The Internet of Federated Things (IoFT)
The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the "cloud" will be substituted by the "crowd" where model training is brought to the edge, allowing IoT devices to collaboratively extract knowledge and build smart ana...
Saved in:
Published in | IEEE access Vol. 9; pp. 156071 - 156113 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the "cloud" will be substituted by the "crowd" where model training is brought to the edge, allowing IoT devices to collaboratively extract knowledge and build smart analytics/models while keeping their personal data stored locally. This paradigm shift was set into motion by the tremendous increase in computational power on IoT devices and the recent advances in decentralized and privacy-preserving model training, coined as federated learning (FL). This article provides a vision for IoFT and a systematic overview of current efforts towards realizing this vision. Specifically, we first introduce the defining characteristics of IoFT and discuss FL data-driven approaches, opportunities, and challenges that allow decentralized inference within three dimensions: (i) a global model that maximizes utility across all IoT devices, (ii) a personalized model that borrows strengths across all devices yet retains its own model, (iii) a meta-learning model that quickly adapts to new devices or learning tasks. We end by describing the vision and challenges of IoFT in reshaping different industries through the lens of domain experts. Those industries include manufacturing, transportation, energy, healthcare, quality & reliability, business, and computing. |
---|---|
AbstractList | The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the “cloud” will be substituted by the “crowd” where model training is brought to the edge, allowing IoT devices to collaboratively extract knowledge and build smart analytics/models while keeping their personal data stored locally. This paradigm shift was set into motion by the tremendous increase in computational power on IoT devices and the recent advances in decentralized and privacy-preserving model training, coined as federated learning (FL). This article provides a vision for IoFT and a systematic overview of current efforts towards realizing this vision. Specifically, we first introduce the defining characteristics of IoFT and discuss FL data-driven approaches, opportunities, and challenges that allow decentralized inference within three dimensions: (i) a global model that maximizes utility across all IoT devices, (ii) a personalized model that borrows strengths across all devices yet retains its own model, (iii) a meta-learning model that quickly adapts to new devices or learning tasks. We end by describing the vision and challenges of IoFT in reshaping different industries through the lens of domain experts. Those industries include manufacturing, transportation, energy, healthcare, quality & reliability, business, and computing. |
Author | Kontar, Raed Yue, Xubo Saigal, Romesh Chung, Seokhyun Masoud, Neda Jin, Jionghua Ye, Zhi-Sheng Okwudire, Chinedum E. Singh, Karandeep Byon, Eunshin Kontar, Wissam Shi, Naichen Nouiehed, Maher Raskutti, Garvesh Chowdhury, Mosharaf |
Author_xml | – sequence: 1 givenname: Raed orcidid: 0000-0002-4546-324X surname: Kontar fullname: Kontar, Raed email: alkontar@umich.edu organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 2 givenname: Naichen surname: Shi fullname: Shi, Naichen organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 3 givenname: Xubo orcidid: 0000-0001-9929-8895 surname: Yue fullname: Yue, Xubo organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 4 givenname: Seokhyun orcidid: 0000-0001-5176-4180 surname: Chung fullname: Chung, Seokhyun organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 5 givenname: Eunshin orcidid: 0000-0002-2506-1606 surname: Byon fullname: Byon, Eunshin organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 6 givenname: Mosharaf orcidid: 0000-0003-0884-6740 surname: Chowdhury fullname: Chowdhury, Mosharaf organization: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA – sequence: 7 givenname: Jionghua orcidid: 0000-0002-7786-8110 surname: Jin fullname: Jin, Jionghua organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 8 givenname: Wissam surname: Kontar fullname: Kontar, Wissam organization: Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA – sequence: 9 givenname: Neda orcidid: 0000-0002-6526-3317 surname: Masoud fullname: Masoud, Neda organization: Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 10 givenname: Maher orcidid: 0000-0001-8089-7011 surname: Nouiehed fullname: Nouiehed, Maher organization: Department of Industrial Engineering, American University of Beirut, Beirut, Lebanon – sequence: 11 givenname: Chinedum E. orcidid: 0000-0001-6910-8827 surname: Okwudire fullname: Okwudire, Chinedum E. organization: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 12 givenname: Garvesh surname: Raskutti fullname: Raskutti, Garvesh organization: Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA – sequence: 13 givenname: Romesh orcidid: 0000-0001-8086-9328 surname: Saigal fullname: Saigal, Romesh organization: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA – sequence: 14 givenname: Karandeep surname: Singh fullname: Singh, Karandeep organization: Department of Learning Health Sciences, University of Michigan, Ann Arbor, MI, USA – sequence: 15 givenname: Zhi-Sheng orcidid: 0000-0001-5731-3911 surname: Ye fullname: Ye, Zhi-Sheng organization: Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore |
BookMark | eNpNULFOwzAQtVCRKKVf0CUSAzCk2Gc7sccqaiFSJYaG2TLJpU1V4uKkA3-PSyrELXd6uvfu3bslo9a1SMiM0TljVD8vsmy52cyBAptzBqkQ6oqMgSU65pIno3_zDZl23Z6GUgGS6Zg8FDuM8rZH32IfuTpaYYXe9lhFxa5pt130mLtV8XRHrmt76HB66RPyvloW2Wu8fnvJs8U6LgVVfYzUymCA1alKP7iCtCqRayt1RbmqVFlKkYKlWHMqpaWJqAQwLhLGKiZsQvmE5INu5ezeHH3zaf23cbYxv4DzW2N935QHNDQBqWktoUQqAGoLIHnKaqu0shx00LoftI7efZ2w683enXwb7BtIqNCQgGZhiw9bpXdd57H-u8qoOQdshoDNOWBzCTiwZgOrQcQ_hg6PBFP8B45Aczk |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1080_00224065_2023_2246600 crossref_primary_10_1016_j_comcom_2022_09_016 crossref_primary_10_1080_24725854_2024_2367224 crossref_primary_10_1016_j_cose_2023_103106 crossref_primary_10_1080_24725579_2024_2333261 crossref_primary_10_1080_24725854_2024_2360619 crossref_primary_10_1016_j_jmsy_2022_06_010 crossref_primary_10_1080_00401706_2024_2365732 crossref_primary_10_1109_JIOT_2023_3299573 crossref_primary_10_1109_ACCESS_2023_3244194 crossref_primary_10_1080_00401706_2024_2333506 crossref_primary_10_1080_24725854_2024_2337068 crossref_primary_10_3390_app14135454 crossref_primary_10_3390_app132312776 crossref_primary_10_1016_j_jmsy_2023_05_012 crossref_primary_10_1016_j_jmsy_2024_04_031 crossref_primary_10_1109_TPAMI_2024_3355289 crossref_primary_10_1287_ijds_2022_0022 crossref_primary_10_1080_24725854_2022_2157912 crossref_primary_10_1080_24725854_2024_2352578 crossref_primary_10_1080_00401706_2022_2157882 crossref_primary_10_3390_s22031084 crossref_primary_10_1080_00401706_2023_2238834 crossref_primary_10_1007_s12559_024_10310_3 crossref_primary_10_1109_ACCESS_2022_3165551 |
Cites_doi | 10.1137/1.9780898718768 10.1609/aaai.v33i01.33017858 10.1201/b18401 10.1007/978-3-030-32692-0_16 10.1038/s41746-020-00308-0 10.1016/j.ijmedinf.2018.01.007 10.1109/JIOT.2019.2940820 10.1080/00401706.2018.1451390 10.1093/jamia/ocaa341 10.1109/ETFA.2016.7733661 10.1002/qre.2077 10.1016/j.apenergy.2021.117068 10.1016/j.trc.2020.102830 10.1016/j.rser.2020.109861 10.1080/01621459.2016.1211016 10.1109/JIOT.2020.3030072 10.1080/24725854.2021.1875520 10.1109/TPAMI.2021.3057446 10.1007/s00211-010-0331-6 10.1073/pnas.0803205106 10.1080/00401706.2013.869263 10.1080/00031305.2019.1700163 10.1016/j.jbi.2015.04.012 10.1080/00401706.2015.1096827 10.1109/TEC.2013.2295301 10.1198/TECH.2011.08132 10.1109/TR.2017.2717190 10.1007/978-3-030-32381-3_16 10.1109/TSTE.2020.2965444 10.1073/pnas.1611835114 10.1109/TASE.2020.2986269 10.1137/1.9781611976700.21 10.1145/3318464.3389711 10.1007/s10479-007-0170-8 10.1145/2785956.2787505 10.1561/2200000024 10.1016/j.apenergy.2017.06.066 10.1109/ICC.2019.8761187 10.1145/3386367.3433030 10.1201/9780367815493 10.1007/s11837-019-03549-x 10.1155/2015/431047 10.7551/mitpress/9780262017091.001.0001 10.1109/LSP.2018.2810121 10.1155/2018/6430950 10.1145/3230543.3230554 10.1145/3357384.3357902 10.1016/j.enbuild.2020.110450 10.1109/MNET.2019.1800286 10.7326/M18-1376 10.1145/2783258.2783311 10.1214/13-AOAS666 10.1115/1.4041833 10.1080/03052150902852999 10.1109/ICCD46524.2019.00038 10.1002/net.21736 10.1115/1.4030009 10.1561/9781680837896 10.1016/j.trc.2020.02.008 10.1109/WorldS450073.2020.9210355 10.1016/S0378-3758(00)00179-8 10.1016/j.energy.2014.01.073 10.1145/3308558.3313433 10.1016/j.buildenv.2020.106879 10.1002/asmb.2019 10.1080/0740817X.2016.1204489 10.1115/1.4024661 10.3390/inventions3030056 10.1161/CIRCOUTCOMES.121.007858 10.1145/3298981 10.1109/TASE.2013.2287101 10.1145/3230543.3230574 10.1016/j.trb.2019.01.012 10.1109/TKDE.2009.191 10.1016/j.trb.2017.01.004 10.1016/S0140-6736(21)00722-4 10.1016/j.apenergy.2018.11.072 10.1016/j.comnet.2010.05.010 10.1023/A:1007379606734 10.1145/3152434.3152441 10.1016/j.mechatronics.2017.09.002 10.3390/math9010019 10.1109/ICMLANT50963.2020.9355973 10.1109/TCST.2021.3056751 10.1371/journal.pone.0230706 10.1109/IEEECONF44664.2019.9049023 10.1080/24725854.2019.1628374 10.1038/s41598-020-69250-1 10.1016/j.compenvurbsys.2017.07.006 10.3390/en13020494 10.1007/s10898-012-9951-y 10.1109/TSTE.2015.2497283 10.1137/0103003 10.1007/s10107-018-1303-3 10.1111/rssb.12314 10.1145/3128572.3140448 10.1007/BF02759761 10.1097/01.CCM.0000215112.84523.F0 10.1109/WF-IoT48130.2020.9221089 10.1109/JAS.2019.1911462 10.1137/140954362 10.1145/2018436.2018448 10.2307/j.ctv7h0rwr 10.1109/ACCESS.2020.3013541 10.1109/MCOM.001.1900461 10.1007/978-3-642-20192-9 10.1109/HICSS.2014.304 10.1080/00401706.2016.1172027 10.20485/jsaeijae.9.3_158 10.1016/j.ress.2018.03.013 10.1145/3098822.3098843 10.1109/TPAMI.2020.2987482 10.3390/atmos10120727 10.1109/TIP.2012.2205006 10.1109/BigData50022.2020.9378043 10.1080/00207543.2016.1192302 10.1126/science.abg4924 10.3390/app10114004 10.1145/3132747.3132769 10.1186/s13174-015-0029-1 10.4236/jcc.2015.35021 10.1109/ACCESS.2017.2682499 10.1109/TR.2016.2611625 10.1080/24725854.2017.1299955 10.1007/s10994-007-5040-8 10.2307/2297484 10.1214/10-AOS825 10.1109/TPAMI.2018.2889774 10.1145/3376897.3377862 10.1109/MSP.2020.2975749 10.1093/biomet/asm018 10.1016/j.apenergy.2016.06.052 10.1111/1475-6773.12654 10.3390/jmmp1020015 10.1109/COMST.2020.2986024 10.1145/3183713.3196909 10.1016/j.enbuild.2012.01.033 10.1016/j.rcim.2019.101880 10.1145/3349614.3356026 10.1109/TITS.2014.2320133 10.1109/TPDS.2020.2975189 10.1109/TIE.2019.2907440 10.1093/jamia/ocy017 10.5220/0010243202360242 10.1109/TITS.2015.2413453 10.1109/TCOMM.2019.2956472 10.1049/iet-its.2018.0064 10.1109/TWC.2020.3031503 10.1080/00401706.2017.1383310 10.18653/v1/K19-1012 10.2172/1508212 10.1513/AnnalsATS.202006-698OC 10.1080/01621459.2017.1285773 10.1109/TSTE.2021.3069111 10.3390/su10103491 10.1016/j.promfg.2018.07.132 10.1111/j.1467-937X.2008.00486.x 10.1016/j.energy.2020.117205 10.1016/j.trc.2019.04.008 10.1145/2486001.2486020 10.1214/11-EJS631 10.1109/TASE.2015.2440093 10.1197/jamia.M3191 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3127448 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 156113 |
ExternalDocumentID | oai_doaj_org_article_062590f52ce0422fa225371fa898a329 10_1109_ACCESS_2021_3127448 9611259 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: CPS1931950 funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-e0a57441f787b3827dce39a59d038d8cc5472a0ef3055a064d42134611d14a603 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:14:33 EDT 2024 Thu Oct 10 19:17:01 EDT 2024 Fri Aug 23 00:57:37 EDT 2024 Wed Jun 26 19:25:16 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-e0a57441f787b3827dce39a59d038d8cc5472a0ef3055a064d42134611d14a603 |
ORCID | 0000-0001-6910-8827 0000-0003-0884-6740 0000-0001-5176-4180 0000-0001-8086-9328 0000-0002-4546-324X 0000-0001-8089-7011 0000-0002-2506-1606 0000-0002-7786-8110 0000-0001-9929-8895 0000-0002-6526-3317 0000-0001-5731-3911 |
OpenAccessLink | https://doaj.org/article/062590f52ce0422fa225371fa898a329 |
PQID | 2604926291 |
PQPubID | 4845423 |
PageCount | 43 |
ParticipantIDs | proquest_journals_2604926291 doaj_primary_oai_doaj_org_article_062590f52ce0422fa225371fa898a329 crossref_primary_10_1109_ACCESS_2021_3127448 ieee_primary_9611259 |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref329 ref59 ref326 ref205 ref58 kumar (ref156) 2012 ref325 ref204 ref55 (ref99) 2019 ref54 ref202 hardt (ref107) 2016; 29 liu (ref185) 2020 kim (ref141) 2019 ref209 grant (ref104) 2018 (ref142) 2019 li (ref174) 2020 yang (ref331) 2018 (ref293) 2020 beimel (ref20) 2019 ref210 lian (ref177) 2017 liu (ref181) 2009; 10 ref46 ref339 ref218 ref45 ref48 ref216 ref47 yurochkin (ref343) 2019 ref338 ref335 chen (ref51) 2020 ref44 ref333 hanzely (ref105) 2020 ref213 ramaswamy (ref257) 2019 (ref79) 2020 ref49 rusu (ref270) 2019 ref9 ref4 drineas (ref73) 2005; 6 huang (ref118) 2018 ref6 baharlouei (ref15) 2020 ref5 ref221 ref40 ref220 yuan (ref337) 2020 yampikulsakul (ref327) 2014; 29 kone?ný (ref149) 2016 ref35 ref34 ref307 ref37 ref304 ref36 ref305 ref31 ref30 ref33 ref32 (ref292) 2020 nichol (ref225) 2018 ref38 chen (ref43) 2019 (ref350) 2019 ref309 hsieh (ref115) 2018 wu (ref322) 2011; 552 wu (ref323) 2020 peter bartlett (ref16) 2002; 3 denson (ref66) 2014 (ref212) 2019 ref310 ref24 ref318 ref26 ref25 ref316 ref313 k williams (ref317) 2006; 2 ref22 ref311 namkoong (ref219) 2017 nichol (ref226) 2018 ref28 ref27 ryu (ref272) 2016; 16 ref319 ref29 (ref60) 2019 bellet (ref21) 2018 goodfellow (ref98) 2014; 27 laaper (ref157) 2020 zhao (ref355) 2018 ref321 (ref67) 2017 ref200 deng (ref65) 2020 kang (ref136) 2011 chen (ref42) 2021 bhowmick (ref23) 2018 ref128 pearl (ref245) 2000; 29 ref249 ref129 ref126 ref247 ref96 ref127 ref248 ref125 ref246 rasmussen (ref261) 2006 mai (ref201) 2012 hospedales (ref112) 2020 lin (ref180) 2020 mahar (ref199) 2011 (ref302) 2019 gonçalves (ref97) 2016; 17 liu (ref184) 2016 ref93 ref254 munkhdalai (ref217) 2017 ref134 ref132 ref253 ref250 (ref57) 2020 finn (ref88) 2017 ref130 ref251 (ref164) 2019 ref89 ref139 salimans (ref273) 2017 ref86 ref85 ref135 ref256 yaz (ref332) 2019 yang (ref330) 2019 gordon (ref101) 2018 vaswani (ref301) 2017; 30 garnelo (ref95) 2018 patacchiola (ref242) 2020 wu (ref324) 2018 ref144 ref145 chen (ref52) 2017 ref263 ref264 zou (ref361) 2020 seward (ref282) 2018 mohri (ref214) 2019; 97 ref140 pu liang (ref178) 2020 dinh (ref70) 2020 reisizadeh (ref267) 2019 zhu (ref357) 2019 farooq (ref83) 2020 ref348 (ref215) 2017 ref227 ref228 ref346 ref75 ref347 ref74 ref77 ref223 ref102 radford (ref255) 2019 ref76 ref224 ref103 (ref11) 2021 louizos (ref189) 2019 wellener (ref314) 2019 ref232 ref111 li (ref169) 2020 ref354 ref233 yoon (ref334) 2018 ref110 kone?ný (ref150) 2016 koloskova (ref147) 2019 ref238 ref117 ref69 ref239 ref64 ref358 ref237 ref234 huang (ref119) 2020 ref113 ref356 ref114 shamir (ref283) 2014; 32 jee cho (ref53) 2020 hardy (ref108) 2017 liu (ref187) 2017 dolezal (ref71) 2020 raskutti (ref260) 2014; 15 (ref12) 2018 li (ref176) 2017 kingma (ref143) 2015 chen (ref50) 2019 ref122 ref244 schmidt (ref281) 2013 ref62 ref120 ref61 ref360 madakam (ref195) 2015; 3 patacchiola (ref241) 2019 (ref165) 2019 (ref236) 2009 ref168 singh (ref286) 2019 (ref56) 2020 garnelo (ref94) 2018 behrendt (ref19) 2017 zhang (ref353) 2012 jiang (ref131) 2019 ref290 ref291 ref299 ref175 ref296 ref173 ref294 ref295 ravi (ref262) 2019 ref171 lacoste (ref158) 2017 lyu (ref193) 2020 meeker (ref211) 1998 ref179 chen (ref39) 2018 ma (ref194) 2019 yan (ref328) 2020 (ref10) 2019 ghuhan arivazhagan (ref8) 2019 (ref1) 2020 ref188 mansour (ref203) 2020 ref186 mcdonald (ref206) 2009; 22 nock (ref230) 2018 (ref269) 2021 ref182 yu (ref336) 2020 ref183 luo (ref191) 2019 ref148 ref268 lacoste (ref159) 2018 edwards (ref78) 2017 li (ref172) 2019 (ref231) 2009 sattler (ref279) 2019 mcmahan (ref208) 2017 acar (ref3) 2019 (ref84) 2020 wang (ref303) 2020 ref155 maddox (ref196) 2019; 32 ref277 ref274 ref153 (ref235) 2021 ref275 ref154 ref151 ref152 ref271 smith (ref288) 2017 chen (ref41) 2020 ref278 (ref276) 2021 porter (ref252) 2014; 92 ref280 zafar (ref344) 2017 kairouz (ref133) 2019 hartmann (ref109) 2019 ref287 ref167 snell (ref289) 2017 foster (ref91) 2017 hard (ref106) 2018 reddi (ref266) 2021 ref284 ref163 bach (ref13) 2008; 9 ref160 bauer (ref17) 2017 tang (ref297) 2019 nguyen (ref222) 2018; 210 raskutti (ref258) 2016; 17 zinkevich (ref359) 2010; 23 ref18 li (ref170) 2018 zhang (ref351) 2021 ding (ref68) 2017 fitzgerald (ref90) 2016 huo (ref121) 2018 bagdasaryan (ref14) 2020 katharopoulos (ref138) 2018 lai (ref161) 2020 pathak (ref243) 2020 hu (ref116) 2020 culver (ref63) 2020 zeng (ref345) 2021 wang (ref308) 2019 yue (ref340) 2019 field (ref87) 2000 raskutti (ref259) 2012; 13 mckinsey (ref207) 2016 zhang (ref349) 2018; 1 madry (ref198) 2017 (ref229) 2021 reddi (ref265) 2018 (ref81) 2021 (ref7) 2019 koller (ref146) 2009 (ref320) 2019 ref2 fallah (ref82) 2020; 33 leurent (ref166) 2018 wei (ref312) 2019 ref192 ref190 yue (ref341) 2019 ref197 (ref100) 2021 park (ref240) 2015 friedman (ref92) 2001; 1 yue (ref342) 2021 izmailov (ref124) 2018 (ref80) 2020 karimireddy (ref137) 2020 dong (ref72) 2015 wang (ref306) 2019 tossou (ref298) 2019 (ref123) 2020 lai (ref162) 2020 welling (ref315) 2011 zhang (ref352) 2020 shi (ref285) 2021 vanschoren (ref300) 2018 |
References_xml | – ident: ref59 doi: 10.1137/1.9780898718768 – year: 2020 ident: ref15 article-title: Rényi fair inference publication-title: arXiv 1906 12005 contributor: fullname: baharlouei – ident: ref122 doi: 10.1609/aaai.v33i01.33017858 – ident: ref110 doi: 10.1201/b18401 – year: 2020 ident: ref56 publication-title: Ford Temporarily Closes Two Plants After Three Workers Test Positive for Coronavirus – year: 2018 ident: ref226 article-title: On first-order meta-learning algorithms publication-title: arXiv 1803 02999 contributor: fullname: nichol – year: 2018 ident: ref106 article-title: Federated learning for mobile keyboard prediction publication-title: arXiv 1811 03604 contributor: fullname: hard – year: 2020 ident: ref178 article-title: Think locally, act globally: Federated learning with local and global representations publication-title: arXiv 2001 01523 contributor: fullname: pu liang – ident: ref175 doi: 10.1007/978-3-030-32692-0_16 – ident: ref28 doi: 10.1038/s41746-020-00308-0 – volume: 6 start-page: 2153 year: 2005 ident: ref73 article-title: On the Nyström method for approximating a Gram matrix for improved kernel-based learning publication-title: J Mach Learn Res contributor: fullname: drineas – start-page: 8388 year: 2019 ident: ref267 article-title: Robust and communication-efficient collaborative learning publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: reisizadeh – volume: 92 start-page: 64 year: 2014 ident: ref252 article-title: How smart, connected products are transforming competition publication-title: Harvard Bus Rev contributor: fullname: porter – ident: ref29 doi: 10.1016/j.ijmedinf.2018.01.007 – ident: ref134 doi: 10.1109/JIOT.2019.2940820 – volume: 32 start-page: 1000 year: 2014 ident: ref283 article-title: Communication-efficient distributed optimization using an approximate newton-type method publication-title: Proc 31st Int Conf Mach Learn contributor: fullname: shamir – year: 2021 ident: ref345 article-title: Improving fairness via federated learning publication-title: arXiv 2110 15545 contributor: fullname: zeng – start-page: 4222 year: 2019 ident: ref194 article-title: Variational implicit processes publication-title: Proc Int Conf Mach Learn contributor: fullname: ma – ident: ref132 doi: 10.1080/00401706.2018.1451390 – start-page: 2525 year: 2018 ident: ref138 article-title: Not all samples are created equal: Deep learning with importance sampling publication-title: Proc 35 th Int Conf Mach Learn contributor: fullname: katharopoulos – ident: ref278 doi: 10.1093/jamia/ocaa341 – ident: ref111 doi: 10.1109/ETFA.2016.7733661 – ident: ref54 doi: 10.1002/qre.2077 – ident: ref304 doi: 10.1016/j.apenergy.2021.117068 – year: 2019 ident: ref7 publication-title: Designing for Privacy – year: 2018 ident: ref118 article-title: LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data publication-title: arXiv 1811 12629 contributor: fullname: huang – start-page: 273 year: 2020 ident: ref161 article-title: Sol: A federated execution engine for fast distributed computation over slow networks publication-title: Proc USENIX NSDI contributor: fullname: lai – year: 2019 ident: ref109 article-title: Federated learning for ranking browser history suggestions publication-title: arXiv 1911 11807 contributor: fullname: hartmann – ident: ref4 doi: 10.1016/j.trc.2020.102830 – ident: ref237 doi: 10.1016/j.rser.2020.109861 – year: 2019 ident: ref298 article-title: Adaptive deep kernel learning publication-title: arXiv 1905 12131 contributor: fullname: tossou – ident: ref249 doi: 10.1080/01621459.2016.1211016 – start-page: 3571 year: 2017 ident: ref68 article-title: Collecting telemetry data privately publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: ding – volume: 33 start-page: 3557 year: 2020 ident: ref82 article-title: Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: fallah – ident: ref256 doi: 10.1109/JIOT.2020.3030072 – volume: 10 start-page: 1 year: 2009 ident: ref181 article-title: The nonparanormal: Semiparametric estimation of high-dimensional undirected graphs publication-title: J Mach Learn Res contributor: fullname: liu – ident: ref305 doi: 10.1080/24725854.2021.1875520 – ident: ref64 doi: 10.1109/TPAMI.2021.3057446 – ident: ref74 doi: 10.1007/s00211-010-0331-6 – ident: ref200 doi: 10.1073/pnas.0803205106 – start-page: 7252 year: 2019 ident: ref343 article-title: Bayesian nonparametric federated learning of neural networks publication-title: Proc Int Conf Mach Learn contributor: fullname: yurochkin – year: 2019 ident: ref262 article-title: Amortized Bayesian meta-learning publication-title: Proc ICLR (Poster) contributor: fullname: ravi – year: 2019 ident: ref20 article-title: The power of synergy in differential privacy: Combining a small curator with local randomizers publication-title: arXiv 1912 08951 contributor: fullname: beimel – ident: ref120 doi: 10.1080/00401706.2013.869263 – year: 2019 ident: ref306 article-title: Federated evaluation of on-device personalization publication-title: arXiv 1910 10252 contributor: fullname: wang – year: 2019 ident: ref302 publication-title: The federated future is ready for shipping – ident: ref254 doi: 10.1080/00031305.2019.1700163 – ident: ref309 doi: 10.1016/j.jbi.2015.04.012 – ident: ref46 doi: 10.1080/00401706.2015.1096827 – volume: 29 start-page: 288 year: 2014 ident: ref327 article-title: Condition monitoring of wind power system with nonparametric regression analysis publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2013.2295301 contributor: fullname: yampikulsakul – year: 2020 ident: ref1 publication-title: Ford SYNC – ident: ref135 doi: 10.1198/TECH.2011.08132 – ident: ref152 doi: 10.1109/TR.2017.2717190 – ident: ref295 doi: 10.1007/978-3-030-32381-3_16 – ident: ref126 doi: 10.1109/TSTE.2020.2965444 – ident: ref144 doi: 10.1073/pnas.1611835114 – ident: ref114 doi: 10.1109/TASE.2020.2986269 – ident: ref75 doi: 10.1137/1.9781611976700.21 – ident: ref69 doi: 10.1145/3318464.3389711 – start-page: 2554 year: 2017 ident: ref217 article-title: Meta networks publication-title: Proc Int Conf Mach Learn contributor: fullname: munkhdalai – year: 2021 ident: ref229 publication-title: Climate Change Global Temperature – year: 2019 ident: ref241 article-title: Bayesian meta-learning for the few-shot setting via deep kernels publication-title: arXiv 1910 05199 contributor: fullname: patacchiola – year: 2018 ident: ref166 publication-title: The Next Economic Growth Engine Scaling Fourth Industrial Revolution Technologies in Production contributor: fullname: leurent – ident: ref61 doi: 10.1007/s10479-007-0170-8 – volume: 13 start-page: 398 year: 2012 ident: ref259 article-title: Minimax-optimal rates for sparse additive models over kernel classes via convex programming publication-title: J Mach Learn Res contributor: fullname: raskutti – year: 2012 ident: ref353 article-title: A convex formulation for learning task relationships in multi-task learning publication-title: arXiv 1203 3536 contributor: fullname: zhang – year: 2020 ident: ref336 article-title: Salvaging federated learning by local adaptation publication-title: arXiv 2002 04758 contributor: fullname: yu – ident: ref253 doi: 10.1145/2785956.2787505 – ident: ref30 doi: 10.1561/2200000024 – start-page: 1704 year: 2018 ident: ref94 article-title: Conditional neural processes publication-title: Proc Int Conf Mach Learn contributor: fullname: garnelo – ident: ref220 doi: 10.1016/j.apenergy.2017.06.066 – ident: ref128 doi: 10.1109/ICC.2019.8761187 – ident: ref96 doi: 10.1145/3386367.3433030 – year: 2019 ident: ref357 article-title: Deep leakage from gradients publication-title: Proc 33rd Conf Neural Inf Process Syst contributor: fullname: zhu – ident: ref103 doi: 10.1201/9780367815493 – year: 2017 ident: ref67 article-title: Learning with privacy at scale publication-title: Mach Learn Appl – year: 2018 ident: ref355 article-title: Federated learning with non-IID data publication-title: arXiv 1806 00582 contributor: fullname: zhao – volume: 3 start-page: 463 year: 2002 ident: ref16 article-title: Rademacher and Gaussian complexities: Risk bounds and structural results publication-title: J Mach Learn Res contributor: fullname: peter bartlett – volume: 29 start-page: 3315 year: 2016 ident: ref107 article-title: Equality of opportunity in supervised learning publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: hardt – ident: ref37 doi: 10.1007/s11837-019-03549-x – year: 2019 ident: ref131 article-title: Improving federated learning personalization via model agnostic meta learning publication-title: arXiv 1909 12488 contributor: fullname: jiang – start-page: 681 year: 2011 ident: ref315 article-title: Bayesian learning via stochastic gradient Langevin dynamics publication-title: Proc 28th Int Conf Mach Learn (ICML) contributor: fullname: welling – ident: ref40 doi: 10.1155/2015/431047 – ident: ref294 doi: 10.7551/mitpress/9780262017091.001.0001 – year: 2019 ident: ref50 article-title: A closer look at few-shot classification publication-title: arXiv 1904 04232 contributor: fullname: chen – ident: ref190 doi: 10.1109/LSP.2018.2810121 – ident: ref354 doi: 10.1155/2018/6430950 – year: 2020 ident: ref123 publication-title: Can 3D Printing Plug the Coronavirus Equipment Gap? – year: 2020 ident: ref119 article-title: Fairness and accuracy in federated learning publication-title: arXiv 2012 10069 contributor: fullname: huang – year: 2019 ident: ref279 article-title: Clustered federated learning: Model-agnostic distributed multi-task optimization under privacy constraints publication-title: arXiv 1910 01991 contributor: fullname: sattler – ident: ref346 doi: 10.1145/3230543.3230554 – start-page: 473 year: 2018 ident: ref21 article-title: Personalized and private peer-to-peer machine learning publication-title: Proc Int Conf Artif Intell Statist contributor: fullname: bellet – year: 2016 ident: ref90 publication-title: General Motors Relies on IoT to Anticipate Customers Needs contributor: fullname: fitzgerald – year: 2019 ident: ref133 article-title: Advances and open problems in federated learning publication-title: arXiv 1912 04977 contributor: fullname: kairouz – year: 2009 ident: ref231 publication-title: Office for Civil Rights – volume: 15 start-page: 335 year: 2014 ident: ref260 article-title: Early stopping and non-parametric regression: An optimal data-dependent stopping rule publication-title: J Mach Learn Res contributor: fullname: raskutti – year: 2018 ident: ref101 article-title: Meta-learning probabilistic inference for prediction publication-title: arXiv 1805 09921 contributor: fullname: gordon – start-page: 5132 year: 2020 ident: ref137 article-title: SCAFFOLD: Stochastic controlled averaging for federated learning publication-title: Proc Int Conf Mach Learn contributor: fullname: karimireddy – year: 2009 ident: ref146 publication-title: Probabilistic Graphical Models Principles and Techniques contributor: fullname: koller – year: 2017 ident: ref52 article-title: Targeted backdoor attacks on deep learning systems using data poisoning publication-title: arXiv 1712 05526 contributor: fullname: chen – year: 2018 ident: ref225 article-title: On first-order meta-learning algorithms publication-title: arXiv 1803 02999 contributor: fullname: nichol – year: 2021 ident: ref285 article-title: Fed-ensemble: Improving generalization through model ensembling in federated learning publication-title: arXiv 2107 10663 contributor: fullname: shi – ident: ref311 doi: 10.1145/3357384.3357902 – year: 2012 ident: ref201 article-title: Renewable electricity futures study. executive summary contributor: fullname: mai – ident: ref127 doi: 10.1016/j.enbuild.2020.110450 – year: 2017 ident: ref187 article-title: Trojaning attack on neural networks contributor: fullname: liu – year: 2017 ident: ref176 article-title: Meta-SGD: Learning to learn quickly for few-shot learning publication-title: arXiv 1707 09835 contributor: fullname: li – ident: ref307 doi: 10.1109/MNET.2019.1800286 – year: 2020 ident: ref203 article-title: Three approaches for personalization with applications to federated learning publication-title: arXiv 2002 10619 contributor: fullname: mansour – ident: ref319 doi: 10.7326/M18-1376 – ident: ref85 doi: 10.1145/2783258.2783311 – volume: 22 year: 2009 ident: ref206 article-title: Efficient large-scale distributed training of conditional maximum entropy models publication-title: Advances in neural information processing systems contributor: fullname: mcdonald – year: 2018 ident: ref124 article-title: Averaging weights leads to wider optima and better generalization publication-title: arXiv 1803 05407 contributor: fullname: izmailov – ident: ref333 doi: 10.1214/13-AOAS666 – year: 2020 ident: ref157 article-title: Implementing the smart factory: New perspectives for driving value contributor: fullname: laaper – ident: ref93 doi: 10.1115/1.4041833 – ident: ref325 doi: 10.1080/03052150902852999 – year: 1998 ident: ref211 publication-title: Statistical Methods for Reliability Data contributor: fullname: meeker – volume: 9 start-page: 1179 year: 2008 ident: ref13 article-title: Consistency of the group lasso and multiple kernel learning publication-title: J Mach Learn Res contributor: fullname: bach – year: 2018 ident: ref300 article-title: Meta-learning: A survey publication-title: arXiv 1810 03548 contributor: fullname: vanschoren – start-page: 962 year: 2017 ident: ref344 article-title: Fairness constraints: Mechanisms for fair classification publication-title: Artificial Intelligence and Statistics contributor: fullname: zafar – ident: ref77 doi: 10.1109/ICCD46524.2019.00038 – ident: ref145 doi: 10.1002/net.21736 – ident: ref31 doi: 10.1115/1.4030009 – ident: ref209 doi: 10.1561/9781680837896 – start-page: 495 year: 2020 ident: ref328 article-title: Learning in situ: A randomized experiment in video streaming publication-title: Proc USENIX NSDI contributor: fullname: yan – ident: ref296 doi: 10.1016/j.trc.2020.02.008 – ident: ref155 doi: 10.1109/WorldS450073.2020.9210355 – ident: ref24 doi: 10.1016/S0378-3758(00)00179-8 – ident: ref25 doi: 10.1016/j.energy.2014.01.073 – year: 2018 ident: ref159 article-title: Uncertainty in multitask transfer learning publication-title: arXiv 1806 07528 contributor: fullname: lacoste – start-page: 2938 year: 2020 ident: ref14 article-title: How to backdoor federated learning publication-title: Proc Int Conf Artif Intell Statist contributor: fullname: bagdasaryan – ident: ref168 doi: 10.1145/3308558.3313433 – ident: ref167 doi: 10.1016/j.buildenv.2020.106879 – ident: ref321 doi: 10.1002/asmb.2019 – year: 2020 ident: ref112 article-title: Meta-learning in neural networks: A survey publication-title: arXiv 2004 05439 contributor: fullname: hospedales – ident: ref335 doi: 10.1080/0740817X.2016.1204489 – start-page: 429 year: 2018 ident: ref170 article-title: Federated optimization in heterogeneous networks publication-title: Proc 3rd MLSys Conf contributor: fullname: li – year: 2019 ident: ref99 publication-title: Your chats stay private while Messages improves suggestions – year: 2017 ident: ref19 article-title: How to achieve and sustain the impact of digital manufacturing at scale contributor: fullname: behrendt – year: 2020 ident: ref53 article-title: Client selection in federated learning: Convergence analysis and power-of-choice selection strategies publication-title: arXiv 2010 01243 contributor: fullname: jee cho – ident: ref182 doi: 10.1115/1.4024661 – year: 2020 ident: ref84 publication-title: 3D Printing in FDA'Ts Rapid Response to COVID-19 – year: 2021 ident: ref11 publication-title: Amazon Web Services – volume: 2 year: 2006 ident: ref317 publication-title: Gaussian Processes for Machine Learning contributor: fullname: k williams – year: 2020 ident: ref162 article-title: Oort: Efficient federated learning via guided participant selection publication-title: arXiv 2010 06081 contributor: fullname: lai – year: 2017 ident: ref91 article-title: Assessment of demand response and advanced metering contributor: fullname: foster – ident: ref234 doi: 10.3390/inventions3030056 – start-page: 2722 year: 2020 ident: ref41 article-title: Stochastic gradient descent in correlated settings: A study on Gaussian processes publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: chen – ident: ref316 doi: 10.1161/CIRCOUTCOMES.121.007858 – start-page: 2574 year: 2017 ident: ref219 article-title: Radaptive sampling probabilities for non-smooth optimizatio publication-title: Proc 34th Int Conf Mach Learn contributor: fullname: namkoong – year: 2017 ident: ref177 article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent publication-title: arXiv 1705 09056 contributor: fullname: lian – year: 2020 ident: ref323 article-title: Fast-convergent federated learning with adaptive weighting publication-title: arXiv 2012 00661 contributor: fullname: wu – ident: ref329 doi: 10.1145/3298981 – year: 2018 ident: ref95 article-title: Neural processes publication-title: arXiv 1807 01622 contributor: fullname: garnelo – year: 2018 ident: ref265 article-title: Adaptive methods for nonconvex optimization publication-title: Proc 32nd Conf Neural Inf Process Syst (NIPS) contributor: fullname: reddi – ident: ref183 doi: 10.1109/TASE.2013.2287101 – ident: ref129 doi: 10.1145/3230543.3230574 – year: 2021 ident: ref100 publication-title: Google – ident: ref213 doi: 10.1016/j.trb.2019.01.012 – year: 2019 ident: ref191 article-title: Real-world image datasets for federated learning publication-title: arXiv 1910 11089 contributor: fullname: luo – volume: 29 year: 2000 ident: ref245 publication-title: Causality Models Reasoning and Inference contributor: fullname: pearl – year: 2018 ident: ref324 article-title: Meta-learning autoencoders for few-shot prediction publication-title: arXiv 1807 09912 contributor: fullname: wu – year: 2019 ident: ref320 publication-title: AI Chips for Self Driving Cars Will a Be 10 Billion Market by 2024 – ident: ref238 doi: 10.1109/TKDE.2009.191 – ident: ref205 doi: 10.1016/j.trb.2017.01.004 – ident: ref139 doi: 10.1016/S0140-6736(21)00722-4 – ident: ref188 doi: 10.1016/j.apenergy.2018.11.072 – ident: ref9 doi: 10.1016/j.comnet.2010.05.010 – ident: ref36 doi: 10.1023/A:1007379606734 – ident: ref299 doi: 10.1145/3152434.3152441 – year: 2020 ident: ref303 article-title: Federated learning with matched averaging publication-title: Proc Int Conf Learn Represent contributor: fullname: wang – year: 2015 ident: ref143 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent contributor: fullname: kingma – ident: ref76 doi: 10.1016/j.mechatronics.2017.09.002 – volume: 30 start-page: 5998 year: 2017 ident: ref301 article-title: Attention is all you need publication-title: Advances in neural information processing systems contributor: fullname: vaswani – ident: ref192 doi: 10.3390/math9010019 – start-page: 395 year: 2015 ident: ref72 article-title: PCC: Re-architecting congestion control for consistent high performance publication-title: Proc USENIX NSDI contributor: fullname: dong – ident: ref89 doi: 10.1109/ICMLANT50963.2020.9355973 – start-page: 1 year: 2017 ident: ref288 article-title: Federated multi-task learning publication-title: Proc 31st Conf Neural Inf Process Syst contributor: fullname: smith – year: 2020 ident: ref57 publication-title: 12-Year-Old Boy 3D Prints Masks for Frontline Workers – ident: ref280 doi: 10.1109/TCST.2021.3056751 – volume: 1 year: 2001 ident: ref92 publication-title: The Elements of Statistical Learning contributor: fullname: friedman – start-page: 1126 year: 2017 ident: ref88 article-title: Model-agnostic meta-learning for fast adaptation of deep networks publication-title: Proc Int Conf Mach Learn contributor: fullname: finn – start-page: 20865 year: 2020 ident: ref361 article-title: Gradient-EM Bayesian meta-learning publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: zou – volume: 17 start-page: 1 year: 2016 ident: ref97 article-title: Multi-task sparse structure learning with Gaussian copula models publication-title: J Mach Learn Res contributor: fullname: gonçalves – start-page: 4567 year: 2018 ident: ref282 article-title: First order generative adversarial networks publication-title: Proc Int Conf Mach Learn contributor: fullname: seward – ident: ref117 doi: 10.1371/journal.pone.0230706 – ident: ref171 doi: 10.1109/IEEECONF44664.2019.9049023 – year: 2021 ident: ref351 publication-title: On the Connection Between FEDDYN and FEDPD contributor: fullname: zhang – ident: ref47 doi: 10.1080/24725854.2019.1628374 – year: 2020 ident: ref71 publication-title: 3D Printed Face Shields for Medics and Professionals-Join Us! contributor: fullname: dolezal – volume: 97 start-page: 4615 year: 2019 ident: ref214 article-title: Agnostic federated learning publication-title: Proc 36th Int Conf Mach Learn contributor: fullname: mohri – ident: ref284 doi: 10.1038/s41598-020-69250-1 – ident: ref202 doi: 10.1016/j.compenvurbsys.2017.07.006 – ident: ref113 doi: 10.3390/en13020494 – year: 2020 ident: ref293 publication-title: Faulty Masks Flawed Tests China's Quality Control Problem in Leading Global COVID-19 Fight – year: 2019 ident: ref332 article-title: The unusual effectiveness of averaging in GAN training publication-title: Proc Int Conf Learn Represent contributor: fullname: yaz – ident: ref268 doi: 10.1007/s10898-012-9951-y – year: 2020 ident: ref79 publication-title: U S Energy Information Administration U S Energy Facts Explained – year: 2020 ident: ref116 article-title: FedMGDA+: Federated learning meets multi-objective optimization publication-title: arXiv 2006 11489 contributor: fullname: hu – year: 2006 ident: ref261 publication-title: Gaussian Processes for Machine Learning contributor: fullname: rasmussen – ident: ref360 doi: 10.1109/TSTE.2015.2497283 – year: 2020 ident: ref105 article-title: Federated learning of a mixture of global and local models publication-title: arXiv 2002 05516 contributor: fullname: hanzely – ident: ref244 doi: 10.1137/0103003 – year: 2019 ident: ref257 article-title: Federated learning for emoji prediction in a mobile keyboard publication-title: arXiv 1906 04329 contributor: fullname: ramaswamy – ident: ref58 doi: 10.1007/s10107-018-1303-3 – ident: ref250 doi: 10.1111/rssb.12314 – year: 2019 ident: ref255 article-title: Language models are unsupervised multitask learners publication-title: Proc OpenAI contributor: fullname: radford – start-page: 7057 year: 2020 ident: ref243 article-title: FedSplit: An algorithmic framework for fast federated optimization publication-title: Proc 34th Conf Neural Inf Process Syst contributor: fullname: pathak – ident: ref48 doi: 10.1145/3128572.3140448 – volume: 1 start-page: 39 year: 2018 ident: ref349 article-title: Enabling industrial Internet of Things (IIoT) towards an emerging smart energy system publication-title: Global energy interconnection contributor: fullname: zhang – start-page: 7343 year: 2018 ident: ref334 article-title: Bayesian model-agnostic meta-learning publication-title: Proc 32nd Int Conf Neural Inf Process Syst contributor: fullname: yoon – year: 2019 ident: ref312 article-title: Federated learning with differential privacy: Algorithms and performance analysis publication-title: arXiv 1911 00222 contributor: fullname: wei – ident: ref102 doi: 10.1007/BF02759761 – ident: ref358 doi: 10.1097/01.CCM.0000215112.84523.F0 – year: 2021 ident: ref342 article-title: GIFAIR-FL: An approach for group and individual fairness in federated learning publication-title: arXiv 2108 02741 contributor: fullname: yue – ident: ref224 doi: 10.1109/WF-IoT48130.2020.9221089 – ident: ref35 doi: 10.1109/JAS.2019.1911462 – ident: ref34 doi: 10.1137/140954362 – ident: ref239 doi: 10.1109/TKDE.2009.191 – year: 2017 ident: ref215 publication-title: 3-D Printing Gets a Turbo Boost From U-M Technology – ident: ref55 doi: 10.1145/2018436.2018448 – ident: ref160 doi: 10.2307/j.ctv7h0rwr – ident: ref5 doi: 10.1109/ACCESS.2020.3013541 – year: 2019 ident: ref340 article-title: The Renyi Gaussian process: Towards improved generalization publication-title: arXiv 1910 06990 contributor: fullname: yue – ident: ref227 doi: 10.1109/MCOM.001.1900461 – year: 2017 ident: ref198 article-title: Towards deep learning models resistant to adversarial attacks publication-title: arXiv 1706 06083 contributor: fullname: madry – ident: ref32 doi: 10.1007/978-3-642-20192-9 – ident: ref271 doi: 10.1109/HICSS.2014.304 – volume: 17 start-page: 1 year: 2016 ident: ref258 article-title: A statistical perspective on randomized sketching for ordinary least-squares publication-title: J Mach Learn Res contributor: fullname: raskutti – ident: ref49 doi: 10.1080/00401706.2016.1172027 – volume: 32 start-page: 13153 year: 2019 ident: ref196 article-title: A simple baseline for Bayesian uncertainty in deep learning publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: maddox – year: 2019 ident: ref164 publication-title: With Predictive Maintenance Operators Seek Improved Uptime – ident: ref86 doi: 10.20485/jsaeijae.9.3_158 – ident: ref313 doi: 10.1016/j.ress.2018.03.013 – ident: ref204 doi: 10.1145/3098822.3098843 – ident: ref151 doi: 10.1109/TPAMI.2020.2987482 – year: 2019 ident: ref43 article-title: Federated learning of out-of-vocabulary words publication-title: arXiv 1903 10635 contributor: fullname: chen – ident: ref125 doi: 10.3390/atmos10120727 – ident: ref339 doi: 10.1109/TIP.2012.2205006 – year: 2019 ident: ref172 article-title: Fair resource allocation in federated learning publication-title: arXiv 1905 10497 contributor: fullname: li – year: 2021 ident: ref276 publication-title: Samsung Galaxy Watch Active – ident: ref348 doi: 10.1109/BigData50022.2020.9378043 – ident: ref291 doi: 10.1080/00207543.2016.1192302 – ident: ref233 doi: 10.1126/science.abg4924 – ident: ref274 doi: 10.3390/app10114004 – ident: ref26 doi: 10.1145/3132747.3132769 – ident: ref140 doi: 10.1186/s13174-015-0029-1 – year: 2018 ident: ref104 article-title: Recasting gradient-based meta-learning as hierarchical Bayes publication-title: arXiv 1801 08930 contributor: fullname: grant – volume: 3 start-page: 164 year: 2015 ident: ref195 article-title: Internet of Things (IoT): A literature review publication-title: J Comput Commun doi: 10.4236/jcc.2015.35021 contributor: fullname: madakam – year: 2019 ident: ref314 article-title: Deloitte and mapi smart factory study: Capturing value through the digital journey contributor: fullname: wellener – year: 2017 ident: ref17 article-title: Discriminative k-shot learning using probabilistic models publication-title: arXiv 1706 00326 contributor: fullname: bauer – ident: ref216 doi: 10.1109/ACCESS.2017.2682499 – year: 2018 ident: ref39 article-title: Federated meta-learning with fast convergence and efficient communication publication-title: arXiv 1802 07876 contributor: fullname: chen – year: 2020 ident: ref174 article-title: Ditto: Fair and robust federated learning through personalization publication-title: arXiv 2012 04221 contributor: fullname: li – ident: ref45 doi: 10.1109/TR.2016.2611625 – year: 2014 ident: ref66 publication-title: Electronic Parts Reliability Data 2014 contributor: fullname: denson – ident: ref228 doi: 10.1080/24725854.2017.1299955 – year: 2020 ident: ref80 publication-title: Today in Energy U S EnergyInformation Administration – start-page: 21394 year: 2020 ident: ref70 article-title: Personalized federated learning with Moreau envelopes publication-title: Proc 34th Conf Neural Inf Process Syst contributor: fullname: dinh – year: 2019 ident: ref212 publication-title: 2019 manufacturing trends report – year: 2020 ident: ref51 article-title: Optimal client sampling for federated learning publication-title: arXiv 2010 13723 contributor: fullname: chen – ident: ref251 doi: 10.1007/s10994-007-5040-8 – year: 2019 ident: ref270 article-title: Meta-learning with latent embedding optimization publication-title: Proc Int Conf Learn Represent contributor: fullname: rusu – year: 2019 ident: ref8 article-title: Federated learning with personalization layers publication-title: arXiv 1912 00818 contributor: fullname: ghuhan arivazhagan – ident: ref290 doi: 10.2307/2297484 – ident: ref148 doi: 10.1214/10-AOS825 – year: 2021 ident: ref266 article-title: Adaptive federated optimization publication-title: Proc Int Conf Learn Represent contributor: fullname: reddi – start-page: 16108 year: 2020 ident: ref242 article-title: Bayesian meta-learning for the few-shot setting via deep kernels publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: patacchiola – year: 2012 ident: ref156 article-title: Learning task grouping and overlap in multi-task learning publication-title: arXiv 1206 6417 contributor: fullname: kumar – start-page: 5393 year: 2016 ident: ref184 article-title: Stein variational gradient descent: A general purpose Bayesian inference algorithm publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: liu – ident: ref347 doi: 10.1109/TPAMI.2018.2889774 – year: 2019 ident: ref10 publication-title: What is aws – year: 2020 ident: ref65 article-title: Adaptive personalized federated learning publication-title: arXiv 2003 13461 contributor: fullname: deng – start-page: 6155 year: 2019 ident: ref297 article-title: DoubleSqueeze: Parallel stochastic gradient descent with double-pass error-compensated compression publication-title: Proc Int Conf Mach Learn contributor: fullname: tang – ident: ref197 doi: 10.1145/3376897.3377862 – year: 2018 ident: ref331 article-title: Applied federated learning: Improving Google keyboard query suggestions publication-title: arXiv 1812 02903 contributor: fullname: yang – ident: ref173 doi: 10.1109/MSP.2020.2975749 – year: 2019 ident: ref165 publication-title: Declining Price of IoT Sensors Means Greater Use in Manufacturing – ident: ref338 doi: 10.1093/biomet/asm018 – year: 2021 ident: ref81 publication-title: U S Energy Information Administration Consumption and Efficiency – ident: ref356 doi: 10.1016/j.apenergy.2016.06.052 – ident: ref248 doi: 10.1111/1475-6773.12654 – volume: 27 year: 2014 ident: ref98 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: goodfellow – ident: ref18 doi: 10.3390/jmmp1020015 – year: 2016 ident: ref150 article-title: Federated learning: Strategies for improving communication efficiency publication-title: arXiv 1610 05492 contributor: fullname: kone?ný – ident: ref179 doi: 10.1109/COMST.2020.2986024 – ident: ref154 doi: 10.1145/3183713.3196909 – ident: ref22 doi: 10.1016/j.enbuild.2012.01.033 – year: 2019 ident: ref3 article-title: Federated learning based on dynamic regularization publication-title: Proc Int Conf Learn Represent contributor: fullname: acar – year: 2019 ident: ref350 publication-title: Federated Learning The Future of Distributed Machine Learning – volume: 210 start-page: 1280 year: 2018 ident: ref222 article-title: PAC-Bayesian meta-learning with implicit prior publication-title: IEEE Trans Pattern Anal Mach Intell contributor: fullname: nguyen – ident: ref232 doi: 10.1016/j.rcim.2019.101880 – volume: 23 start-page: 733 year: 2010 ident: ref359 article-title: Parallelized stochastic gradient descent publication-title: Advances in neural information processing systems contributor: fullname: zinkevich – year: 2019 ident: ref147 article-title: Decentralized deep learning with arbitrary communication compression publication-title: arXiv 1907 09356 contributor: fullname: koloskova – ident: ref130 doi: 10.1145/3349614.3356026 – ident: ref163 doi: 10.1109/TITS.2014.2320133 – ident: ref186 doi: 10.1109/TPDS.2020.2975189 – year: 2017 ident: ref108 article-title: Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption publication-title: arXiv 1711 10677 contributor: fullname: hardy – ident: ref247 doi: 10.1109/TIE.2019.2907440 – ident: ref38 doi: 10.1093/jamia/ocy017 – year: 2000 ident: ref87 publication-title: COVID-19 How Quickly Can Manufacturing Respond to the Surge in Demand? contributor: fullname: field – year: 2021 ident: ref235 publication-title: Welcome to Onstar – start-page: 631 year: 2015 ident: ref240 article-title: Learning large-scale Poisson dag models based on overdispersion scoring publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: park – year: 2018 ident: ref23 article-title: Protection against reconstruction and its applications in private federated learning publication-title: arXiv 1812 00984 contributor: fullname: bhowmick – year: 2021 ident: ref269 publication-title: The Connected Enterprise – year: 2020 ident: ref352 article-title: FedPD: A federated learning framework with optimal rates and adaptivity to non-IID data publication-title: arXiv 2005 11418 contributor: fullname: zhang – ident: ref263 doi: 10.5220/0010243202360242 – year: 2013 ident: ref281 article-title: Minimizing finite sums with the stochastic average gradient publication-title: arXiv 1309 2388 contributor: fullname: schmidt – year: 2019 ident: ref341 article-title: Variational inference of joint models using multivariate Gaussian convolution processes publication-title: arXiv 1903 03867 contributor: fullname: yue – ident: ref246 doi: 10.1109/TITS.2015.2413453 – start-page: 269 year: 2018 ident: ref115 article-title: Focus: Querying large video datasets with low latency and low cost publication-title: Proc USENIX OSDI contributor: fullname: hsieh – ident: ref275 doi: 10.1109/TCOMM.2019.2956472 – year: 2019 ident: ref286 article-title: Detailed comparison of communication efficiency of split learning and federated learning publication-title: arXiv 1909 09145 contributor: fullname: singh – ident: ref223 doi: 10.1049/iet-its.2018.0064 – ident: ref326 doi: 10.1109/TWC.2020.3031503 – ident: ref153 doi: 10.1080/00401706.2017.1383310 – ident: ref44 doi: 10.18653/v1/K19-1012 – ident: ref221 doi: 10.2172/1508212 – year: 2019 ident: ref330 article-title: Parallel distributed logistic regression for vertical federated learning without third-party coordinator publication-title: arXiv 1911 09824 contributor: fullname: yang – start-page: 521 year: 2011 ident: ref136 article-title: Learning with whom to share in multi-task feature learning publication-title: Proc ICML contributor: fullname: kang – volume: 16 start-page: 3 year: 2016 ident: ref272 article-title: Primer on monotone operator methods publication-title: Comput Math Appl contributor: fullname: ryu – year: 2017 ident: ref289 article-title: Prototypical networks for few-shot learning publication-title: arXiv 1703 05175 contributor: fullname: snell – ident: ref287 doi: 10.1513/AnnalsATS.202006-698OC – ident: ref27 doi: 10.1080/01621459.2017.1285773 – year: 2019 ident: ref142 publication-title: Nvidia Clara Federated Learning to Deliver AI to Hospitals While Protecting Patient Data – ident: ref6 doi: 10.1109/TSTE.2021.3069111 – year: 2019 ident: ref308 article-title: Bayesian meta sampling for fast uncertainty adaptation publication-title: Proc Int Conf Learn Represent contributor: fullname: wang – ident: ref218 doi: 10.3390/su10103491 – year: 2020 ident: ref292 publication-title: Why DIY 3D-Printed Face Masks and Shields Are So Risky – year: 2017 ident: ref78 article-title: Towards a neural statistician publication-title: Proc Int Conf Learn Represent contributor: fullname: edwards – year: 2020 ident: ref169 article-title: On negative transfer and structure of latent functions in multi-output Gaussian processes publication-title: arXiv 2004 02382 contributor: fullname: li – ident: ref62 doi: 10.1016/j.promfg.2018.07.132 – start-page: 5393 year: 2020 ident: ref185 article-title: Adam with bandit sampling for deep learning publication-title: Proc NeurIPS contributor: fullname: liu – year: 2019 ident: ref189 article-title: The functional neural process publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: louizos – year: 2018 ident: ref12 publication-title: Microsoft How does Azure RMS work? – start-page: 1273 year: 2017 ident: ref208 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Artificial Intelligence and Statistics contributor: fullname: mcmahan – year: 2018 ident: ref230 article-title: Entity resolution and federated learning get a federated resolution publication-title: arXiv 1803 04035 contributor: fullname: nock – year: 2019 ident: ref60 publication-title: Google's Project Nightingale Gathers Personal Health Data on Millions of Americans – year: 2016 ident: ref207 article-title: The age of analytics: Competing in a data-driven world contributor: fullname: mckinsey – start-page: 6659 year: 2018 ident: ref121 article-title: Training neural networks using features replay publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: huo – year: 2009 ident: ref236 publication-title: OREDA Offshore Reliability Data Handbook – ident: ref277 doi: 10.1111/j.1467-937X.2008.00486.x – year: 2017 ident: ref158 article-title: Deep prior publication-title: arXiv 1712 05016 contributor: fullname: lacoste – year: 2020 ident: ref180 article-title: Real-time edge intelligence in the making: A collaborative learning framework via federated meta-learning publication-title: arXiv 2001 03229 contributor: fullname: lin – start-page: 5332 year: 2020 ident: ref337 article-title: Federated accelerated stochastic gradient descent publication-title: Proc 34th Conf Neural Inf Process Syst contributor: fullname: yuan – ident: ref210 doi: 10.1016/j.energy.2020.117205 – ident: ref2 doi: 10.1016/j.trc.2019.04.008 – year: 2016 ident: ref149 article-title: Federated optimization: Distributed machine learning for on-device intelligence publication-title: arXiv 1610 02527 contributor: fullname: kone?ný – ident: ref318 doi: 10.1145/2486001.2486020 – year: 2020 ident: ref83 article-title: COVID-ResNet: A deep learning framework for screening of COVID19 from radiographs publication-title: arXiv 2003 14395 contributor: fullname: farooq – volume: 552 year: 2011 ident: ref322 publication-title: Experiments Planning Analysis and Optimization contributor: fullname: wu – year: 2020 ident: ref63 publication-title: 3D Printing Enthusiasts Are Working From Home to Help Hospitals Fight Coronavirus contributor: fullname: culver – year: 2017 ident: ref273 article-title: Evolution strategies as a scalable alternative to reinforcement learning publication-title: arXiv 1703 03864 contributor: fullname: salimans – ident: ref264 doi: 10.1214/11-EJS631 – year: 2021 ident: ref42 article-title: FedBE: Making Bayesian model ensemble applicable to federated learning publication-title: Proc Int Conf Learn Represent contributor: fullname: chen – year: 2019 ident: ref141 article-title: Attentive neural processes publication-title: Proc Int Conf Learn Represent contributor: fullname: kim – ident: ref33 doi: 10.1109/TASE.2015.2440093 – year: 2020 ident: ref193 article-title: Threats to federated learning: A survey publication-title: arXiv 2003 02133 contributor: fullname: lyu – ident: ref310 doi: 10.1197/jamia.M3191 – year: 2011 ident: ref199 publication-title: Nonelectronic Parts Reliability Data 2011 contributor: fullname: mahar |
SSID | ssj0000816957 |
Score | 2.4499013 |
Snippet | The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the "cloud" will be substituted by the "crowd"... The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the “cloud” will be substituted by the “crowd”... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 156071 |
SubjectTerms | Adaptation models Cognitive tasks Computational modeling Data models Devices Federated learning future applications global model Internet of Things meta-learning Modeling personalized model Printers Solid modeling Three-dimensional displays Training Vision |
SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGJzjwGojxUg9IgERH0vSRHGFiAiQ4gcQtclP3grQh6C78epy0m3gduFVVGzlf4sR2nM8Ax4iplGUq4jKnJGZNzGOsEoydwtL5i52IIcv3Ib95Su-es-cenC_uwhBRSD6joX8MZ_nV1M18qOzC5GwdZGYJlgpj2rtai3iKLyBhsqIjFpLCXFyORtwHdgETyZ6pZ8LT3zafwNHfFVX5tRKH7WW8DvdzwdqskpfhrCmH7uMHZ-N_Jd-Atc7OjC7bibEJPZpsweoX9sE-nPAUidqIIDXRtI7GnliCbc8qaqt5Rqe30_Hj2TY8ja8fRzdxVzchdqnQTUwCM-6trFkZS6WTonKkDGamEkpX2rksLRIUVHu2L2SbpEo9rxuLWMkUc6F2YHkyndAuRDVRQTxubNz6rZ_KXClEpXUtMeEWBnA-B9S-tvQYNrgVwtgWf-vxtx3-A7jyoC8-9dzW4QWDZTtVscK7ZKLOEkeeoKxGXnJUIWvURqNKzAD6HuBFIx22AziYD6Ht9PDdsrcWGBGN3Pv7r31Y8QK2QZUDWG7eZnTIZkZTHoX59QnqRcuO priority: 102 providerName: IEEE |
Title | The Internet of Federated Things (IoFT) |
URI | https://ieeexplore.ieee.org/document/9611259 https://www.proquest.com/docview/2604926291 https://doaj.org/article/062590f52ce0422fa225371fa898a329 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQUBCBUmVAAiSi-iNx7LFURIWBqZW6WZfEHlsE4f9zttOqiIGFNYkd-53Pd2f53hFyC5AzVuc0q6XlGWqizKDlkDUC6sYndgKEW75vcr7MX1fFaq_Ul78TFumBI3AT6h106greWE9X5QAXoCiZA6UVCB5T96jeC6bCHqyY1EXZ0wzh-8l0NsMZYUDIGcapnhdP_TBFgbG_L7Hya18OxqY6Ice9l5hO4-hOyYFdn5GjPe7AIblDAafxPM926callaeFQM-xTWMtzvT-ZVMtHs7JsnpezOZZX_Uga3KqusxSKHB0zKEq1ULxsm2s0FDolgrVqqYp8pIDtc5zdQF6FG3uWdkkYy3LQVJxQQbrzdpektRZW1pEHV1Tb7htLYUAEEo5Bhx7SMjjFgDzHsktTAgKqDYRL-PxMj1eCXnyIO0-9czU4QHKy_TyMn_JKyFDD_GuE40DxxYJGW0hN70WfRqMtQKfoWZX__Hra3LopxMPUEZk0H182Rt0Kbp6HFbPOGT_fQNwmMGZ |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOJQeKJQilm4hh0ptJbJrx3nYR7pitcvrtEjcrIkzuSDtIshe-usZO9kVLRx6i6LEmnz22N9M7G8AviOmUpapiMuckpg9MY-xSjB2CkvnD3Yihl2-t_nkLr28z-434Gx9FoaIwuYzGvjL8C-_WrilT5UNTc7sIDObsM28Wuftaa11RsWXkDBZ0UkLSWGG56MRfwUHgYnk2NRr4em_lp-g0t-VVXkzF4cFZvwJblamtftKHgbLphy4P_-oNv6v7Xuw2zHN6LwdGvuwQfPP8PGV_uAB_OBBErU5QWqiRR2NvbQEs88qaut5Rj-ni_Hs1xe4G1_MRpO4q5wQu1ToJiaBGX-trNkdS6WTonKkDGamEkpX2rksLRIUVHu9L2RWUqVe2Y1NrGSKuVCHsDVfzOkIopqoIO45prd-8acyVwpRaV1LTLiFHpytALWPrUCGDYGFMLbF33r8bYd_D3570NePenXrcIPBsp2zWOGDMlFniSMvUVYjTzqqkDVqo1ElpgcHHuB1Ix22PeivutB2nvhsOV4LmohGHr__1il8mMxuru319PbqK-x4Y9sUSx-2mqclfWPS0ZQnYay9AL4xztk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Internet+of+Federated+Things+%28IoFT%29&rft.jtitle=IEEE+access&rft.au=Kontar%2C+Raed&rft.au=Shi%2C+Naichen&rft.au=Yue%2C+Xubo&rft.au=Chung%2C+Seokhyun&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=156071&rft.epage=156113&rft_id=info:doi/10.1109%2FACCESS.2021.3127448&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3127448 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |