HDPM: An Effective Heart Disease Prediction Model for a Clinical Decision Support System
Heart disease, one of the major causes of mortality worldwide, can be mitigated by early heart disease diagnosis. A clinical decision support system (CDSS) can be used to diagnose the subjects' heart disease status earlier. This study proposes an effective heart disease prediction model (HDPM)...
Saved in:
Published in | IEEE access Vol. 8; pp. 133034 - 133050 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heart disease, one of the major causes of mortality worldwide, can be mitigated by early heart disease diagnosis. A clinical decision support system (CDSS) can be used to diagnose the subjects' heart disease status earlier. This study proposes an effective heart disease prediction model (HDPM) for a CDSS which consists of Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to detect and eliminate the outliers, a hybrid Synthetic Minority Over-sampling Technique-Edited Nearest Neighbor (SMOTE-ENN) to balance the training data distribution and XGBoost to predict heart disease. Two publicly available datasets (Statlog and Cleveland) were used to build the model and compare the results with those of other models (naive bayes (NB), logistic regression (LR), multilayer perceptron (MLP), support vector machine (SVM), decision tree (DT), and random forest (RF)) and of previous study results. The results revealed that the proposed model outperformed other models and previous study results by achieving accuracies of 95.90% and 98.40% for Statlog and Cleveland datasets, respectively. In addition, we designed and developed the prototype of the Heart Disease CDSS (HDCDSS) to help doctors/clinicians diagnose the patients'/subjects' heart disease status based on their current condition. Therefore, early treatment could be conducted to prevent the deaths caused by late heart disease diagnosis. |
---|---|
AbstractList | Heart disease, one of the major causes of mortality worldwide, can be mitigated by early heart disease diagnosis. A clinical decision support system (CDSS) can be used to diagnose the subjects' heart disease status earlier. This study proposes an effective heart disease prediction model (HDPM) for a CDSS which consists of Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to detect and eliminate the outliers, a hybrid Synthetic Minority Over-sampling Technique-Edited Nearest Neighbor (SMOTE-ENN) to balance the training data distribution and XGBoost to predict heart disease. Two publicly available datasets (Statlog and Cleveland) were used to build the model and compare the results with those of other models (naive bayes (NB), logistic regression (LR), multilayer perceptron (MLP), support vector machine (SVM), decision tree (DT), and random forest (RF)) and of previous study results. The results revealed that the proposed model outperformed other models and previous study results by achieving accuracies of 95.90% and 98.40% for Statlog and Cleveland datasets, respectively. In addition, we designed and developed the prototype of the Heart Disease CDSS (HDCDSS) to help doctors/clinicians diagnose the patients'/subjects' heart disease status based on their current condition. Therefore, early treatment could be conducted to prevent the deaths caused by late heart disease diagnosis. |
Author | Syafrudin, Muhammad Alfian, Ganjar Rhee, Jongtae Fitriyani, Norma Latif |
Author_xml | – sequence: 1 givenname: Norma Latif orcidid: 0000-0002-1133-3965 surname: Fitriyani fullname: Fitriyani, Norma Latif organization: Department of Industrial and Systems Engineering, Dongguk University, Seoul, South Korea – sequence: 2 givenname: Muhammad orcidid: 0000-0002-5640-4413 surname: Syafrudin fullname: Syafrudin, Muhammad email: udin@dongguk.edu organization: Department of Industrial and Systems Engineering, Dongguk University, Seoul, South Korea – sequence: 3 givenname: Ganjar orcidid: 0000-0002-3273-1452 surname: Alfian fullname: Alfian, Ganjar organization: Industrial AI Research Center, Nano Information Technology Academy, Dongguk University, Seoul, South Korea – sequence: 4 givenname: Jongtae surname: Rhee fullname: Rhee, Jongtae email: jtrhee@dongguk.edu organization: Department of Industrial and Systems Engineering, Dongguk University, Seoul, South Korea |
BookMark | eNp9kU1LxDAQhoMo-PkLvAQ875o0SZN6W7qrKygKq-AtpOlEstRmTbqC_97WqogHc0mYmeedybyHaLcNLSB0SsmUUlKcz8pysVpNM5KRKSOUCEp30EFG82LCBMt3f7330UlKa9If1YeEPEBPy_n97QWetXjhHNjOvwFegokdnvsEJgG-j1D7PhFafBtqaLALERtcNr711jR4DtanIbvabjahB1fvqYOXY7TnTJPg5Os-Qo-Xi4dyObm5u7ouZzcTy4nqJnWdSSNIJRVkikAuCJXcUSrBidwoQyooKMkoKCAWWM04MKeYrCyDQuSKHaHrUbcOZq030b-Y-K6D8fozEOKz7n_jbQO6rpSsKhBCGMfzwlW2rphykjlROJuJXuts1NrE8LqF1Ol12Ma2H19nXPCcU6mGjsVYZWNIKYLT1ndmWFAXjW80JXrwRY--6MEX_eVLz7I_7PfE_1OnI-UB4IcoKOdCSfYBtCOZuw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s41870_023_01597_w crossref_primary_10_46604_peti_2021_7217 crossref_primary_10_1016_j_ijcard_2024_132757 crossref_primary_10_1007_s13198_024_02621_3 crossref_primary_10_1007_s43069_024_00356_2 crossref_primary_10_1016_j_bspc_2023_105522 crossref_primary_10_1109_ACCESS_2023_3312305 crossref_primary_10_1016_j_bspc_2023_105644 crossref_primary_10_1016_j_engappai_2023_107215 crossref_primary_10_1109_COMST_2023_3308717 crossref_primary_10_1016_j_health_2021_100001 crossref_primary_10_4018_IJITSA_290001 crossref_primary_10_1016_j_bspc_2021_103456 crossref_primary_10_33736_jaspe_2639_2020 crossref_primary_10_1016_j_bspc_2023_104707 crossref_primary_10_1016_j_asoc_2022_109293 crossref_primary_10_1007_s10462_023_10493_5 crossref_primary_10_3390_computers11090136 crossref_primary_10_1016_j_imu_2021_100690 crossref_primary_10_1109_ACCESS_2021_3122789 crossref_primary_10_1016_j_micpro_2020_103662 crossref_primary_10_3390_app132413278 crossref_primary_10_1007_s42979_023_01991_y crossref_primary_10_3390_info15070394 crossref_primary_10_3390_app13010118 crossref_primary_10_1007_s11042_025_20723_3 crossref_primary_10_1080_10255842_2024_2310075 crossref_primary_10_3390_math10214027 crossref_primary_10_1007_s00354_022_00190_2 crossref_primary_10_3390_math11102266 crossref_primary_10_1061_JHYEFF_HEENG_6368 crossref_primary_10_1142_S0219519422500518 crossref_primary_10_3390_a17030122 crossref_primary_10_1109_ACCESS_2023_3289584 crossref_primary_10_1515_cmb_2024_0004 crossref_primary_10_1088_1742_6596_2040_1_012051 crossref_primary_10_1213_ANE_0000000000006500 crossref_primary_10_2174_0126662558291849240118104616 crossref_primary_10_1007_s44174_022_00060_x crossref_primary_10_1016_j_compeleceng_2024_109578 crossref_primary_10_1016_j_rineng_2025_104032 crossref_primary_10_3389_fpubh_2021_762303 crossref_primary_10_37648_ijrmst_v17i01_010 crossref_primary_10_1038_s41598_025_90530_1 crossref_primary_10_4018_IJSI_303582 crossref_primary_10_1142_S0218488523400056 crossref_primary_10_7717_peerj_cs_1894 crossref_primary_10_4018_IJSIR_313665 crossref_primary_10_1016_j_dajour_2023_100298 crossref_primary_10_21015_vtse_v11i2_1487 crossref_primary_10_53730_ijhs_v6nS3_6309 crossref_primary_10_3390_math8091590 crossref_primary_10_3390_healthcare11162240 crossref_primary_10_1007_s11042_024_19429_9 crossref_primary_10_1109_THMS_2022_3211460 crossref_primary_10_1007_s40815_024_01888_9 crossref_primary_10_1186_s12859_023_05450_6 crossref_primary_10_1016_j_eswa_2024_123534 crossref_primary_10_1007_s10916_024_02104_9 crossref_primary_10_1007_s42979_023_02529_y crossref_primary_10_1016_j_aej_2023_01_029 crossref_primary_10_1016_j_bspc_2021_103260 crossref_primary_10_1016_j_cosrev_2025_100725 crossref_primary_10_1080_21681163_2022_2032361 crossref_primary_10_3233_JIFS_224298 crossref_primary_10_1016_j_bspc_2023_105842 crossref_primary_10_1016_j_micpro_2021_103979 crossref_primary_10_2174_0118750362349305250131062510 crossref_primary_10_1007_s42979_024_02927_w crossref_primary_10_1007_s00500_023_08388_2 crossref_primary_10_1109_ACCESS_2023_3281484 crossref_primary_10_32604_cmc_2023_041031 crossref_primary_10_1007_s00521_021_06124_1 crossref_primary_10_1007_s11094_022_02621_2 crossref_primary_10_1016_j_advengsoft_2022_103297 crossref_primary_10_3390_pr11030734 crossref_primary_10_3390_app13063767 crossref_primary_10_1007_s11042_024_18312_x crossref_primary_10_1007_s40860_022_00185_2 crossref_primary_10_1109_ACCESS_2022_3185129 crossref_primary_10_3390_electronics10192347 crossref_primary_10_1080_21681163_2023_2245927 crossref_primary_10_1016_j_eswa_2022_117882 crossref_primary_10_1016_j_bspc_2023_104742 crossref_primary_10_1142_S2737599424500087 crossref_primary_10_1007_s10723_023_09706_6 crossref_primary_10_1016_j_bspc_2024_107070 crossref_primary_10_1142_S1793962325500102 crossref_primary_10_1007_s00521_024_10724_y crossref_primary_10_54097_hset_v39i_6700 crossref_primary_10_1080_10255842_2022_2078966 crossref_primary_10_1177_18724981251318209 crossref_primary_10_32604_cmc_2022_026064 crossref_primary_10_54097_hset_v39i_6771 crossref_primary_10_1080_1448837X_2024_2347107 crossref_primary_10_1016_j_compbiolchem_2025_108394 crossref_primary_10_2139_ssrn_4842067 crossref_primary_10_3233_JIFS_232851 crossref_primary_10_1007_s13198_024_02443_3 crossref_primary_10_1016_j_compeleceng_2022_108086 crossref_primary_10_3390_su12187649 crossref_primary_10_4015_S1016237224500169 crossref_primary_10_4018_IJACI_300795 crossref_primary_10_4018_IJSPPC_313587 crossref_primary_10_56294_dm2024262 crossref_primary_10_1007_s11831_024_10194_4 crossref_primary_10_1016_j_bspc_2021_103318 crossref_primary_10_3390_s24227160 crossref_primary_10_1007_s11042_023_17273_x crossref_primary_10_1007_s11831_024_10075_w crossref_primary_10_1109_ACCESS_2022_3191669 crossref_primary_10_1109_TCSS_2024_3449748 crossref_primary_10_1016_j_procs_2023_01_107 crossref_primary_10_1109_ACCESS_2024_3380906 crossref_primary_10_1016_j_eswa_2024_124479 crossref_primary_10_1080_21681163_2022_2162439 crossref_primary_10_1186_s12911_021_01527_5 crossref_primary_10_3390_math11061467 crossref_primary_10_3233_IDT_240368 crossref_primary_10_3390_su142114208 crossref_primary_10_3390_diagnostics14070736 crossref_primary_10_1016_j_knosys_2022_109709 crossref_primary_10_1080_10255842_2021_2013828 crossref_primary_10_1088_2631_8695_ad8dab crossref_primary_10_1109_ACCESS_2022_3220899 crossref_primary_10_1109_ACCESS_2024_3470537 |
Cites_doi | 10.1007/s10115-018-1185-y 10.1007/s12065-019-00327-1 10.1016/j.patcog.2007.11.017 10.1007/s00521-016-2604-1 10.1109/ACCESS.2019.2945129 10.3390/app8081325 10.14236/jhi.v17i3.731 10.1155/2015/460189 10.1016/S0004-3702(97)00063-5 10.3390/sym11010089 10.3390/sym10040079 10.1016/j.tele.2018.11.007 10.1155/2019/8460934 10.3390/s18092946 10.1109/ACCESS.2019.2923707 10.1016/j.imu.2019.100203 10.1145/1007730.1007735 10.1109/ACCESS.2019.2962755 10.1136/bmj.38398.500764.8F 10.1016/j.ijmedinf.2019.103988 10.1016/j.ahj.2008.11.003 10.1197/jamia.M1166 10.1109/ACCESS.2019.2952912 10.1161/CIR.0000000000000659 10.3390/su9112073 10.1016/j.amepre.2015.04.006 10.3390/s18072183 10.1007/s10916-016-0536-z 10.1159/000438683 10.3390/app9010084 10.1109/ACCESS.2019.2909969 10.1155/2018/3860146 10.1136/bmjopen-2014-005025 10.1145/2939672.2939785 10.1093/eurheartj/ehs092 10.1007/s10586-017-0818-3 10.1016/j.eswa.2015.06.024 10.1016/j.patcog.2008.04.002 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2020.3010511 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 133050 |
ExternalDocumentID | oai_doaj_org_article_db87bbe555af469fbcdb38f73f59fc25 10_1109_ACCESS_2020_3010511 9144587 |
Genre | orig-research |
GrantInformation_xml | – fundername: Dongguk University Research Fund, in 2019 grantid: S-2019-G0041-00035 funderid: 10.13039/501100002471 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-dd27a50b78e280e650174f117ef56a8a0be91021e8e0ce3d34e3f837bc3e95683 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:04:52 EDT 2025 Sun Jun 29 16:17:34 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Tue Jul 01 02:55:38 EDT 2025 Wed Aug 27 02:31:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-dd27a50b78e280e650174f117ef56a8a0be91021e8e0ce3d34e3f837bc3e95683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1133-3965 0000-0002-5640-4413 0000-0002-3273-1452 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9144587 |
PQID | 2454641788 |
PQPubID | 4845423 |
PageCount | 17 |
ParticipantIDs | ieee_primary_9144587 crossref_citationtrail_10_1109_ACCESS_2020_3010511 proquest_journals_2454641788 doaj_primary_oai_doaj_org_article_db87bbe555af469fbcdb38f73f59fc25 crossref_primary_10_1109_ACCESS_2020_3010511 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ester (ref39) 1996 (ref29) 2019 kirkwood (ref50) 2003 ref17 ref16 ref19 ref18 guyon (ref38) 2003; 3 (ref36) 2019 ref46 ref45 ref48 ref47 ref42 ref41 ref43 (ref30) 2019 (ref1) 2017 ref49 xu (ref51) 2017; 29 han (ref35) 2012 ref8 ref7 ref9 kohavi (ref34) 1996 ref40 ref37 ref31 ref32 kohavi (ref33) 1995; 2 (ref4) 2017 lemaitre (ref44) 2017; 18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 greenland (ref5) 2010; 122 ref28 ref27 (ref3) 2018 perk (ref6) 2012; 33 benjamin (ref2) 2019; 139 |
References_xml | – year: 2019 ident: ref29 – ident: ref17 doi: 10.1007/s10115-018-1185-y – ident: ref49 doi: 10.1007/s12065-019-00327-1 – start-page: 275 year: 1996 ident: ref34 article-title: Bias plus variance decomposition for zero-one loss functions publication-title: Proc 13th Int Conf Mach Learn – ident: ref46 doi: 10.1016/j.patcog.2007.11.017 – year: 2017 ident: ref4 publication-title: Cardiovascular Diseases (CVDs) – start-page: 226 year: 1996 ident: ref39 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proc Int'l Conf Knowledge Discovery and Data Mining – ident: ref31 doi: 10.1007/s00521-016-2604-1 – ident: ref53 doi: 10.1109/ACCESS.2019.2945129 – ident: ref40 doi: 10.3390/app8081325 – year: 2017 ident: ref1 publication-title: Cardiovascular Diseases (CVDs) – ident: ref12 doi: 10.14236/jhi.v17i3.731 – year: 2019 ident: ref36 – ident: ref14 doi: 10.1155/2015/460189 – ident: ref37 doi: 10.1016/S0004-3702(97)00063-5 – ident: ref27 doi: 10.3390/sym11010089 – ident: ref26 doi: 10.3390/sym10040079 – ident: ref32 doi: 10.1016/j.tele.2018.11.007 – ident: ref28 doi: 10.1155/2019/8460934 – ident: ref42 doi: 10.3390/s18092946 – volume: 2 start-page: 1137 year: 1995 ident: ref33 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Proc 14th Int Joint Conf Artif Intell (IJCAI) – ident: ref21 doi: 10.1109/ACCESS.2019.2923707 – ident: ref19 doi: 10.1016/j.imu.2019.100203 – volume: 3 start-page: 1157 year: 2003 ident: ref38 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – ident: ref25 doi: 10.1145/1007730.1007735 – ident: ref18 doi: 10.1109/ACCESS.2019.2962755 – ident: ref10 doi: 10.1136/bmj.38398.500764.8F – year: 2018 ident: ref3 publication-title: Causes of Death Statistics in 2018 – ident: ref23 doi: 10.1016/j.ijmedinf.2019.103988 – ident: ref11 doi: 10.1016/j.ahj.2008.11.003 – ident: ref9 doi: 10.1197/jamia.M1166 – ident: ref24 doi: 10.1109/ACCESS.2019.2952912 – volume: 139 start-page: 56e year: 2019 ident: ref2 article-title: Heart disease and stroke statistics-2019 update: A report from the American heart association publication-title: Circulation doi: 10.1161/CIR.0000000000000659 – ident: ref41 doi: 10.3390/su9112073 – ident: ref8 doi: 10.1016/j.amepre.2015.04.006 – volume: 122 start-page: 584e year: 2010 ident: ref5 article-title: 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: A report of the American college of cardiology foundation/American heart association task force on practice guidelines publication-title: Circulation – year: 2019 ident: ref30 – volume: 29 start-page: 184 year: 2017 ident: ref51 article-title: The differences and similarities between two-sample T-test and paired T-test publication-title: Shanghai Archives of Psychiatry – ident: ref52 doi: 10.3390/s18072183 – ident: ref15 doi: 10.1007/s10916-016-0536-z – ident: ref7 doi: 10.1159/000438683 – ident: ref43 doi: 10.3390/app9010084 – ident: ref20 doi: 10.1109/ACCESS.2019.2909969 – ident: ref16 doi: 10.1155/2018/3860146 – ident: ref48 doi: 10.1136/bmjopen-2014-005025 – ident: ref45 doi: 10.1145/2939672.2939785 – volume: 18 start-page: 559 year: 2017 ident: ref44 article-title: Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning publication-title: J Mach Learn Res – volume: 33 start-page: 1635 year: 2012 ident: ref6 article-title: European guidelines on cardiovascular disease prevention in clinical practice (version 2012): The fifth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts) * developed with the special contribution of the European association for cardiovascular prevention & rehabilitation (EACPR) publication-title: Eur Heart J doi: 10.1093/eurheartj/ehs092 – year: 2012 ident: ref35 publication-title: Data Mining Concepts and Techniques – ident: ref22 doi: 10.1007/s10586-017-0818-3 – ident: ref13 doi: 10.1016/j.eswa.2015.06.024 – year: 2003 ident: ref50 publication-title: Essential medical statistics – ident: ref47 doi: 10.1016/j.patcog.2008.04.002 |
SSID | ssj0000816957 |
Score | 2.5152571 |
Snippet | Heart disease, one of the major causes of mortality worldwide, can be mitigated by early heart disease diagnosis. A clinical decision support system (CDSS) can... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 133034 |
SubjectTerms | Cardiovascular disease clinical decision support system Clustering Data analysis Data models Datasets Decision support systems Decision trees Diagnosis disease prediction model Diseases Heart Heart disease Heart diseases imbalanced data Machine learning Medical diagnosis Multilayer perceptrons outlier data Outliers (statistics) Prediction models Predictive models Radio frequency Support vector machines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAkwnbi2GErLahCAjGA1M3y4zxVBUH5_5xjUxUhwcIaOQ_fXe7ui-PvI-Q8gnOBh1AhnECAEpyvumhFJaTj1gGHWqXdyPcP7eS5uZvK6YrUV_onLNMDZ8NdBqeVcyCltBGhXHQ-uFpHVUfZRS969lKseStgqs_BmredVIVmiLPucjga4YwQEArEqUkWkvNvpahn7C8SKz_ycl9sbrfJVukS6TA_3Q5Zg_ku2VzhDtwj08n48f6KDuc0ExBj1qITDNsFHec1F_r4lhZhkuFpUjybUexPqaWFCXRGx0VehyZlT-zCaWYv3yfPtzdPo0lVZBIq3zC9qEIQykrmlAahGWDLhSgjcq4gytZqyxx0ScAbNDAPdagbqCPiUudrSJsF6wOyPn-ZwyGhkUFs2xA72_hGKeaEd0KD1dwr3UoYEPFlMeMLh3iSspiZHkuwzmQzm2RmU8w8IBfLk14zhcbvw6-TK5ZDE_91fwCjwpSoMH9FxYDsJUcuL9IhbpRaDcjJl2NNeVffjWhk0zZcaX30H7c-JhtpOvkzzQlZX7x9wCk2Lgt31sfoJ8Cv6Tw priority: 102 providerName: Directory of Open Access Journals |
Title | HDPM: An Effective Heart Disease Prediction Model for a Clinical Decision Support System |
URI | https://ieeexplore.ieee.org/document/9144587 https://www.proquest.com/docview/2454641788 https://doaj.org/article/db87bbe555af469fbcdb38f73f59fc25 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxshEEVJTu2haZpWdZpGHHrMOsDCAr25diMrkqscGsk3xMdwqeVU6fqSXx9Y8KpfqnpbrWDF6g0wMzDvIfQhgnOBhtCkcCIFKMH5RkfLGiYctQ4otDJXI6--dMs7frMW6wN0OdbCAMBw-Qym-XE4yw_3fpdTZVc6ef9CyUN0mAK3Uqs15lOygIQWshILUaKvZvN5-ocUArIUmWYhSEp_2XwGjv4qqvLHSjxsL9fHaLUfWLlV8m26693UP_7G2fi_I3-JXlQ_E8-KYZygA9i-Qs9_Yh88Revl4nb1Ec-2uFAYp3UPL5Ph93hRTm3w7UM-xsnQ4ayZtsHJw8UWVy7RDV5UgR6ctUGTH48L__lrdHf9-et82VShhcZzovomBCatIE4qYIpActpSnBIplRBFZ5UlDnSWAAcFxEMbWg5tTJGt8y3kcsP2DTra3m_hLcKRQOy6ELXlnktJHPOOKbCKeqk6ARPE9ggYX1nIsxjGxgzRCNGmwGYybKbCNkGXY6fvhYTj380_ZWjHpplBe3iRIDF1QprglHQOhBA28k5H54NrVZRtFDp6JiboNMM4fqQiOEHne0Mxdbb_MIwL3nGajPLs773eoWd5gCV1c46O-ocdvE_OTO8uhiTAxWDLT5pk8gA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPHJtt7Nixw23ZpQrQrXpopb1ZfowvXW1Rm73012Mn3oiXELcosiNH39ie8Xi-D-BDQGs99b6I4UQMULx1RRMMK5iw1FikWMlUjbw8q9tL_nUlVntwNNbCIGJ_-Qyn6bHP5ftrt01HZcdN9P6Fkvfgftz3BR2qtcYTlSQh0QiZqYVo2RzP5vP4FzEIZDE2TVKQlP6y_fQs_VlW5Y-1uN9gTp7Acje04V7J1XTb2am7-4218X_H_hQeZ0-TzAbTeAZ7uHkOj37iHzyAVbs4X34ksw0ZSIzjykfaaPodWQx5G3J-kxI5CTySVNPWJPq4xJDMJromiyzRQ5I6aPTkycCA_gIuTz5fzNsiSy0UjpeqK7xn0ojSSoVMlRjdthipBEolBlEbZUqLTRIBR4Wlw8pXHKsQY1vrKkwFh9VL2N9cb_AVkFBiqGsfGsMdl7K0zFmm0CjqpKoFToDtENAu85AnOYy17uORstEDbDrBpjNsEzgaO30faDj-3fxTgnZsmji0-xcREp2npPZWSWtRCGECr5tgnbeVCrIKogmOiQkcJBjHj2QEJ3C4MxSd5_utZlzwmlOp1Ou_93oPD9qL5ak-_XL27Q08TIMdDnIOYb-72eLb6Np09l1v0T8AqjD0VA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HDPM%3A+An+Effective+Heart+Disease+Prediction+Model+for+a+Clinical+Decision+Support+System&rft.jtitle=IEEE+access&rft.au=Fitriyani%2C+Norma+Latif&rft.au=Syafrudin%2C+Muhammad&rft.au=Alfian%2C+Ganjar&rft.au=Rhee%2C+Jongtae&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=133034&rft.epage=133050&rft_id=info:doi/10.1109%2FACCESS.2020.3010511&rft.externalDocID=9144587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |