HDPM: An Effective Heart Disease Prediction Model for a Clinical Decision Support System

Heart disease, one of the major causes of mortality worldwide, can be mitigated by early heart disease diagnosis. A clinical decision support system (CDSS) can be used to diagnose the subjects' heart disease status earlier. This study proposes an effective heart disease prediction model (HDPM)...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 133034 - 133050
Main Authors Fitriyani, Norma Latif, Syafrudin, Muhammad, Alfian, Ganjar, Rhee, Jongtae
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heart disease, one of the major causes of mortality worldwide, can be mitigated by early heart disease diagnosis. A clinical decision support system (CDSS) can be used to diagnose the subjects' heart disease status earlier. This study proposes an effective heart disease prediction model (HDPM) for a CDSS which consists of Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to detect and eliminate the outliers, a hybrid Synthetic Minority Over-sampling Technique-Edited Nearest Neighbor (SMOTE-ENN) to balance the training data distribution and XGBoost to predict heart disease. Two publicly available datasets (Statlog and Cleveland) were used to build the model and compare the results with those of other models (naive bayes (NB), logistic regression (LR), multilayer perceptron (MLP), support vector machine (SVM), decision tree (DT), and random forest (RF)) and of previous study results. The results revealed that the proposed model outperformed other models and previous study results by achieving accuracies of 95.90% and 98.40% for Statlog and Cleveland datasets, respectively. In addition, we designed and developed the prototype of the Heart Disease CDSS (HDCDSS) to help doctors/clinicians diagnose the patients'/subjects' heart disease status based on their current condition. Therefore, early treatment could be conducted to prevent the deaths caused by late heart disease diagnosis.
AbstractList Heart disease, one of the major causes of mortality worldwide, can be mitigated by early heart disease diagnosis. A clinical decision support system (CDSS) can be used to diagnose the subjects' heart disease status earlier. This study proposes an effective heart disease prediction model (HDPM) for a CDSS which consists of Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to detect and eliminate the outliers, a hybrid Synthetic Minority Over-sampling Technique-Edited Nearest Neighbor (SMOTE-ENN) to balance the training data distribution and XGBoost to predict heart disease. Two publicly available datasets (Statlog and Cleveland) were used to build the model and compare the results with those of other models (naive bayes (NB), logistic regression (LR), multilayer perceptron (MLP), support vector machine (SVM), decision tree (DT), and random forest (RF)) and of previous study results. The results revealed that the proposed model outperformed other models and previous study results by achieving accuracies of 95.90% and 98.40% for Statlog and Cleveland datasets, respectively. In addition, we designed and developed the prototype of the Heart Disease CDSS (HDCDSS) to help doctors/clinicians diagnose the patients'/subjects' heart disease status based on their current condition. Therefore, early treatment could be conducted to prevent the deaths caused by late heart disease diagnosis.
Author Syafrudin, Muhammad
Alfian, Ganjar
Rhee, Jongtae
Fitriyani, Norma Latif
Author_xml – sequence: 1
  givenname: Norma Latif
  orcidid: 0000-0002-1133-3965
  surname: Fitriyani
  fullname: Fitriyani, Norma Latif
  organization: Department of Industrial and Systems Engineering, Dongguk University, Seoul, South Korea
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0002-5640-4413
  surname: Syafrudin
  fullname: Syafrudin, Muhammad
  email: udin@dongguk.edu
  organization: Department of Industrial and Systems Engineering, Dongguk University, Seoul, South Korea
– sequence: 3
  givenname: Ganjar
  orcidid: 0000-0002-3273-1452
  surname: Alfian
  fullname: Alfian, Ganjar
  organization: Industrial AI Research Center, Nano Information Technology Academy, Dongguk University, Seoul, South Korea
– sequence: 4
  givenname: Jongtae
  surname: Rhee
  fullname: Rhee, Jongtae
  email: jtrhee@dongguk.edu
  organization: Department of Industrial and Systems Engineering, Dongguk University, Seoul, South Korea
BookMark eNp9kU1LxDAQhoMo-PkLvAQ875o0SZN6W7qrKygKq-AtpOlEstRmTbqC_97WqogHc0mYmeedybyHaLcNLSB0SsmUUlKcz8pysVpNM5KRKSOUCEp30EFG82LCBMt3f7330UlKa9If1YeEPEBPy_n97QWetXjhHNjOvwFegokdnvsEJgG-j1D7PhFafBtqaLALERtcNr711jR4DtanIbvabjahB1fvqYOXY7TnTJPg5Os-Qo-Xi4dyObm5u7ouZzcTy4nqJnWdSSNIJRVkikAuCJXcUSrBidwoQyooKMkoKCAWWM04MKeYrCyDQuSKHaHrUbcOZq030b-Y-K6D8fozEOKz7n_jbQO6rpSsKhBCGMfzwlW2rphykjlROJuJXuts1NrE8LqF1Ol12Ma2H19nXPCcU6mGjsVYZWNIKYLT1ndmWFAXjW80JXrwRY--6MEX_eVLz7I_7PfE_1OnI-UB4IcoKOdCSfYBtCOZuw
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s41870_023_01597_w
crossref_primary_10_46604_peti_2021_7217
crossref_primary_10_1016_j_ijcard_2024_132757
crossref_primary_10_1007_s13198_024_02621_3
crossref_primary_10_1007_s43069_024_00356_2
crossref_primary_10_1016_j_bspc_2023_105522
crossref_primary_10_1109_ACCESS_2023_3312305
crossref_primary_10_1016_j_bspc_2023_105644
crossref_primary_10_1016_j_engappai_2023_107215
crossref_primary_10_1109_COMST_2023_3308717
crossref_primary_10_1016_j_health_2021_100001
crossref_primary_10_4018_IJITSA_290001
crossref_primary_10_1016_j_bspc_2021_103456
crossref_primary_10_33736_jaspe_2639_2020
crossref_primary_10_1016_j_bspc_2023_104707
crossref_primary_10_1016_j_asoc_2022_109293
crossref_primary_10_1007_s10462_023_10493_5
crossref_primary_10_3390_computers11090136
crossref_primary_10_1016_j_imu_2021_100690
crossref_primary_10_1109_ACCESS_2021_3122789
crossref_primary_10_1016_j_micpro_2020_103662
crossref_primary_10_3390_app132413278
crossref_primary_10_1007_s42979_023_01991_y
crossref_primary_10_3390_info15070394
crossref_primary_10_3390_app13010118
crossref_primary_10_1007_s11042_025_20723_3
crossref_primary_10_1080_10255842_2024_2310075
crossref_primary_10_3390_math10214027
crossref_primary_10_1007_s00354_022_00190_2
crossref_primary_10_3390_math11102266
crossref_primary_10_1061_JHYEFF_HEENG_6368
crossref_primary_10_1142_S0219519422500518
crossref_primary_10_3390_a17030122
crossref_primary_10_1109_ACCESS_2023_3289584
crossref_primary_10_1515_cmb_2024_0004
crossref_primary_10_1088_1742_6596_2040_1_012051
crossref_primary_10_1213_ANE_0000000000006500
crossref_primary_10_2174_0126662558291849240118104616
crossref_primary_10_1007_s44174_022_00060_x
crossref_primary_10_1016_j_compeleceng_2024_109578
crossref_primary_10_1016_j_rineng_2025_104032
crossref_primary_10_3389_fpubh_2021_762303
crossref_primary_10_37648_ijrmst_v17i01_010
crossref_primary_10_1038_s41598_025_90530_1
crossref_primary_10_4018_IJSI_303582
crossref_primary_10_1142_S0218488523400056
crossref_primary_10_7717_peerj_cs_1894
crossref_primary_10_4018_IJSIR_313665
crossref_primary_10_1016_j_dajour_2023_100298
crossref_primary_10_21015_vtse_v11i2_1487
crossref_primary_10_53730_ijhs_v6nS3_6309
crossref_primary_10_3390_math8091590
crossref_primary_10_3390_healthcare11162240
crossref_primary_10_1007_s11042_024_19429_9
crossref_primary_10_1109_THMS_2022_3211460
crossref_primary_10_1007_s40815_024_01888_9
crossref_primary_10_1186_s12859_023_05450_6
crossref_primary_10_1016_j_eswa_2024_123534
crossref_primary_10_1007_s10916_024_02104_9
crossref_primary_10_1007_s42979_023_02529_y
crossref_primary_10_1016_j_aej_2023_01_029
crossref_primary_10_1016_j_bspc_2021_103260
crossref_primary_10_1016_j_cosrev_2025_100725
crossref_primary_10_1080_21681163_2022_2032361
crossref_primary_10_3233_JIFS_224298
crossref_primary_10_1016_j_bspc_2023_105842
crossref_primary_10_1016_j_micpro_2021_103979
crossref_primary_10_2174_0118750362349305250131062510
crossref_primary_10_1007_s42979_024_02927_w
crossref_primary_10_1007_s00500_023_08388_2
crossref_primary_10_1109_ACCESS_2023_3281484
crossref_primary_10_32604_cmc_2023_041031
crossref_primary_10_1007_s00521_021_06124_1
crossref_primary_10_1007_s11094_022_02621_2
crossref_primary_10_1016_j_advengsoft_2022_103297
crossref_primary_10_3390_pr11030734
crossref_primary_10_3390_app13063767
crossref_primary_10_1007_s11042_024_18312_x
crossref_primary_10_1007_s40860_022_00185_2
crossref_primary_10_1109_ACCESS_2022_3185129
crossref_primary_10_3390_electronics10192347
crossref_primary_10_1080_21681163_2023_2245927
crossref_primary_10_1016_j_eswa_2022_117882
crossref_primary_10_1016_j_bspc_2023_104742
crossref_primary_10_1142_S2737599424500087
crossref_primary_10_1007_s10723_023_09706_6
crossref_primary_10_1016_j_bspc_2024_107070
crossref_primary_10_1142_S1793962325500102
crossref_primary_10_1007_s00521_024_10724_y
crossref_primary_10_54097_hset_v39i_6700
crossref_primary_10_1080_10255842_2022_2078966
crossref_primary_10_1177_18724981251318209
crossref_primary_10_32604_cmc_2022_026064
crossref_primary_10_54097_hset_v39i_6771
crossref_primary_10_1080_1448837X_2024_2347107
crossref_primary_10_1016_j_compbiolchem_2025_108394
crossref_primary_10_2139_ssrn_4842067
crossref_primary_10_3233_JIFS_232851
crossref_primary_10_1007_s13198_024_02443_3
crossref_primary_10_1016_j_compeleceng_2022_108086
crossref_primary_10_3390_su12187649
crossref_primary_10_4015_S1016237224500169
crossref_primary_10_4018_IJACI_300795
crossref_primary_10_4018_IJSPPC_313587
crossref_primary_10_56294_dm2024262
crossref_primary_10_1007_s11831_024_10194_4
crossref_primary_10_1016_j_bspc_2021_103318
crossref_primary_10_3390_s24227160
crossref_primary_10_1007_s11042_023_17273_x
crossref_primary_10_1007_s11831_024_10075_w
crossref_primary_10_1109_ACCESS_2022_3191669
crossref_primary_10_1109_TCSS_2024_3449748
crossref_primary_10_1016_j_procs_2023_01_107
crossref_primary_10_1109_ACCESS_2024_3380906
crossref_primary_10_1016_j_eswa_2024_124479
crossref_primary_10_1080_21681163_2022_2162439
crossref_primary_10_1186_s12911_021_01527_5
crossref_primary_10_3390_math11061467
crossref_primary_10_3233_IDT_240368
crossref_primary_10_3390_su142114208
crossref_primary_10_3390_diagnostics14070736
crossref_primary_10_1016_j_knosys_2022_109709
crossref_primary_10_1080_10255842_2021_2013828
crossref_primary_10_1088_2631_8695_ad8dab
crossref_primary_10_1109_ACCESS_2022_3220899
crossref_primary_10_1109_ACCESS_2024_3470537
Cites_doi 10.1007/s10115-018-1185-y
10.1007/s12065-019-00327-1
10.1016/j.patcog.2007.11.017
10.1007/s00521-016-2604-1
10.1109/ACCESS.2019.2945129
10.3390/app8081325
10.14236/jhi.v17i3.731
10.1155/2015/460189
10.1016/S0004-3702(97)00063-5
10.3390/sym11010089
10.3390/sym10040079
10.1016/j.tele.2018.11.007
10.1155/2019/8460934
10.3390/s18092946
10.1109/ACCESS.2019.2923707
10.1016/j.imu.2019.100203
10.1145/1007730.1007735
10.1109/ACCESS.2019.2962755
10.1136/bmj.38398.500764.8F
10.1016/j.ijmedinf.2019.103988
10.1016/j.ahj.2008.11.003
10.1197/jamia.M1166
10.1109/ACCESS.2019.2952912
10.1161/CIR.0000000000000659
10.3390/su9112073
10.1016/j.amepre.2015.04.006
10.3390/s18072183
10.1007/s10916-016-0536-z
10.1159/000438683
10.3390/app9010084
10.1109/ACCESS.2019.2909969
10.1155/2018/3860146
10.1136/bmjopen-2014-005025
10.1145/2939672.2939785
10.1093/eurheartj/ehs092
10.1007/s10586-017-0818-3
10.1016/j.eswa.2015.06.024
10.1016/j.patcog.2008.04.002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3010511
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 133050
ExternalDocumentID oai_doaj_org_article_db87bbe555af469fbcdb38f73f59fc25
10_1109_ACCESS_2020_3010511
9144587
Genre orig-research
GrantInformation_xml – fundername: Dongguk University Research Fund, in 2019
  grantid: S-2019-G0041-00035
  funderid: 10.13039/501100002471
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-dd27a50b78e280e650174f117ef56a8a0be91021e8e0ce3d34e3f837bc3e95683
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:04:52 EDT 2025
Sun Jun 29 16:17:34 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Tue Jul 01 02:55:38 EDT 2025
Wed Aug 27 02:31:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-dd27a50b78e280e650174f117ef56a8a0be91021e8e0ce3d34e3f837bc3e95683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1133-3965
0000-0002-5640-4413
0000-0002-3273-1452
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9144587
PQID 2454641788
PQPubID 4845423
PageCount 17
ParticipantIDs ieee_primary_9144587
crossref_citationtrail_10_1109_ACCESS_2020_3010511
proquest_journals_2454641788
doaj_primary_oai_doaj_org_article_db87bbe555af469fbcdb38f73f59fc25
crossref_primary_10_1109_ACCESS_2020_3010511
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ester (ref39) 1996
(ref29) 2019
kirkwood (ref50) 2003
ref17
ref16
ref19
ref18
guyon (ref38) 2003; 3
(ref36) 2019
ref46
ref45
ref48
ref47
ref42
ref41
ref43
(ref30) 2019
(ref1) 2017
ref49
xu (ref51) 2017; 29
han (ref35) 2012
ref8
ref7
ref9
kohavi (ref34) 1996
ref40
ref37
ref31
ref32
kohavi (ref33) 1995; 2
(ref4) 2017
lemaitre (ref44) 2017; 18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
greenland (ref5) 2010; 122
ref28
ref27
(ref3) 2018
perk (ref6) 2012; 33
benjamin (ref2) 2019; 139
References_xml – year: 2019
  ident: ref29
– ident: ref17
  doi: 10.1007/s10115-018-1185-y
– ident: ref49
  doi: 10.1007/s12065-019-00327-1
– start-page: 275
  year: 1996
  ident: ref34
  article-title: Bias plus variance decomposition for zero-one loss functions
  publication-title: Proc 13th Int Conf Mach Learn
– ident: ref46
  doi: 10.1016/j.patcog.2007.11.017
– year: 2017
  ident: ref4
  publication-title: Cardiovascular Diseases (CVDs)
– start-page: 226
  year: 1996
  ident: ref39
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc Int'l Conf Knowledge Discovery and Data Mining
– ident: ref31
  doi: 10.1007/s00521-016-2604-1
– ident: ref53
  doi: 10.1109/ACCESS.2019.2945129
– ident: ref40
  doi: 10.3390/app8081325
– year: 2017
  ident: ref1
  publication-title: Cardiovascular Diseases (CVDs)
– ident: ref12
  doi: 10.14236/jhi.v17i3.731
– year: 2019
  ident: ref36
– ident: ref14
  doi: 10.1155/2015/460189
– ident: ref37
  doi: 10.1016/S0004-3702(97)00063-5
– ident: ref27
  doi: 10.3390/sym11010089
– ident: ref26
  doi: 10.3390/sym10040079
– ident: ref32
  doi: 10.1016/j.tele.2018.11.007
– ident: ref28
  doi: 10.1155/2019/8460934
– ident: ref42
  doi: 10.3390/s18092946
– volume: 2
  start-page: 1137
  year: 1995
  ident: ref33
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Proc 14th Int Joint Conf Artif Intell (IJCAI)
– ident: ref21
  doi: 10.1109/ACCESS.2019.2923707
– ident: ref19
  doi: 10.1016/j.imu.2019.100203
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref38
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref25
  doi: 10.1145/1007730.1007735
– ident: ref18
  doi: 10.1109/ACCESS.2019.2962755
– ident: ref10
  doi: 10.1136/bmj.38398.500764.8F
– year: 2018
  ident: ref3
  publication-title: Causes of Death Statistics in 2018
– ident: ref23
  doi: 10.1016/j.ijmedinf.2019.103988
– ident: ref11
  doi: 10.1016/j.ahj.2008.11.003
– ident: ref9
  doi: 10.1197/jamia.M1166
– ident: ref24
  doi: 10.1109/ACCESS.2019.2952912
– volume: 139
  start-page: 56e
  year: 2019
  ident: ref2
  article-title: Heart disease and stroke statistics-2019 update: A report from the American heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000659
– ident: ref41
  doi: 10.3390/su9112073
– ident: ref8
  doi: 10.1016/j.amepre.2015.04.006
– volume: 122
  start-page: 584e
  year: 2010
  ident: ref5
  article-title: 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: A report of the American college of cardiology foundation/American heart association task force on practice guidelines
  publication-title: Circulation
– year: 2019
  ident: ref30
– volume: 29
  start-page: 184
  year: 2017
  ident: ref51
  article-title: The differences and similarities between two-sample T-test and paired T-test
  publication-title: Shanghai Archives of Psychiatry
– ident: ref52
  doi: 10.3390/s18072183
– ident: ref15
  doi: 10.1007/s10916-016-0536-z
– ident: ref7
  doi: 10.1159/000438683
– ident: ref43
  doi: 10.3390/app9010084
– ident: ref20
  doi: 10.1109/ACCESS.2019.2909969
– ident: ref16
  doi: 10.1155/2018/3860146
– ident: ref48
  doi: 10.1136/bmjopen-2014-005025
– ident: ref45
  doi: 10.1145/2939672.2939785
– volume: 18
  start-page: 559
  year: 2017
  ident: ref44
  article-title: Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J Mach Learn Res
– volume: 33
  start-page: 1635
  year: 2012
  ident: ref6
  article-title: European guidelines on cardiovascular disease prevention in clinical practice (version 2012): The fifth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts) * developed with the special contribution of the European association for cardiovascular prevention & rehabilitation (EACPR)
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehs092
– year: 2012
  ident: ref35
  publication-title: Data Mining Concepts and Techniques
– ident: ref22
  doi: 10.1007/s10586-017-0818-3
– ident: ref13
  doi: 10.1016/j.eswa.2015.06.024
– year: 2003
  ident: ref50
  publication-title: Essential medical statistics
– ident: ref47
  doi: 10.1016/j.patcog.2008.04.002
SSID ssj0000816957
Score 2.5152571
Snippet Heart disease, one of the major causes of mortality worldwide, can be mitigated by early heart disease diagnosis. A clinical decision support system (CDSS) can...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 133034
SubjectTerms Cardiovascular disease
clinical decision support system
Clustering
Data analysis
Data models
Datasets
Decision support systems
Decision trees
Diagnosis
disease prediction model
Diseases
Heart
Heart disease
Heart diseases
imbalanced data
Machine learning
Medical diagnosis
Multilayer perceptrons
outlier data
Outliers (statistics)
Prediction models
Predictive models
Radio frequency
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAkwnbi2GErLahCAjGA1M3y4zxVBUH5_5xjUxUhwcIaOQ_fXe7ui-PvI-Q8gnOBh1AhnECAEpyvumhFJaTj1gGHWqXdyPcP7eS5uZvK6YrUV_onLNMDZ8NdBqeVcyCltBGhXHQ-uFpHVUfZRS969lKseStgqs_BmredVIVmiLPucjga4YwQEArEqUkWkvNvpahn7C8SKz_ycl9sbrfJVukS6TA_3Q5Zg_ku2VzhDtwj08n48f6KDuc0ExBj1qITDNsFHec1F_r4lhZhkuFpUjybUexPqaWFCXRGx0VehyZlT-zCaWYv3yfPtzdPo0lVZBIq3zC9qEIQykrmlAahGWDLhSgjcq4gytZqyxx0ScAbNDAPdagbqCPiUudrSJsF6wOyPn-ZwyGhkUFs2xA72_hGKeaEd0KD1dwr3UoYEPFlMeMLh3iSspiZHkuwzmQzm2RmU8w8IBfLk14zhcbvw6-TK5ZDE_91fwCjwpSoMH9FxYDsJUcuL9IhbpRaDcjJl2NNeVffjWhk0zZcaX30H7c-JhtpOvkzzQlZX7x9wCk2Lgt31sfoJ8Cv6Tw
  priority: 102
  providerName: Directory of Open Access Journals
Title HDPM: An Effective Heart Disease Prediction Model for a Clinical Decision Support System
URI https://ieeexplore.ieee.org/document/9144587
https://www.proquest.com/docview/2454641788
https://doaj.org/article/db87bbe555af469fbcdb38f73f59fc25
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxshEEVJTu2haZpWdZpGHHrMOsDCAr25diMrkqscGsk3xMdwqeVU6fqSXx9Y8KpfqnpbrWDF6g0wMzDvIfQhgnOBhtCkcCIFKMH5RkfLGiYctQ4otDJXI6--dMs7frMW6wN0OdbCAMBw-Qym-XE4yw_3fpdTZVc6ef9CyUN0mAK3Uqs15lOygIQWshILUaKvZvN5-ocUArIUmWYhSEp_2XwGjv4qqvLHSjxsL9fHaLUfWLlV8m26693UP_7G2fi_I3-JXlQ_E8-KYZygA9i-Qs9_Yh88Revl4nb1Ec-2uFAYp3UPL5Ph93hRTm3w7UM-xsnQ4ayZtsHJw8UWVy7RDV5UgR6ctUGTH48L__lrdHf9-et82VShhcZzovomBCatIE4qYIpActpSnBIplRBFZ5UlDnSWAAcFxEMbWg5tTJGt8y3kcsP2DTra3m_hLcKRQOy6ELXlnktJHPOOKbCKeqk6ARPE9ggYX1nIsxjGxgzRCNGmwGYybKbCNkGXY6fvhYTj380_ZWjHpplBe3iRIDF1QprglHQOhBA28k5H54NrVZRtFDp6JiboNMM4fqQiOEHne0Mxdbb_MIwL3nGajPLs773eoWd5gCV1c46O-ocdvE_OTO8uhiTAxWDLT5pk8gA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPHJtt7Nixw23ZpQrQrXpopb1ZfowvXW1Rm73012Mn3oiXELcosiNH39ie8Xi-D-BDQGs99b6I4UQMULx1RRMMK5iw1FikWMlUjbw8q9tL_nUlVntwNNbCIGJ_-Qyn6bHP5ftrt01HZcdN9P6Fkvfgftz3BR2qtcYTlSQh0QiZqYVo2RzP5vP4FzEIZDE2TVKQlP6y_fQs_VlW5Y-1uN9gTp7Acje04V7J1XTb2am7-4218X_H_hQeZ0-TzAbTeAZ7uHkOj37iHzyAVbs4X34ksw0ZSIzjykfaaPodWQx5G3J-kxI5CTySVNPWJPq4xJDMJromiyzRQ5I6aPTkycCA_gIuTz5fzNsiSy0UjpeqK7xn0ojSSoVMlRjdthipBEolBlEbZUqLTRIBR4Wlw8pXHKsQY1vrKkwFh9VL2N9cb_AVkFBiqGsfGsMdl7K0zFmm0CjqpKoFToDtENAu85AnOYy17uORstEDbDrBpjNsEzgaO30faDj-3fxTgnZsmji0-xcREp2npPZWSWtRCGECr5tgnbeVCrIKogmOiQkcJBjHj2QEJ3C4MxSd5_utZlzwmlOp1Ou_93oPD9qL5ak-_XL27Q08TIMdDnIOYb-72eLb6Np09l1v0T8AqjD0VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HDPM%3A+An+Effective+Heart+Disease+Prediction+Model+for+a+Clinical+Decision+Support+System&rft.jtitle=IEEE+access&rft.au=Fitriyani%2C+Norma+Latif&rft.au=Syafrudin%2C+Muhammad&rft.au=Alfian%2C+Ganjar&rft.au=Rhee%2C+Jongtae&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=133034&rft.epage=133050&rft_id=info:doi/10.1109%2FACCESS.2020.3010511&rft.externalDocID=9144587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon