.3030072
– volume: 10
  start-page: 1
  year: 2009
  ident: ref181
  article-title: The nonparanormal: Semiparametric estimation of high-dimensional undirected graphs
  publication-title: J Mach Learn Res
  contributor:
    fullname: liu
– ident: ref305
  doi: 10.1080/24725854.2021.1875520
– ident: ref64
  doi: 10.1109/TPAMI.2021.3057446
– ident: ref74
  doi: 10.1007/s00211-010-0331-6
– ident: ref200
  doi: 10.1073/pnas.0803205106
– start-page: 7252
  year: 2019
  ident: ref343
  article-title: Bayesian nonparametric federated learning of neural networks
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: yurochkin
– year: 2019
  ident: ref262
  article-title: Amortized Bayesian meta-learning
  publication-title: Proc ICLR (Poster)
  contributor:
    fullname: ravi
– year: 2019
  ident: ref20
  article-title: The power of synergy in differential privacy: Combining a small curator with local randomizers
  publication-title: arXiv 1912 08951
  contributor:
    fullname: beimel
– ident: ref120
  doi: 10.1080/00401706.2013.869263
– year: 2019
  ident: ref306
  article-title: Federated evaluation of on-device personalization
  publication-title: arXiv 1910 10252
  contributor:
    fullname: wang
– year: 2019
  ident: ref302
  publication-title: The federated future is ready for shipping
– ident: ref254
  doi: 10.1080/00031305.2019.1700163
– ident: ref309
  doi: 10.1016/j.jbi.2015.04.012
– ident: ref46
  doi: 10.1080/00401706.2015.1096827
– volume: 29
  start-page: 288
  year: 2014
  ident: ref327
  article-title: Condition monitoring of wind power system with nonparametric regression analysis
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2013.2295301
  contributor:
    fullname: yampikulsakul
– year: 2020
  ident: ref1
  publication-title: Ford SYNC
– ident: ref135
  doi: 10.1198/TECH.2011.08132
– ident: ref152
  doi: 10.1109/TR.2017.2717190
– ident: ref295
  doi: 10.1007/978-3-030-32381-3_16
– ident: ref126
  doi: 10.1109/TSTE.2020.2965444
– ident: ref144
  doi: 10.1073/pnas.1611835114
– ident: ref114
  doi: 10.1109/TASE.2020.2986269
– ident: ref75
  doi: 10.1137/1.9781611976700.21
– ident: ref69
  doi: 10.1145/3318464.3389711
– start-page: 2554
  year: 2017
  ident: ref217
  article-title: Meta networks
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: munkhdalai
– year: 2021
  ident: ref229
  publication-title: Climate Change Global Temperature
– year: 2019
  ident: ref241
  article-title: Bayesian meta-learning for the few-shot setting via deep kernels
  publication-title: arXiv 1910 05199
  contributor:
    fullname: patacchiola
– year: 2018
  ident: ref166
  publication-title: The Next Economic Growth Engine Scaling Fourth Industrial Revolution Technologies in Production
  contributor:
    fullname: leurent
– ident: ref61
  doi: 10.1007/s10479-007-0170-8
– volume: 13
  start-page: 398
  year: 2012
  ident: ref259
  article-title: Minimax-optimal rates for sparse additive models over kernel classes via convex programming
  publication-title: J Mach Learn Res
  contributor:
    fullname: raskutti
– year: 2012
  ident: ref353
  article-title: A convex formulation for learning task relationships in multi-task learning
  publication-title: arXiv 1203 3536
  contributor:
    fullname: zhang
– year: 2020
  ident: ref336
  article-title: Salvaging federated learning by local adaptation
  publication-title: arXiv 2002 04758
  contributor:
    fullname: yu
– ident: ref253
  doi: 10.1145/2785956.2787505
– ident: ref30
  doi: 10.1561/2200000024
– start-page: 1704
  year: 2018
  ident: ref94
  article-title: Conditional neural processes
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: garnelo
– ident: ref220
  doi: 10.1016/j.apenergy.2017.06.066
– ident: ref128
  doi: 10.1109/ICC.2019.8761187
– ident: ref96
  doi: 10.1145/3386367.3433030
– year: 2019
  ident: ref357
  article-title: Deep leakage from gradients
  publication-title: Proc 33rd Conf Neural Inf Process Syst
  contributor:
    fullname: zhu
– ident: ref103
  doi: 10.1201/9780367815493
– year: 2017
  ident: ref67
  article-title: Learning with privacy at scale
  publication-title: Mach Learn Appl
– year: 2018
  ident: ref355
  article-title: Federated learning with non-IID data
  publication-title: arXiv 1806 00582
  contributor:
    fullname: zhao
– volume: 3
  start-page: 463
  year: 2002
  ident: ref16
  article-title: Rademacher and Gaussian complexities: Risk bounds and structural results
  publication-title: J Mach Learn Res
  contributor:
    fullname: peter bartlett
– volume: 29
  start-page: 3315
  year: 2016
  ident: ref107
  article-title: Equality of opportunity in supervised learning
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: hardt
– ident: ref37
  doi: 10.1007/s11837-019-03549-x
– year: 2019
  ident: ref131
  article-title: Improving federated learning personalization via model agnostic meta learning
  publication-title: arXiv 1909 12488
  contributor:
    fullname: jiang
– start-page: 681
  year: 2011
  ident: ref315
  article-title: Bayesian learning via stochastic gradient Langevin dynamics
  publication-title: Proc 28th Int Conf Mach Learn (ICML)
  contributor:
    fullname: welling
– ident: ref40
  doi: 10.1155/2015/431047
– ident: ref294
  doi: 10.7551/mitpress/9780262017091.001.0001
– year: 2019
  ident: ref50
  article-title: A closer look at few-shot classification
  publication-title: arXiv 1904 04232
  contributor:
    fullname: chen
– ident: ref190
  doi: 10.1109/LSP.2018.2810121
– ident: ref354
  doi: 10.1155/2018/6430950
– year: 2020
  ident: ref123
  publication-title: Can 3D Printing Plug the Coronavirus Equipment Gap?
– year: 2020
  ident: ref119
  article-title: Fairness and accuracy in federated learning
  publication-title: arXiv 2012 10069
  contributor:
    fullname: huang
– year: 2019
  ident: ref279
  article-title: Clustered federated learning: Model-agnostic distributed multi-task optimization under privacy constraints
  publication-title: arXiv 1910 01991
  contributor:
    fullname: sattler
– ident: ref346
  doi: 10.1145/3230543.3230554
– start-page: 473
  year: 2018
  ident: ref21
  article-title: Personalized and private peer-to-peer machine learning
  publication-title: Proc Int Conf Artif Intell Statist
  contributor:
    fullname: bellet
– year: 2016
  ident: ref90
  publication-title: General Motors Relies on IoT to Anticipate Customers Needs
  contributor:
    fullname: fitzgerald
– year: 2019
  ident: ref133
  article-title: Advances and open problems in federated learning
  publication-title: arXiv 1912 04977
  contributor:
    fullname: kairouz
– year: 2009
  ident: ref231
  publication-title: Office for Civil Rights
– volume: 15
  start-page: 335
  year: 2014
  ident: ref260
  article-title: Early stopping and non-parametric regression: An optimal data-dependent stopping rule
  publication-title: J Mach Learn Res
  contributor:
    fullname: raskutti
– year: 2018
  ident: ref101
  article-title: Meta-learning probabilistic inference for prediction
  publication-title: arXiv 1805 09921
  contributor:
    fullname: gordon
– start-page: 5132
  year: 2020
  ident: ref137
  article-title: SCAFFOLD: Stochastic controlled averaging for federated learning
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: karimireddy
– year: 2009
  ident: ref146
  publication-title: Probabilistic Graphical Models Principles and Techniques
  contributor:
    fullname: koller
– year: 2017
  ident: ref52
  article-title: Targeted backdoor attacks on deep learning systems using data poisoning
  publication-title: arXiv 1712 05526
  contributor:
    fullname: chen
– year: 2018
  ident: ref225
  article-title: On first-order meta-learning algorithms
  publication-title: arXiv 1803 02999
  contributor:
    fullname: nichol
– year: 2021
  ident: ref285
  article-title: Fed-ensemble: Improving generalization through model ensembling in federated learning
  publication-title: arXiv 2107 10663
  contributor:
    fullname: shi
– ident: ref311
  doi: 10.1145/3357384.3357902
– year: 2012
  ident: ref201
  article-title: Renewable electricity futures study. executive summary
  contributor:
    fullname: mai
– ident: ref127
  doi: 10.1016/j.enbuild.2020.110450
– year: 2017
  ident: ref187
  article-title: Trojaning attack on neural networks
  contributor:
    fullname: liu
– year: 2017
  ident: ref176
  article-title: Meta-SGD: Learning to learn quickly for few-shot learning
  publication-title: arXiv 1707 09835
  contributor:
    fullname: li
– ident: ref307
  doi: 10.1109/MNET.2019.1800286
– year: 2020
  ident: ref203
  article-title: Three approaches for personalization with applications to federated learning
  publication-title: arXiv 2002 10619
  contributor:
    fullname: mansour
– ident: ref319
  doi: 10.7326/M18-1376
– ident: ref85
  doi: 10.1145/2783258.2783311
– volume: 22
  year: 2009
  ident: ref206
  article-title: Efficient large-scale distributed training of conditional maximum entropy models
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: mcdonald
– year: 2018
  ident: ref124
  article-title: Averaging weights leads to wider optima and better generalization
  publication-title: arXiv 1803 05407
  contributor:
    fullname: izmailov
– ident: ref333
  doi: 10.1214/13-AOAS666
– year: 2020
  ident: ref157
  article-title: Implementing the smart factory: New perspectives for driving value
  contributor:
    fullname: laaper
– ident: ref93
  doi: 10.1115/1.4041833
– ident: ref325
  doi: 10.1080/03052150902852999
– year: 1998
  ident: ref211
  publication-title: Statistical Methods for Reliability Data
  contributor:
    fullname: meeker
– volume: 9
  start-page: 1179
  year: 2008
  ident: ref13
  article-title: Consistency of the group lasso and multiple kernel learning
  publication-title: J Mach Learn Res
  contributor:
    fullname: bach
– year: 2018
  ident: ref300
  article-title: Meta-learning: A survey
  publication-title: arXiv 1810 03548
  contributor:
    fullname: vanschoren
– start-page: 962
  year: 2017
  ident: ref344
  article-title: Fairness constraints: Mechanisms for fair classification
  publication-title: Artificial Intelligence and Statistics
  contributor:
    fullname: zafar
– ident: ref77
  doi: 10.1109/ICCD46524.2019.00038
– ident: ref145
  doi: 10.1002/net.21736
– ident: ref31
  doi: 10.1115/1.4030009
– ident: ref209
  doi: 10.1561/9781680837896
– start-page: 495
  year: 2020
  ident: ref328
  article-title: Learning in situ: A randomized experiment in video streaming
  publication-title: Proc USENIX NSDI
  contributor:
    fullname: yan
– ident: ref296
  doi: 10.1016/j.trc.2020.02.008
– ident: ref155
  doi: 10.1109/WorldS450073.2020.9210355
– ident: ref24
  doi: 10.1016/S0378-3758(00)00179-8
– ident: ref25
  doi: 10.1016/j.energy.2014.01.073
– year: 2018
  ident: ref159
  article-title: Uncertainty in multitask transfer learning
  publication-title: arXiv 1806 07528
  contributor:
    fullname: lacoste
– start-page: 2938
  year: 2020
  ident: ref14
  article-title: How to backdoor federated learning
  publication-title: Proc Int Conf Artif Intell Statist
  contributor:
    fullname: bagdasaryan
– ident: ref168
  doi: 10.1145/3308558.3313433
– ident: ref167
  doi: 10.1016/j.buildenv.2020.106879
– ident: ref321
  doi: 10.1002/asmb.2019
– year: 2020
  ident: ref112
  article-title: Meta-learning in neural networks: A survey
  publication-title: arXiv 2004 05439
  contributor:
    fullname: hospedales
– ident: ref335
  doi: 10.1080/0740817X.2016.1204489
– start-page: 429
  year: 2018
  ident: ref170
  article-title: Federated optimization in heterogeneous networks
  publication-title: Proc 3rd MLSys Conf
  contributor:
    fullname: li
– year: 2019
  ident: ref99
  publication-title: Your chats stay private while Messages improves suggestions
– year: 2017
  ident: ref19
  article-title: How to achieve and sustain the impact of digital manufacturing at scale
  contributor:
    fullname: behrendt
– year: 2020
  ident: ref53
  article-title: Client selection in federated learning: Convergence analysis and power-of-choice selection strategies
  publication-title: arXiv 2010 01243
  contributor:
    fullname: jee cho
– ident: ref182
  doi: 10.1115/1.4024661
– year: 2020
  ident: ref84
  publication-title: 3D Printing in FDA'Ts Rapid Response to COVID-19
– year: 2021
  ident: ref11
  publication-title: Amazon Web Services
– volume: 2
  year: 2006
  ident: ref317
  publication-title: Gaussian Processes for Machine Learning
  contributor:
    fullname: k williams
– year: 2020
  ident: ref162
  article-title: Oort: Efficient federated learning via guided participant selection
  publication-title: arXiv 2010 06081
  contributor:
    fullname: lai
– year: 2017
  ident: ref91
  article-title: Assessment of demand response and advanced metering
  contributor:
    fullname: foster
– ident: ref234
  doi: 10.3390/inventions3030056
– start-page: 2722
  year: 2020
  ident: ref41
  article-title: Stochastic gradient descent in correlated settings: A study on Gaussian processes
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: chen
– ident: ref316
  doi: 10.1161/CIRCOUTCOMES.121.007858
– start-page: 2574
  year: 2017
  ident: ref219
  article-title: Radaptive sampling probabilities for non-smooth optimizatio
  publication-title: Proc 34th Int Conf Mach Learn
  contributor:
    fullname: namkoong
– year: 2017
  ident: ref177
  article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent
  publication-title: arXiv 1705 09056
  contributor:
    fullname: lian
– year: 2020
  ident: ref323
  article-title: Fast-convergent federated learning with adaptive weighting
  publication-title: arXiv 2012 00661
  contributor:
    fullname: wu
– ident: ref329
  doi: 10.1145/3298981
– year: 2018
  ident: ref95
  article-title: Neural processes
  publication-title: arXiv 1807 01622
  contributor:
    fullname: garnelo
– year: 2018
  ident: ref265
  article-title: Adaptive methods for nonconvex optimization
  publication-title: Proc 32nd Conf Neural Inf Process Syst (NIPS)
  contributor:
    fullname: reddi
– ident: ref183
  doi: 10.1109/TASE.2013.2287101
– ident: ref129
  doi: 10.1145/3230543.3230574
– year: 2021
  ident: ref100
  publication-title: Google
– ident: ref213
  doi: 10.1016/j.trb.2019.01.012
– year: 2019
  ident: ref191
  article-title: Real-world image datasets for federated learning
  publication-title: arXiv 1910 11089
  contributor:
    fullname: luo
– volume: 29
  year: 2000
  ident: ref245
  publication-title: Causality Models Reasoning and Inference
  contributor:
    fullname: pearl
– year: 2018
  ident: ref324
  article-title: Meta-learning autoencoders for few-shot prediction
  publication-title: arXiv 1807 09912
  contributor:
    fullname: wu
– year: 2019
  ident: ref320
  publication-title: AI Chips for Self Driving Cars Will a Be 10 Billion Market by 2024
– ident: ref238
  doi: 10.1109/TKDE.2009.191
– ident: ref205
  doi: 10.1016/j.trb.2017.01.004
– ident: ref139
  doi: 10.1016/S0140-6736(21)00722-4
– ident: ref188
  doi: 10.1016/j.apenergy.2018.11.072
– ident: ref9
  doi: 10.1016/j.comnet.2010.05.010
– ident: ref36
  doi: 10.1023/A:1007379606734
– ident: ref299
  doi: 10.1145/3152434.3152441
– year: 2020
  ident: ref303
  article-title: Federated learning with matched averaging
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: wang
– year: 2015
  ident: ref143
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: kingma
– ident: ref76
  doi: 10.1016/j.mechatronics.2017.09.002
– volume: 30
  start-page: 5998
  year: 2017
  ident: ref301
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: vaswani
– ident: ref192
  doi: 10.3390/math9010019
– start-page: 395
  year: 2015
  ident: ref72
  article-title: PCC: Re-architecting congestion control for consistent high performance
  publication-title: Proc USENIX NSDI
  contributor:
    fullname: dong
– ident: ref89
  doi: 10.1109/ICMLANT50963.2020.9355973
– start-page: 1
  year: 2017
  ident: ref288
  article-title: Federated multi-task learning
  publication-title: Proc 31st Conf Neural Inf Process Syst
  contributor:
    fullname: smith
– year: 2020
  ident: ref57
  publication-title: 12-Year-Old Boy 3D Prints Masks for Frontline Workers
– ident: ref280
  doi: 10.1109/TCST.2021.3056751
– volume: 1
  year: 2001
  ident: ref92
  publication-title: The Elements of Statistical Learning
  contributor:
    fullname: friedman
– start-page: 1126
  year: 2017
  ident: ref88
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: finn
– start-page: 20865
  year: 2020
  ident: ref361
  article-title: Gradient-EM Bayesian meta-learning
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: zou
– volume: 17
  start-page: 1
  year: 2016
  ident: ref97
  article-title: Multi-task sparse structure learning with Gaussian copula models
  publication-title: J Mach Learn Res
  contributor:
    fullname: gonçalves
– start-page: 4567
  year: 2018
  ident: ref282
  article-title: First order generative adversarial networks
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: seward
– ident: ref117
  doi: 10.1371/journal.pone.0230706
– ident: ref171
  doi: 10.1109/IEEECONF44664.2019.9049023
– year: 2021
  ident: ref351
  publication-title: On the Connection Between FEDDYN and FEDPD
  contributor:
    fullname: zhang
– ident: ref47
  doi: 10.1080/24725854.2019.1628374
– year: 2020
  ident: ref71
  publication-title: 3D Printed Face Shields for Medics and Professionals-Join Us!
  contributor:
    fullname: dolezal
– volume: 97
  start-page: 4615
  year: 2019
  ident: ref214
  article-title: Agnostic federated learning
  publication-title: Proc 36th Int Conf Mach Learn
  contributor:
    fullname: mohri
– ident: ref284
  doi: 10.1038/s41598-020-69250-1
– ident: ref202
  doi: 10.1016/j.compenvurbsys.2017.07.006
– ident: ref113
  doi: 10.3390/en13020494
– year: 2020
  ident: ref293
  publication-title: Faulty Masks Flawed Tests China's Quality Control Problem in Leading Global COVID-19 Fight
– year: 2019
  ident: ref332
  article-title: The unusual effectiveness of averaging in GAN training
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: yaz
– ident: ref268
  doi: 10.1007/s10898-012-9951-y
– year: 2020
  ident: ref79
  publication-title: U S Energy Information Administration U S Energy Facts Explained
– year: 2020
  ident: ref116
  article-title: FedMGDA+: Federated learning meets multi-objective optimization
  publication-title: arXiv 2006 11489
  contributor:
    fullname: hu
– year: 2006
  ident: ref261
  publication-title: Gaussian Processes for Machine Learning
  contributor:
    fullname: rasmussen
– ident: ref360
  doi: 10.1109/TSTE.2015.2497283
– year: 2020
  ident: ref105
  article-title: Federated learning of a mixture of global and local models
  publication-title: arXiv 2002 05516
  contributor:
    fullname: hanzely
– ident: ref244
  doi: 10.1137/0103003
– year: 2019
  ident: ref257
  article-title: Federated learning for emoji prediction in a mobile keyboard
  publication-title: arXiv 1906 04329
  contributor:
    fullname: ramaswamy
– ident: ref58
  doi: 10.1007/s10107-018-1303-3
– ident: ref250
  doi: 10.1111/rssb.12314
– year: 2019
  ident: ref255
  article-title: Language models are unsupervised multitask learners
  publication-title: Proc OpenAI
  contributor:
    fullname: radford
– start-page: 7057
  year: 2020
  ident: ref243
  article-title: FedSplit: An algorithmic framework for fast federated optimization
  publication-title: Proc 34th Conf Neural Inf Process Syst
  contributor:
    fullname: pathak
– ident: ref48
  doi: 10.1145/3128572.3140448
– volume: 1
  start-page: 39
  year: 2018
  ident: ref349
  article-title: Enabling industrial Internet of Things (IIoT) towards an emerging smart energy system
  publication-title: Global energy interconnection
  contributor:
    fullname: zhang
– start-page: 7343
  year: 2018
  ident: ref334
  article-title: Bayesian model-agnostic meta-learning
  publication-title: Proc 32nd Int Conf Neural Inf Process Syst
  contributor:
    fullname: yoon
– year: 2019
  ident: ref312
  article-title: Federated learning with differential privacy: Algorithms and performance analysis
  publication-title: arXiv 1911 00222
  contributor:
    fullname: wei
– ident: ref102
  doi: 10.1007/BF02759761
– ident: ref358
  doi: 10.1097/01.CCM.0000215112.84523.F0
– year: 2021
  ident: ref342
  article-title: GIFAIR-FL: An approach for group and individual fairness in federated learning
  publication-title: arXiv 2108 02741
  contributor:
    fullname: yue
– ident: ref224
  doi: 10.1109/WF-IoT48130.2020.9221089
– ident: ref35
  doi: 10.1109/JAS.2019.1911462
– ident: ref34
  doi: 10.1137/140954362
– ident: ref239
  doi: 10.1109/TKDE.2009.191
– year: 2017
  ident: ref215
  publication-title: 3-D Printing Gets a Turbo Boost From U-M Technology
– ident: ref55
  doi: 10.1145/2018436.2018448
– ident: ref160
  doi: 10.2307/j.ctv7h0rwr
– ident: ref5
  doi: 10.1109/ACCESS.2020.3013541
– year: 2019
  ident: ref340
  article-title: The Renyi Gaussian process: Towards improved generalization
  publication-title: arXiv 1910 06990
  contributor:
    fullname: yue
– ident: ref227
  doi: 10.1109/MCOM.001.1900461
– year: 2017
  ident: ref198
  article-title: Towards deep learning models resistant to adversarial attacks
  publication-title: arXiv 1706 06083
  contributor:
    fullname: madry
– ident: ref32
  doi: 10.1007/978-3-642-20192-9
– ident: ref271
  doi: 10.1109/HICSS.2014.304
– volume: 17
  start-page: 1
  year: 2016
  ident: ref258
  article-title: A statistical perspective on randomized sketching for ordinary least-squares
  publication-title: J Mach Learn Res
  contributor:
    fullname: raskutti
– ident: ref49
  doi: 10.1080/00401706.2016.1172027
– volume: 32
  start-page: 13153
  year: 2019
  ident: ref196
  article-title: A simple baseline for Bayesian uncertainty in deep learning
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: maddox
– year: 2019
  ident: ref164
  publication-title: With Predictive Maintenance Operators Seek Improved Uptime
– ident: ref86
  doi: 10.20485/jsaeijae.9.3_158
– ident: ref313
  doi: 10.1016/j.ress.2018.03.013
– ident: ref204
  doi: 10.1145/3098822.3098843
– ident: ref151
  doi: 10.1109/TPAMI.2020.2987482
– year: 2019
  ident: ref43
  article-title: Federated learning of out-of-vocabulary words
  publication-title: arXiv 1903 10635
  contributor:
    fullname: chen
– ident: ref125
  doi: 10.3390/atmos10120727
– ident: ref339
  doi: 10.1109/TIP.2012.2205006
– year: 2019
  ident: ref172
  article-title: Fair resource allocation in federated learning
  publication-title: arXiv 1905 10497
  contributor:
    fullname: li
– year: 2021
  ident: ref276
  publication-title: Samsung Galaxy Watch Active
– ident: ref348
  doi: 10.1109/BigData50022.2020.9378043
– ident: ref291
  doi: 10.1080/00207543.2016.1192302
– ident: ref233
  doi: 10.1126/science.abg4924
– ident: ref274
  doi: 10.3390/app10114004
– ident: ref26
  doi: 10.1145/3132747.3132769
– ident: ref140
  doi: 10.1186/s13174-015-0029-1
– year: 2018
  ident: ref104
  article-title: Recasting gradient-based meta-learning as hierarchical Bayes
  publication-title: arXiv 1801 08930
  contributor:
    fullname: grant
– volume: 3
  start-page: 164
  year: 2015
  ident: ref195
  article-title: Internet of Things (IoT): A literature review
  publication-title: J Comput Commun
  doi: 10.4236/jcc.2015.35021
  contributor:
    fullname: madakam
– year: 2019
  ident: ref314
  article-title: Deloitte and mapi smart factory study: Capturing value through the digital journey
  contributor:
    fullname: wellener
– year: 2017
  ident: ref17
  article-title: Discriminative k-shot learning using probabilistic models
  publication-title: arXiv 1706 00326
  contributor:
    fullname: bauer
– ident: ref216
  doi: 10.1109/ACCESS.2017.2682499
– year: 2018
  ident: ref39
  article-title: Federated meta-learning with fast convergence and efficient communication
  publication-title: arXiv 1802 07876
  contributor:
    fullname: chen
– year: 2020
  ident: ref174
  article-title: Ditto: Fair and robust federated learning through personalization
  publication-title: arXiv 2012 04221
  contributor:
    fullname: li
– ident: ref45
  doi: 10.1109/TR.2016.2611625
– year: 2014
  ident: ref66
  publication-title: Electronic Parts Reliability Data 2014
  contributor:
    fullname: denson
– ident: ref228
  doi: 10.1080/24725854.2017.1299955
– year: 2020
  ident: ref80
  publication-title: Today in Energy U S EnergyInformation Administration
– start-page: 21394
  year: 2020
  ident: ref70
  article-title: Personalized federated learning with Moreau envelopes
  publication-title: Proc 34th Conf Neural Inf Process Syst
  contributor:
    fullname: dinh
– year: 2019
  ident: ref212
  publication-title: 2019 manufacturing trends report
– year: 2020
  ident: ref51
  article-title: Optimal client sampling for federated learning
  publication-title: arXiv 2010 13723
  contributor:
    fullname: chen
– ident: ref251
  doi: 10.1007/s10994-007-5040-8
– year: 2019
  ident: ref270
  article-title: Meta-learning with latent embedding optimization
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: rusu
– year: 2019
  ident: ref8
  article-title: Federated learning with personalization layers
  publication-title: arXiv 1912 00818
  contributor:
    fullname: ghuhan arivazhagan
– ident: ref290
  doi: 10.2307/2297484
– ident: ref148
  doi: 10.1214/10-AOS825
– year: 2021
  ident: ref266
  article-title: Adaptive federated optimization
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: reddi
– start-page: 16108
  year: 2020
  ident: ref242
  article-title: Bayesian meta-learning for the few-shot setting via deep kernels
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: patacchiola
– year: 2012
  ident: ref156
  article-title: Learning task grouping and overlap in multi-task learning
  publication-title: arXiv 1206 6417
  contributor:
    fullname: kumar
– start-page: 5393
  year: 2016
  ident: ref184
  article-title: Stein variational gradient descent: A general purpose Bayesian inference algorithm
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: liu
– ident: ref347
  doi: 10.1109/TPAMI.2018.2889774
– year: 2019
  ident: ref10
  publication-title: What is aws
– year: 2020
  ident: ref65
  article-title: Adaptive personalized federated learning
  publication-title: arXiv 2003 13461
  contributor:
    fullname: deng
– start-page: 6155
  year: 2019
  ident: ref297
  article-title: DoubleSqueeze: Parallel stochastic gradient descent with double-pass error-compensated compression
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: tang
– ident: ref197
  doi: 10.1145/3376897.3377862
– year: 2018
  ident: ref331
  article-title: Applied federated learning: Improving Google keyboard query suggestions
  publication-title: arXiv 1812 02903
  contributor:
    fullname: yang
– ident: ref173
  doi: 10.1109/MSP.2020.2975749
– year: 2019
  ident: ref165
  publication-title: Declining Price of IoT Sensors Means Greater Use in Manufacturing
– ident: ref338
  doi: 10.1093/biomet/asm018
– year: 2021
  ident: ref81
  publication-title: U S Energy Information Administration Consumption and Efficiency
– ident: ref356
  doi: 10.1016/j.apenergy.2016.06.052
– ident: ref248
  doi: 10.1111/1475-6773.12654
– volume: 27
  year: 2014
  ident: ref98
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: goodfellow
– ident: ref18
  doi: 10.3390/jmmp1020015
– year: 2016
  ident: ref150
  article-title: Federated learning: Strategies for improving communication efficiency
  publication-title: arXiv 1610 05492
  contributor:
    fullname: kone?ný
– ident: ref179
  doi: 10.1109/COMST.2020.2986024
– ident: ref154
  doi: 10.1145/3183713.3196909
– ident: ref22
  doi: 10.1016/j.enbuild.2012.01.033
– year: 2019
  ident: ref3
  article-title: Federated learning based on dynamic regularization
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: acar
– year: 2019
  ident: ref350
  publication-title: Federated Learning The Future of Distributed Machine Learning
– volume: 210
  start-page: 1280
  year: 2018
  ident: ref222
  article-title: PAC-Bayesian meta-learning with implicit prior
  publication-title: IEEE Trans Pattern Anal Mach Intell
  contributor:
    fullname: nguyen
– ident: ref232
  doi: 10.1016/j.rcim.2019.101880
– volume: 23
  start-page: 733
  year: 2010
  ident: ref359
  article-title: Parallelized stochastic gradient descent
  publication-title: Advances in neural information processing systems
  contributor:
    fullname: zinkevich
– year: 2019
  ident: ref147
  article-title: Decentralized deep learning with arbitrary communication compression
  publication-title: arXiv 1907 09356
  contributor:
    fullname: koloskova
– ident: ref130
  doi: 10.1145/3349614.3356026
– ident: ref163
  doi: 10.1109/TITS.2014.2320133
– ident: ref186
  doi: 10.1109/TPDS.2020.2975189
– year: 2017
  ident: ref108
  article-title: Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption
  publication-title: arXiv 1711 10677
  contributor:
    fullname: hardy
– ident: ref247
  doi: 10.1109/TIE.2019.2907440
– ident: ref38
  doi: 10.1093/jamia/ocy017
– year: 2000
  ident: ref87
  publication-title: COVID-19 How Quickly Can Manufacturing Respond to the Surge in Demand?
  contributor:
    fullname: field
– year: 2021
  ident: ref235
  publication-title: Welcome to Onstar
– start-page: 631
  year: 2015
  ident: ref240
  article-title: Learning large-scale Poisson dag models based on overdispersion scoring
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: park
– year: 2018
  ident: ref23
  article-title: Protection against reconstruction and its applications in private federated learning
  publication-title: arXiv 1812 00984
  contributor:
    fullname: bhowmick
– year: 2021
  ident: ref269
  publication-title: The Connected Enterprise
– year: 2020
  ident: ref352
  article-title: FedPD: A federated learning framework with optimal rates and adaptivity to non-IID data
  publication-title: arXiv 2005 11418
  contributor:
    fullname: zhang
– ident: ref263
  doi: 10.5220/0010243202360242
– year: 2013
  ident: ref281
  article-title: Minimizing finite sums with the stochastic average gradient
  publication-title: arXiv 1309 2388
  contributor:
    fullname: schmidt
– year: 2019
  ident: ref341
  article-title: Variational inference of joint models using multivariate Gaussian convolution processes
  publication-title: arXiv 1903 03867
  contributor:
    fullname: yue
– ident: ref246
  doi: 10.1109/TITS.2015.2413453
– start-page: 269
  year: 2018
  ident: ref115
  article-title: Focus: Querying large video datasets with low latency and low cost
  publication-title: Proc USENIX OSDI
  contributor:
    fullname: hsieh
– ident: ref275
  doi: 10.1109/TCOMM.2019.2956472
– year: 2019
  ident: ref286
  article-title: Detailed comparison of communication efficiency of split learning and federated learning
  publication-title: arXiv 1909 09145
  contributor:
    fullname: singh
– ident: ref223
  doi: 10.1049/iet-its.2018.0064
– ident: ref326
  doi: 10.1109/TWC.2020.3031503
– ident: ref153
  doi: 10.1080/00401706.2017.1383310
– ident: ref44
  doi: 10.18653/v1/K19-1012
– ident: ref221
  doi: 10.2172/1508212
– year: 2019
  ident: ref330
  article-title: Parallel distributed logistic regression for vertical federated learning without third-party coordinator
  publication-title: arXiv 1911 09824
  contributor:
    fullname: yang
– start-page: 521
  year: 2011
  ident: ref136
  article-title: Learning with whom to share in multi-task feature learning
  publication-title: Proc ICML
  contributor:
    fullname: kang
– volume: 16
  start-page: 3
  year: 2016
  ident: ref272
  article-title: Primer on monotone operator methods
  publication-title: Comput Math Appl
  contributor:
    fullname: ryu
– year: 2017
  ident: ref289
  article-title: Prototypical networks for few-shot learning
  publication-title: arXiv 1703 05175
  contributor:
    fullname: snell
– ident: ref287
  doi: 10.1513/AnnalsATS.202006-698OC
– ident: ref27
  doi: 10.1080/01621459.2017.1285773
– year: 2019
  ident: ref142
  publication-title: Nvidia Clara Federated Learning to Deliver AI to Hospitals While Protecting Patient Data
– ident: ref6
  doi: 10.1109/TSTE.2021.3069111
– year: 2019
  ident: ref308
  article-title: Bayesian meta sampling for fast uncertainty adaptation
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: wang
– ident: ref218
  doi: 10.3390/su10103491
– year: 2020
  ident: ref292
  publication-title: Why DIY 3D-Printed Face Masks and Shields Are So Risky
– year: 2017
  ident: ref78
  article-title: Towards a neural statistician
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: edwards
– year: 2020
  ident: ref169
  article-title: On negative transfer and structure of latent functions in multi-output Gaussian processes
  publication-title: arXiv 2004 02382
  contributor:
    fullname: li
– ident: ref62
  doi: 10.1016/j.promfg.2018.07.132
– start-page: 5393
  year: 2020
  ident: ref185
  article-title: Adam with bandit sampling for deep learning
  publication-title: Proc NeurIPS
  contributor:
    fullname: liu
– year: 2019
  ident: ref189
  article-title: The functional neural process
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: louizos
– year: 2018
  ident: ref12
  publication-title: Microsoft How does Azure RMS work?
– start-page: 1273
  year: 2017
  ident: ref208
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Artificial Intelligence and Statistics
  contributor:
    fullname: mcmahan
– year: 2018
  ident: ref230
  article-title: Entity resolution and federated learning get a federated resolution
  publication-title: arXiv 1803 04035
  contributor:
    fullname: nock
– year: 2019
  ident: ref60
  publication-title: Google's Project Nightingale Gathers Personal Health Data on Millions of Americans
– year: 2016
  ident: ref207
  article-title: The age of analytics: Competing in a data-driven world
  contributor:
    fullname: mckinsey
– start-page: 6659
  year: 2018
  ident: ref121
  article-title: Training neural networks using features replay
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: huo
– year: 2009
  ident: ref236
  publication-title: OREDA Offshore Reliability Data Handbook
– ident: ref277
  doi: 10.1111/j.1467-937X.2008.00486.x
– year: 2017
  ident: ref158
  article-title: Deep prior
  publication-title: arXiv 1712 05016
  contributor:
    fullname: lacoste
– year: 2020
  ident: ref180
  article-title: Real-time edge intelligence in the making: A collaborative learning framework via federated meta-learning
  publication-title: arXiv 2001 03229
  contributor:
    fullname: lin
– start-page: 5332
  year: 2020
  ident: ref337
  article-title: Federated accelerated stochastic gradient descent
  publication-title: Proc 34th Conf Neural Inf Process Syst
  contributor:
    fullname: yuan
– ident: ref210
  doi: 10.1016/j.energy.2020.117205
– ident: ref2
  doi: 10.1016/j.trc.2019.04.008
– year: 2016
  ident: ref149
  article-title: Federated optimization: Distributed machine learning for on-device intelligence
  publication-title: arXiv 1610 02527
  contributor:
    fullname: kone?ný
– ident: ref318
  doi: 10.1145/2486001.2486020
– year: 2020
  ident: ref83
  article-title: COVID-ResNet: A deep learning framework for screening of COVID19 from radiographs
  publication-title: arXiv 2003 14395
  contributor:
    fullname: farooq
– volume: 552
  year: 2011
  ident: ref322
  publication-title: Experiments Planning Analysis and Optimization
  contributor:
    fullname: wu
– year: 2020
  ident: ref63
  publication-title: 3D Printing Enthusiasts Are Working From Home to Help Hospitals Fight Coronavirus
  contributor:
    fullname: culver
– year: 2017
  ident: ref273
  article-title: Evolution strategies as a scalable alternative to reinforcement learning
  publication-title: arXiv 1703 03864
  contributor:
    fullname: salimans
– ident: ref264
  doi: 10.1214/11-EJS631
– year: 2021
  ident: ref42
  article-title: FedBE: Making Bayesian model ensemble applicable to federated learning
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: chen
– year: 2019
  ident: ref141
  article-title: Attentive neural processes
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: kim
– ident: ref33
  doi: 10.1109/TASE.2015.2440093
– year: 2020
  ident: ref193
  article-title: Threats to federated learning: A survey
  publication-title: arXiv 2003 02133
  contributor:
    fullname: lyu
– ident: ref310
  doi: 10.1197/jamia.M3191
– year: 2011
  ident: ref199
  publication-title: Nonelectronic Parts Reliability Data 2011
  contributor:
    fullname: mahar
SSID ssj0000816957
Score 2.4499013
Snippet The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the "cloud" will be substituted by the "crowd"...
The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the “cloud” will be substituted by the “crowd”...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 156071
SubjectTerms Adaptation models
Cognitive tasks
Computational modeling
Data models
Devices
Federated learning
future applications
global model
Internet of Things
meta-learning
Modeling
personalized model
Printers
Solid modeling
Three-dimensional displays
Training
Vision
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGJzjwGojxUg9IgERH0vSRHGFiAiQ4gcQtclP3grQh6C78epy0m3gduFVVGzlf4sR2nM8Ax4iplGUq4jKnJGZNzGOsEoydwtL5i52IIcv3Ib95Su-es-cenC_uwhBRSD6joX8MZ_nV1M18qOzC5GwdZGYJlgpj2rtai3iKLyBhsqIjFpLCXFyORtwHdgETyZ6pZ8LT3zafwNHfFVX5tRKH7WW8DvdzwdqskpfhrCmH7uMHZ-N_Jd-Atc7OjC7bibEJPZpsweoX9sE-nPAUidqIIDXRtI7GnliCbc8qaqt5Rqe30_Hj2TY8ja8fRzdxVzchdqnQTUwCM-6trFkZS6WTonKkDGamEkpX2rksLRIUVHu2L2SbpEo9rxuLWMkUc6F2YHkyndAuRDVRQTxubNz6rZ_KXClEpXUtMeEWBnA-B9S-tvQYNrgVwtgWf-vxtx3-A7jyoC8-9dzW4QWDZTtVscK7ZKLOEkeeoKxGXnJUIWvURqNKzAD6HuBFIx22AziYD6Ht9PDdsrcWGBGN3Pv7r31Y8QK2QZUDWG7eZnTIZkZTHoX59QnqRcuO
  priority: 102
  providerName: IEEE
Title The Internet of Federated Things (IoFT)
URI https://ieeexplore.ieee.org/document/9611259
https://www.proquest.com/docview/2604926291
https://doaj.org/article/062590f52ce0422fa225371fa898a329
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQUBCBUmVAAiSi-iNx7LFURIWBqZW6WZfEHlsE4f9zttOqiIGFNYkd-53Pd2f53hFyC5AzVuc0q6XlGWqizKDlkDUC6sYndgKEW75vcr7MX1fFaq_Ul78TFumBI3AT6h106greWE9X5QAXoCiZA6UVCB5T96jeC6bCHqyY1EXZ0wzh-8l0NsMZYUDIGcapnhdP_TBFgbG_L7Hya18OxqY6Ice9l5hO4-hOyYFdn5GjPe7AIblDAafxPM926callaeFQM-xTWMtzvT-ZVMtHs7JsnpezOZZX_Uga3KqusxSKHB0zKEq1ULxsm2s0FDolgrVqqYp8pIDtc5zdQF6FG3uWdkkYy3LQVJxQQbrzdpektRZW1pEHV1Tb7htLYUAEEo5Bhx7SMjjFgDzHsktTAgKqDYRL-PxMj1eCXnyIO0-9czU4QHKy_TyMn_JKyFDD_GuE40DxxYJGW0hN70WfRqMtQKfoWZX__Hra3LopxMPUEZk0H182Rt0Kbp6HFbPOGT_fQNwmMGZ
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOJQeKJQilm4hh0ptJbJrx3nYR7pitcvrtEjcrIkzuSDtIshe-usZO9kVLRx6i6LEmnz22N9M7G8AviOmUpapiMuckpg9MY-xSjB2CkvnD3Yihl2-t_nkLr28z-434Gx9FoaIwuYzGvjL8C-_WrilT5UNTc7sIDObsM28Wuftaa11RsWXkDBZ0UkLSWGG56MRfwUHgYnk2NRr4em_lp-g0t-VVXkzF4cFZvwJblamtftKHgbLphy4P_-oNv6v7Xuw2zHN6LwdGvuwQfPP8PGV_uAB_OBBErU5QWqiRR2NvbQEs88qaut5Rj-ni_Hs1xe4G1_MRpO4q5wQu1ToJiaBGX-trNkdS6WTonKkDGamEkpX2rksLRIUVHu9L2RWUqVe2Y1NrGSKuVCHsDVfzOkIopqoIO45prd-8acyVwpRaV1LTLiFHpytALWPrUCGDYGFMLbF33r8bYd_D3570NePenXrcIPBsp2zWOGDMlFniSMvUVYjTzqqkDVqo1ElpgcHHuB1Ix22PeivutB2nvhsOV4LmohGHr__1il8mMxuru319PbqK-x4Y9sUSx-2mqclfWPS0ZQnYay9AL4xztk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Internet+of+Federated+Things+%28IoFT%29&rft.jtitle=IEEE+access&rft.au=Kontar%2C+Raed&rft.au=Shi%2C+Naichen&rft.au=Yue%2C+Xubo&rft.au=Chung%2C+Seokhyun&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=156071&rft.epage=156113&rft_id=info:doi/10.1109%2FACCESS.2021.3127448&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3127448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon