Facial Landmarks and Expression Label Guided Photorealistic Facial Expression Synthesis

Facial expression manipulation plays an increasingly important role in the field of computer graphics and has been widely used in generating facial animations. However, it is still a very challenging task as it needs full understanding of the input face and very depending on the facial appearance. I...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 56292 - 56300
Main Authors Li, Dejian, Qi, Wenqian, Sun, Shouqian
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facial expression manipulation plays an increasingly important role in the field of computer graphics and has been widely used in generating facial animations. However, it is still a very challenging task as it needs full understanding of the input face and very depending on the facial appearance. In this paper, we present an end-to-end generative adversarial network for facial expression synthesis. Given the facial landmarks and the expression label of a target image, our method automatically generates a corresponding expression facial image with the identity information and facial details well preserved. Both qualitative and quantitative experiments are conducted on the CK+ and Oulu-CASIA datasets. Experimental results show that our method has the compelling perceptual results even there exist large differences in facial shapes for unseen subjects.
AbstractList Facial expression manipulation plays an increasingly important role in the field of computer graphics and has been widely used in generating facial animations. However, it is still a very challenging task as it needs full understanding of the input face and very depending on the facial appearance. In this paper, we present an end-to-end generative adversarial network for facial expression synthesis. Given the facial landmarks and the expression label of a target image, our method automatically generates a corresponding expression facial image with the identity information and facial details well preserved. Both qualitative and quantitative experiments are conducted on the CK+ and Oulu-CASIA datasets. Experimental results show that our method has the compelling perceptual results even there exist large differences in facial shapes for unseen subjects.
Author Qi, Wenqian
Li, Dejian
Sun, Shouqian
Author_xml – sequence: 1
  givenname: Dejian
  orcidid: 0000-0001-9258-5437
  surname: Li
  fullname: Li, Dejian
  organization: Zhejiang Key Laboratory of Design and Intelligence and Digital Creativity, School of Computer Science, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Wenqian
  surname: Qi
  fullname: Qi, Wenqian
  organization: Zhejiang Key Laboratory of Design and Intelligence and Digital Creativity, School of Computer Science, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Shouqian
  surname: Sun
  fullname: Sun, Shouqian
  email: ssq@zju.edu.cn
  organization: Zhejiang Key Laboratory of Design and Intelligence and Digital Creativity, School of Computer Science, Zhejiang University, Hangzhou, China
BookMark eNp9UU1rGzEUFCWBpkl-QS4LPdvV08fu6hiMkwYMLbghR_FWetvI3a5caQ3Nv6_cdUvoobpoeG9mmMe8Y2djHImxG-BLAG4-3K5W6-12KbiApeSN4Lp5wy4E1GYhtazPXuG37DrnHS-vLSPdXLCnO3QBh2qDo_-O6VuuCqjWP_eJcg5xLIuOhur-EDz56vNznGIiHEKegqtO2lfs7cs4PVMO-Yqd9zhkuj79l-zxbv1l9XGx-XT_sLrdLJzi7bTwXW84SXDQQKM1FmRAGcE5dr32RCDQaWo9Aley7pxQvjMkagmgBIG8ZA-zr4-4s_sUyhEvNmKwvwcxfbWYStaBLPpOagGOeKuVUjWKHnXnta8b6HR_9Ho_e-1T_HGgPNldPKSxxLdCg26U5m1bWGZmuRRzTtRbFyacyvVTwjBY4PZYi51rscda7KmWopX_aP8k_r_qZlYFIvqrMNIYJbn8BVE7mng
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_procs_2023_10_011
crossref_primary_10_1016_j_iswa_2022_200139
crossref_primary_10_1007_s41060_024_00683_x
Cites_doi 10.1145/2010324.1964956
10.1109/CVPR42600.2020.00308
10.1016/j.cviu.2006.10.019
10.1109/TIP.2020.3048629
10.1109/CVPR.2017.578
10.1145/383259.383289
10.1145/1964921.1964955
10.1109/ACII.2017.8273626
10.1109/CVPR.2014.241
10.7551/mitpress/1140.001.0001
10.1109/ICCV.2015.411
10.1177/0023830909103181
10.1016/j.imavis.2011.07.002
10.1145/3240508.3240612
10.1109/ICCV.2017.244
10.1109/CVPR.2018.00917
10.1109/CVPR.2017.741
10.1109/CVPRW.2010.5543262
10.5244/C.29.41
10.1109/CVPR.2018.00068
10.1145/258734.258880
10.1145/1185657.1185856
10.1145/3240508.3240647
10.1111/1467-8659.t01-1-00712
10.1145/3065386
10.1109/ICCV.2017.267
10.1109/CVPR.2017.632
10.1145/1198555.1198589
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3072057
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 56300
ExternalDocumentID oai_doaj_org_article_adb3521ce0854446a2fa5bd5d671b5f1
10_1109_ACCESS_2021_3072057
9399430
Genre orig-research
GrantInformation_xml – fundername: Scientific Innovation 2030–Project of Artificial Intelligence in the Next Generation
  grantid: 2018AAA0100700
– fundername: Provincial Key Research and Development Plan of Zhejiang Province
  grantid: 2019C03137
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-dbf90e31c171755a31c9149200abf5dee12ac5e8da10436bc24db9e2631142e13
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:29:41 EDT 2025
Mon Jun 30 04:18:01 EDT 2025
Tue Jul 01 04:03:26 EDT 2025
Thu Apr 24 23:00:27 EDT 2025
Wed Aug 27 02:30:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-dbf90e31c171755a31c9149200abf5dee12ac5e8da10436bc24db9e2631142e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9258-5437
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9399430
PQID 2515745088
PQPubID 4845423
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2021_3072057
crossref_primary_10_1109_ACCESS_2021_3072057
doaj_primary_oai_doaj_org_article_adb3521ce0854446a2fa5bd5d671b5f1
proquest_journals_2515745088
ieee_primary_9399430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref15
ref36
ref14
ref31
heusel (ref37) 2017
ref30
ref33
ref2
susskind (ref9) 2008
ref1
ref39
ref17
ref38
ref16
ding (ref11) 2017
yeh (ref19) 2016
larsen (ref25) 2016
wu (ref40) 2015; 4
kemelmacher-shlizerman (ref4) 2011; 30
mirza (ref23) 2014
ref24
ref20
ref41
qiao (ref34) 2018
ref21
ref28
simonyan (ref32) 2014
ref27
ref29
ref8
ref7
goodfellow (ref22) 2017
ref3
ref6
ref5
cheung (ref10) 2014
reed (ref18) 2014
kingma (ref26) 2013
References_xml – year: 2017
  ident: ref11
  article-title: ExprGAN: Facial expression editing with controllable expression intensity
  publication-title: arXiv 1709 03842
– year: 2018
  ident: ref34
  article-title: Geometry-contrastive GAN for facial expression transfer
  publication-title: arXiv 1802 01822
– start-page: 1558
  year: 2016
  ident: ref25
  article-title: Autoencoding beyond pixels using a learned similarity metric
  publication-title: Proc Int Conf Mach Learn
– year: 2014
  ident: ref32
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– year: 2014
  ident: ref10
  article-title: Discovering hidden factors of variation in deep networks
  publication-title: arXiv 1412 6583
– volume: 30
  start-page: 1
  year: 2011
  ident: ref4
  article-title: Exploring photobios
  publication-title: ACM Trans Graph
  doi: 10.1145/2010324.1964956
– ident: ref39
  doi: 10.1109/CVPR42600.2020.00308
– ident: ref1
  doi: 10.1016/j.cviu.2006.10.019
– ident: ref38
  doi: 10.1109/TIP.2020.3048629
– ident: ref15
  doi: 10.1109/CVPR.2017.578
– ident: ref5
  doi: 10.1145/383259.383289
– ident: ref7
  doi: 10.1145/1964921.1964955
– ident: ref35
  doi: 10.1109/ACII.2017.8273626
– ident: ref30
  doi: 10.1109/CVPR.2014.241
– ident: ref2
  doi: 10.7551/mitpress/1140.001.0001
– ident: ref8
  doi: 10.1109/ICCV.2015.411
– year: 2017
  ident: ref37
  article-title: GANs trained by a two time-scale update rule converge to a local Nash equilibrium
  publication-title: arXiv 1706 08500
– volume: 4
  year: 2015
  ident: ref40
  article-title: A light CNN for deep face representation with noisy labels
  publication-title: arXiv 1511 02683
– ident: ref6
  doi: 10.1177/0023830909103181
– year: 2017
  ident: ref22
  article-title: NIPS 2016 tutorial: Generative adversarial networks
  publication-title: arXiv 1701 00160
– ident: ref29
  doi: 10.1016/j.imavis.2011.07.002
– ident: ref21
  doi: 10.1145/3240508.3240612
– ident: ref24
  doi: 10.1109/ICCV.2017.244
– ident: ref13
  doi: 10.1109/CVPR.2018.00917
– start-page: 1431
  year: 2014
  ident: ref18
  article-title: Learning to disentangle factors of variation with manifold interaction
  publication-title: Proc Int Conf Mach Learn
– year: 2013
  ident: ref26
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv 1312 6114
– ident: ref20
  doi: 10.1109/CVPR.2017.741
– ident: ref28
  doi: 10.1109/CVPRW.2010.5543262
– ident: ref41
  doi: 10.5244/C.29.41
– ident: ref36
  doi: 10.1109/CVPR.2018.00068
– ident: ref3
  doi: 10.1145/258734.258880
– year: 2016
  ident: ref19
  article-title: Semantic facial expression editing using autoencoded flow
  publication-title: arXiv 1611 09961
– ident: ref16
  doi: 10.1145/1185657.1185856
– ident: ref33
  doi: 10.1145/3240508.3240647
– ident: ref17
  doi: 10.1111/1467-8659.t01-1-00712
– ident: ref31
  doi: 10.1145/3065386
– ident: ref14
  doi: 10.1109/ICCV.2017.267
– ident: ref27
  doi: 10.1109/CVPR.2017.632
– ident: ref12
  doi: 10.1145/1198555.1198589
– start-page: 421
  year: 2008
  ident: ref9
  article-title: Generating facial expressions with deep belief nets
  publication-title: Affective Computing Emotion Modelling Synthesis and Recognition
– year: 2014
  ident: ref23
  article-title: Conditional generative adversarial nets
  publication-title: arXiv 1411 1784
SSID ssj0000816957
Score 2.2136128
Snippet Facial expression manipulation plays an increasingly important role in the field of computer graphics and has been widely used in generating facial animations....
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 56292
SubjectTerms Computer graphics
Faces
Facial expression synthesis
Gallium nitride
Generative adversarial networks
Generators
Shape
Synthesis
Target recognition
Three-dimensional displays
Two dimensional displays
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx5EneJ0Sg8erWu-uvY4x-YQFUGHu4V8FYezk3UD_e99abNREPTiLbRJ2rz3mvd7afJ7CF1oxiS4QRsmWULd0k0cShxlYUwBymmpicrcaeT7h3g0ZrcTPqml-nJ7wip64EpwHWkUYASsLWADBrGLJJnkynATd7HiWRn4gM-rBVPlHJzgOOVdTzOEo7TT6_dhRBAQEnwFdk0i55Bqrqhk7PcpVn7My6WzGe6hXY8Sg171dvtoy-YHaKfGHdhEL0PpVruDO5mbd7l4KwIoBINPv7E1hxvKzoKb1dRYEzy-ziG4to7tELoMfNta7aevHKBgMS0O0Xg4eO6PQp8lIdQsSpahUVkaWYo1hsiMcwmlFMIesH6pMm6sxURqbhMDOmA0Vpowo1JLYuqO0VpMj1Ajn-f2GAXa4q7UllCmFDMEK2pklqQmxkn5P7WFyFpgQnsKcZfJYibKUCJKRSVl4aQsvJRb6HLT6KNi0Pi9-rXTxKaqo78uL4BRCG8U4i-jaKGm0-OmkxRgGKNRC7XXehX-Uy0EADzeZQ6nnvzHo0_RthtOtUrTRo3lYmXPALcs1Xlpot9pbedX
  priority: 102
  providerName: Directory of Open Access Journals
Title Facial Landmarks and Expression Label Guided Photorealistic Facial Expression Synthesis
URI https://ieeexplore.ieee.org/document/9399430
https://www.proquest.com/docview/2515745088
https://doaj.org/article/adb3521ce0854446a2fa5bd5d671b5f1
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTu2hpaVVtzyUA0eyxK9scoQVC6oAIbWo3Cw_JiqCZit2VwJ-PWPHG61KVfVmJbbl6Btnvhl7ZgD2nJSG1CDmVVOJ4Lopc8OKJi8FUTlnHLdNiEY-vyhPr-TXa3W9Bvt9LAwixstnOAzNeJbvp24RXGUHNWlTKchAf0WGWxer1ftTQgGJWo1SYiFW1AeH4zF9A5mAnA1JknkRVNCK8ok5-lNRlRd_4qheJu_gfLmw7lbJ7XAxt0P39EfOxv9d-Qa8TTwzO-wE4z2sYfsB3qxkH9yEHxMT_OXZmWn9L3N_O8uokR0_pKuxLb2weJedLG48-uzy55TMcwz5EmnKLI1d6f3tsSUyObuZfYSryfH38Wme6izkThbVPPe2qQsUzDGy7ZQy1KrJcKL9Y2yjPCLjximsPKEoRWkdl97WyEsRAnGRiU-w3k5b_AyZQzYyDrmQ1krPmRXeNFXtS1bFE9kB8CUA2qUk5KEWxp2OxkhR6w41HVDTCbUB7PeDfnc5OP7d_Sgg23cNCbTjA0JEp_2ojbdEPZlDopySTGLDG6OsV74cMasaNoDNgGI_SQJwANtLOdFps880UUQ1koHpfvn7qC14HRbYeW62YX1-v8Ad4jJzuxt9ALtRlJ8BFlbxgA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N42HwABsD0bFBHnhcuvgrTR5HtVKgnZC2ib1Z_riIaSOd1lYC_nrOiRtVDE17sxLbcvQ753539t0BfHBSGlKDmBZVIYLrJk8Ny6o0F0TlnHHcViEaeXqajy_kl0t1uQGHXSwMIjaXz7Afms1Zvp-5ZXCVHZWkTaUgA_0J6X3F22itzqMSSkiUahBTC7GsPDoeDukryAjkrE-yzLOghNbUT5OlP5ZVufcvbhTM6AVMV0tr75Vc95cL23d__sna-Ni1b8PzyDST41Y0dmAD65fwbC3_4C58H5ngMU8mpvY_zd31PKFGcvIrXo6t6YXFm-TT8sqjT779mJGBjiFjIk2ZxLFrvc9-10Qn51fzV3AxOjkfjtNYaSF1MisWqbdVmaFgjpF1p5ShVkmmE-0gYyvlERk3TmHhCUcpcuu49LZEnosQiotMvIbNelbjG0gcsoFxyIW0VnrOrPCmKkqfs6I5k-0BXwGgXUxDHqph3OjGHMlK3aKmA2o6otaDw27QbZuF4-HuHwOyXdeQQrt5QIjouCO18ZbIJ3NIpFOSUWx4ZZT1yucDZlXFerAbUOwmiQD2YH8lJzpu97kmkqgGMnDdvf-Peg9b4_PpRE8-n359C0_DYls_zj5sLu6WeEDMZmHfNQL9FyOf89U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+Landmarks+and+Expression+Label+Guided+Photorealistic+Facial+Expression+Synthesis&rft.jtitle=IEEE+access&rft.au=Li%2C+Dejian&rft.au=Qi%2C+Wenqian&rft.au=Sun%2C+Shouqian&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=56292&rft.epage=56300&rft_id=info:doi/10.1109%2FACCESS.2021.3072057&rft.externalDocID=9399430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon