Landscape models to understand steelhead (Oncorhynchus mykiss) distribution and help prioritize barrier removals in the Willamette basin, Oregon, USA
We use linear mixed models to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River basin, Oregon. Landscape variables included in the set of best models were alluvium, hillslope < 6%, landslide-derived geology, young (&l...
Saved in:
Published in | Canadian journal of fisheries and aquatic sciences Vol. 61; no. 6; pp. 999 - 1011 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ottawa, Canada
NRC Research Press
01.06.2004
National Research Council of Canada Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We use linear mixed models to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River basin, Oregon. Landscape variables included in the set of best models were alluvium, hillslope < 6%, landslide-derived geology, young (<40 years) forest, shrub vegetation, agricultural land use, and mafic volcanic geology. Our approach enables us to model the temporal correlation between annual redd counts at the same site while extracting patterns of relative redd density across sites that are consistent even among years with varying strengths of steelhead returns. We use our model to predict redd density (redds per kilometre) upstream of 111 probable migration barriers as well as the 95% confidence interval around the redd density prediction and the total number of potential redds behind each barrier. Using a metric that incorporates uncertainty, we identified high-priority barriers that might have been overlooked using only stream length or mean predicted fish benefit and we clearly differentiated between otherwise similar barriers. We show that landscape features can be used to describe and predict the distribution of winter steelhead redds and that these models can be used immediately to improve decision-making for anadromous salmonids. |
---|---|
AbstractList | We use linear mixed models to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River basin, Oregon. Landscape variables included in the set of best models were alluvium, hillslope < 6%, landslide-derived geology, young (<40 years) forest, shrub vegetation, agricultural land use, and mafic volcanic geology. Our approach enables us to model the temporal correlation between annual redd counts at the same site while extracting patterns of relative redd density across sites that are consistent even among years with varying strengths of steelhead returns. We use our model to predict redd density (redds per kilometre) upstream of 111 probable migration barriers as well as the 95% confidence interval around the redd density prediction and the total number of potential redds behind each barrier. Using a metric that incorporates uncertainty, we identified high-priority barriers that might have been overlooked using only stream length or mean predicted fish benefit and we clearly differentiated between otherwise similar barriers. We show that landscape features can be used to describe and predict the distribution of winter steelhead redds and that these models can be used immediately to improve decision-making for anadromous salmonids. We use linear mixed models to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River basin, Oregon. Landscape variables included in the set of best models were alluvium, hillslope < 6%, landslide-derived geology, young (<40 years) forest, shrub vegetation, agricultural land use, and mafic volcanic geology. Our approach enables us to model the temporal correlation between annual redd counts at the same site while extracting patterns of relative redd density across sites that are consistent even among years with varying strengths of steelhead returns. We use our model to predict redd density (redds per kilometre) upstream of 111 probable migration barriers as well as the 95% confidence interval around the redd density prediction and the total number of potential redds behind each barrier. Using a metric that incorporates uncertainty, we identified high-priority barriers that might have been overlooked using only stream length or mean predicted fish benefit and we clearly differentiated between otherwise similar barriers. We show that landscape features can be used to describe and predict the distribution of winter steelhead redds and that these models can be used immediately to improve decision-making for anadromous salmonids. [PUBLICATION ABSTRACT] Linear mixed models are used to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River basin, Oregon. Landscape variable included in the set of best models were alluvium, hillslope < 6%, landslide-derived geology, young (<40 years) forest, shrub vegetation, agricultural land use, and mafic volcanic geology. Modelling the temporal correlation between annual redd counts was enabled by this approach at the same site while extracting patterns of relative redd density across sites that are consistent even among years with varying strengths of steelhead returns. The model is used to predict redd density (redds per kilometre) upstream of 111 probable migration barriers as well as the 95% confidence interval around the redd density prediction and the total number of potential redds behind each barrier. Using a metric that incorporates uncertainty, high-priority barriers were identified that might have been overlooked using only stream length or mean predicted fish benefit and otherwise similar barriers were clearly differentiated. It is shown that landscape features can be used to describe and predict the distribution of winter steelhead redds and that these models can be used immediately to improve decision-making for anadromous salmonids. We use linear mixed models to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River basin, Oregon. Landscape variables included in the set of best models were alluvium, hillslope < 6%, landslide-derived geology, young (<40 years) forest, shrub vegetation, agricultural land use, and mafic volcanic geology. Our approach enables us to model the temporal correlation between annual redd counts at the same site while extracting patterns of relative redd density across sites that are consistent even among years with varying strengths of steelhead returns. We use our model to predict redd density (redds per kilometre) upstream of 111 probable migration barriers as well as the 95% confidence interval around the redd density prediction and the total number of potential redds behind each barrier. Using a metric that incorporates uncertainty, we identified high-priority barriers that might have been overlooked using only stream length or mean predicted fish benefit and we clearly differentiated between otherwise similar barriers. We show that landscape features can be used to describe and predict the distribution of winter steelhead redds and that these models can be used immediately to improve decision-making for anadromous salmonids.Original Abstract: Des modeles lineaires mixtes utilisant des variables reliees a la geologie, a l'utilisation des terres et au climat nous ont servi a predire la densite des nids de truites arc-en-ciel anadromes (Oncorhynchus mykiss) d'hiver dans la riviere Willamette, en Oregon. Les variables du paysage incluses dans la serie des meilleurs modeles comprennent l'alluvion, les versants <6 %, la geologie reliee aux glissements de terrains, les forets jeunes (<40 ans), la vegetation arbustive, les terres agricoles et la geologie volcanique mafique. Notre methode nous permet de modeliser la correlation temporelle entre les inventaires annuels de nids a un meme site, tout en extrayant des patterns de densite relative des nids a travers les sites qui sont coherents meme entre les annees qui ont des retours de truites arc-en-ciel anadromes d'importance inegale. Notre modele a servi a predire la densite des nids (nids par kilometre) en amont de 111 barrieres probables a la migration, de calculer l'intervalle de confiance de 95 % autour de la prediction de densite des nids et d'estimer le nombre total de nids potentiels derriere chaque barriere. A l'aide d'une metrique qui inclut l'incertitude, nous avons identifie des barrieres de forte priorite qui ont pu passer inapercues d'apres la seule longueur du cours d'eau ou d'apres le benefice moyen predit pour les poissons; cela nous a permis ainsi de differencier clairement des barrieres semblables par ailleurs. Nous demontrons que des caracteristiques du paysage permettent de decrire et de predire la repartition des nids des truites arc-en-ciel d'hiver et que ces modeles peuvent servir des a present pour ameliorer les prises de decision concernant les salmonides anadromes. |
Abstract_FL | Des modèles linéaires mixtes utilisant des variables reliées à la géologie, à l'utilisation des terres et au climat nous ont servi à prédire la densité des nids de truites arc-en-ciel anadromes (Oncorhynchus mykiss) d'hiver dans la rivière Willamette, en Oregon. Les variables du paysage incluses dans la série des meilleurs modèles comprennent l'alluvion, les versants <6 %, la géologie reliée aux glissements de terrains, les forêts jeunes (<40 ans), la végétation arbustive, les terres agricoles et la géologie volcanique mafique. Notre méthode nous permet de modéliser la corrélation temporelle entre les inventaires annuels de nids à un même site, tout en extrayant des patterns de densité relative des nids à travers les sites qui sont cohérents même entre les années qui ont des retours de truites arc-en-ciel anadromes d'importance inégale. Notre modèle a servi à prédire la densité des nids (nids par kilomètre) en amont de 111 barrières probables à la migration, de calculer l'intervalle de confiance de 95 % autour de la prédiction de densité des nids et d'estimer le nombre total de nids potentiels derrière chaque barrière. À l'aide d'une métrique qui inclut l'incertitude, nous avons identifié des barrières de forte priorité qui ont pu passer inaperçues d'après la seule longueur du cours d'eau ou d'après le bénéfice moyen prédit pour les poissons; cela nous a permis ainsi de différencier clairement des barrières semblables par ailleurs. Nous démontrons que des caractéristiques du paysage permettent de décrire et de prédire la répartition des nids des truites arc-en-ciel d'hiver et que ces modèles peuvent servir dès à présent pour améliorer les prises de décision concernant les salmonidés anadromes.[Traduit par la Rédaction] |
Author | Sheer, Mindi B Brauner, Jody B Steel, E Ashley Feist, Blake E Jensen, David W Pess, George R Bilby, Robert E |
Author_xml | – sequence: 1 givenname: E Ashley surname: Steel fullname: Steel, E Ashley – sequence: 2 givenname: Blake E surname: Feist fullname: Feist, Blake E – sequence: 3 givenname: David W surname: Jensen fullname: Jensen, David W – sequence: 4 givenname: George R surname: Pess fullname: Pess, George R – sequence: 5 givenname: Mindi B surname: Sheer fullname: Sheer, Mindi B – sequence: 6 givenname: Jody B surname: Brauner fullname: Brauner, Jody B – sequence: 7 givenname: Robert E surname: Bilby fullname: Bilby, Robert E |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16104915$$DView record in Pascal Francis |
BookMark | eNqN0cuKFDEUBuAgI9gziq8QBK9YmqRSt-UweIOGXuigu5BKnVgZq5Kak5TQvofva9ppFAYEV1nky5-T_KfkxAcPhDzk7BXnZffaMlkwKe6QDResKpqqLE_IhjWsLupKfLlHTmO8YoyLirMN-bnVfohGL0DnMMAUaQp09QNgTHmHxgQwjaAH-mznTcBx7824Rjrvv7kYn9PBxYSuX5MLnh4OjDAtdEEX0CX3A2ivER0gRZjDd53znadpBPrZTZOeIaUDic6_pDuEryGvlx_P75O7Nlt4cFzPyOXbN58u3hfb3bsPF-fbwkjWpmJouG1EzZva1FK0zGghDRcgKsl0VcIAbdO3NXTaSmnLvq3qnvXWDtDZzlpWnpEnN7kLhusVYlKziwbyZB7CGhVvWdXJlv8PlG1Tiwwf3YJXYUWfH6EE70pZcl5l9PQGGQwxIliVP2zWuFecqUOJKpeocolZPj7G6VzSZFF74-JfXnMmu9-Jx_k8GoQIGs34Rx3D1DLYDF_8G96-_RfhArr- |
CODEN | CJFSDX |
CitedBy_id | crossref_primary_10_1080_00028487_2015_1022220 crossref_primary_10_1890_1051_0761_2007_017_0066_DOSPRT_2_0_CO_2 crossref_primary_10_1139_cjfas_2016_0221 crossref_primary_10_1080_00028487_2011_567854 crossref_primary_10_1111_fwb_13801 crossref_primary_10_1111_1365_2664_12725 crossref_primary_10_1139_cjfas_2013_0646 crossref_primary_10_1080_00028487_2014_880739 crossref_primary_10_1002_aqc_1221 crossref_primary_10_1111_j_1365_2400_2010_00751_x crossref_primary_10_1577_T05_221_1 crossref_primary_10_1139_f2011_161 crossref_primary_10_1080_02755947_2012_728179 crossref_primary_10_3996_042015_JFWM_039 crossref_primary_10_1577_T08_204_1 crossref_primary_10_1016_j_landusepol_2015_01_008 crossref_primary_10_1139_F08_113 crossref_primary_10_1007_s10661_015_4546_y crossref_primary_10_1139_f07_161 crossref_primary_10_1007_s10980_013_9883_z crossref_primary_10_1080_02755947_2015_1079572 crossref_primary_10_1080_13658816_2012_717628 crossref_primary_10_1139_cjfas_2015_0589 crossref_primary_10_1002_eap_2701 crossref_primary_10_3390_fishes9040113 crossref_primary_10_1139_cjfas_2017_0243 crossref_primary_10_1890_07_1040_1 crossref_primary_10_1038_s41467_021_26897_2 crossref_primary_10_1007_s10980_010_9458_1 crossref_primary_10_1111_j_1600_0587_2010_06607_x crossref_primary_10_1890_05_1949 |
Cites_doi | 10.1577/1548-8659(2003)132<0468:RTACGS>2.0.CO;2 10.1577/1548-8675(2002)022<0001:AROSRT>2.0.CO;2 10.1139/f92-140 10.1139/f01-022 10.1139/f00-135 10.1577/1548-8659(2002)131<0070:DOSFAT>2.0.CO;2 10.1214/aos/1176344136 10.1577/T02-051 10.1139/f88-060 10.1139/f98-181 10.1139/f81-018 10.1139/f75-086 10.1017/S1367943003003330 10.2307/1468026 10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2 10.1139/f00-101 10.1073/pnas.95.25.14843 10.1139/d98-013 10.1139/f96-006 10.1139/f92-076 10.1139/f02-035 |
ContentType | Journal Article |
Copyright | 2004 INIST-CNRS Copyright National Research Council of Canada Jun 2004 |
Copyright_xml | – notice: 2004 INIST-CNRS – notice: Copyright National Research Council of Canada Jun 2004 |
DBID | IQODW AAYXX CITATION 3V. 7QG 7QH 7QP 7QR 7SN 7SS 7U7 7UA 7XB 88I 8AF 8FD 8FK 8FQ 8FV 8G5 ABUWG AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ M2O M2P M3G M7N MBDVC P64 PADUT PATMY PCBAR PQEST PQQKQ PQUKI PYCSY Q9U RC3 F1W H96 L.G H95 H97 |
DOI | 10.1139/f04-042 |
DatabaseName | Pascal-Francis CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Aqualine Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Toxicology Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) Canadian Business & Current Affairs Database (CBCA) Canadian Business & Current Affairs Database (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Research Library Science Database (ProQuest) CBCA Reference & Current Events Algology Mycology and Protozoology Abstracts (Microbiology C) Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Genetics Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central CBCA Complete (Alumni Edition) Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection CBCA Complete ProQuest Research Library Chemoreception Abstracts Research Library China ProQuest Science Journals (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database CBCA Reference & Current Events Ecology Abstracts Aqualine Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Animal Behavior Abstracts Environmental Science Database Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest Central (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality |
DatabaseTitleList | Research Library Prep Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Geology |
EISSN | 1205-7533 |
EndPage | 1011 |
ExternalDocumentID | 702834951 10_1139_f04_042 16104915 |
Genre | Article Feature |
GeographicLocations | Oregon United States North America America Willamette River USA, Oregon USA, Oregon, Willamette R |
GeographicLocations_xml | – name: Willamette River – name: USA, Oregon – name: USA, Oregon, Willamette R |
GroupedDBID | 02 0R 1AW 29B 3V. 4.4 42X 4P2 5GY 5RP 7XC 85S 88I 8AF 8CJ 8FE 8FH 8FQ 8G5 A8Z AADNC AAIKC ABDBF ABFLS ABPTK ABUWG ACGFS ACGOD ACIWK ACPRK ACVYA ADKFC ADKZR AENEX AFKRA AFRAH AGCDD ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC BENPR BHPHI BKSAR BPHCQ CAG COF CS3 D1J D8U DWQXO EAD EAP EAS EBD EBS ECC EDH EJD EMK EPL ESX GNUQQ GUQSH HCIFZ HZ IAO IOF L7B LA8 LK5 M2O M2P M2Q M3C M3E M3G M7R MBDVC MV1 MYA NRXXU O9- OVD P2P PADUT PATMY PCBAR PQEST PQQKQ PQUKI PRG PRINS PROAC PYCSY QF4 QM4 QM9 QN7 QO4 QRP RIG RRP TN5 TUS TWZ UAO UPT WH7 X XJT ZCG -~X ..I 00T 08R 0R~ 2XV 6J9 AAMNW ACGFO AFFNX AFMIJ AIAGR BCR BES BLC CCPQU DATHI ESTFP HZ~ ICQ IEP IFM IPNFZ IQODW ISN ISR ITC NMEPN NYCZX ONR PV9 RRCRK RZL TEORI VQG XOL YV5 ~02 AAHBH AAYXX ABJNI CITATION 7QG 7QH 7QP 7QR 7SN 7SS 7U7 7UA 7XB 8FD 8FK C1K FR3 M7N P64 Q9U RC3 F1W H96 L.G H95 H97 |
ID | FETCH-LOGICAL-c408t-d71f726176c64280ca24c12e2540a53ede87b86e9af44f3b856b0bffde9f9ff03 |
IEDL.DBID | BENPR |
ISSN | 0706-652X |
IngestDate | Wed Jul 24 19:20:56 EDT 2024 Wed Jul 24 12:59:47 EDT 2024 Fri Nov 08 03:50:51 EST 2024 Fri Aug 23 03:10:00 EDT 2024 Sun Oct 22 16:09:04 EDT 2023 Thu May 23 14:20:24 EDT 2019 Wed Nov 11 00:32:54 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Salmonidae Aquatic environment Vertebrata Landscape Spatial distribution Migratory Pisces Models Oncorhynchus mykiss Population density Linear model Anadromy |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-d71f726176c64280ca24c12e2540a53ede87b86e9af44f3b856b0bffde9f9ff03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 219343115 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_18059481 crossref_primary_10_1139_f04_042 nrcresearch_primary_10_1139_f04_042 proquest_miscellaneous_18048762 proquest_journals_219343115 pascalfrancis_primary_16104915 |
PublicationCentury | 2000 |
PublicationDate | 2004-06-01 |
PublicationDateYYYYMMDD | 2004-06-01 |
PublicationDate_xml | – month: 06 year: 2004 text: 2004-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Ottawa, Canada |
PublicationPlace_xml | – name: Ottawa, Canada – name: Ottawa, ON – name: Ottawa |
PublicationTitle | Canadian journal of fisheries and aquatic sciences |
PublicationYear | 2004 |
Publisher | NRC Research Press National Research Council of Canada Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: National Research Council of Canada – name: Canadian Science Publishing NRC Research Press |
References | Schwarz G. (p_39/p_39_1) 1978; 6 Richards C. (p_36/p_36_1) 1996; 53 Daly C. (p_14/p_14_1) 1994; 33 Murphy M.L. (p_25/p_25_1) 1981; 38 Benda L. (p_6/p_6_1) 1992; 49 Hicks B.J. (p_18/p_18_1) 2003; 132 Pess G.R. (p_29/p_29_1) 2002; 59 Bustard D.R. (p_10/p_10_1) 1975; 32 Roni P. (p_38/p_38_1) 2002; 22 Lunetta R.S. (p_22/p_22_1) 1997; 63 Geist D.R. (p_16/p_16_1) 2000; 57 Holtby L.B. (p_19/p_19_1) 1988; 45 Chilcote M.W. (p_12/p_12_1) 1998 Montgomery D.R. (p_24/p_24_1) 1999; 56 Cook R.D. (p_13/p_13_1) 1977; 19 Thompson W.L. (p_41/p_41_1) 2000; 57 Osborne L.L. (p_27/p_27_1) 1992; 49 Rice S.P. (p_35/p_35_1) 2001; 58 Poff N.L. (p_31/p_31_1) 1997; 16 Poff N.L. (p_32/p_32_1) 1998; 55 Kostow K.E. (p_20/p_20_1) 2003; 132 Feist B.E. (p_15/p_15_1) 2003; 6 Zorn T.G. (p_44/p_44_1) 2002; 131 Harding J.S. (p_17/p_17_1) 1998; 95 Bjornn T.C. (p_8/p_8_1) 1991; 19 |
References_xml | – volume: 132 start-page: 468 year: 2003 ident: p_18/p_18_1 publication-title: Range. Trans. Am. Fish. Soc. doi: 10.1577/1548-8659(2003)132<0468:RTACGS>2.0.CO;2 contributor: fullname: Hicks B.J. – volume: 22 start-page: 1 year: 2002 ident: p_38/p_38_1 publication-title: N. Am. J. Fish. Manag. doi: 10.1577/1548-8675(2002)022<0001:AROSRT>2.0.CO;2 contributor: fullname: Roni P. – volume: 49 start-page: 1246 year: 1992 ident: p_6/p_6_1 publication-title: USA. Can. J. Fish. Aquat. Sci. doi: 10.1139/f92-140 contributor: fullname: Benda L. – volume: 58 start-page: 824 year: 2001 ident: p_35/p_35_1 publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f01-022 contributor: fullname: Rice S.P. – volume: 57 start-page: 1834 year: 2000 ident: p_41/p_41_1 publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f00-135 contributor: fullname: Thompson W.L. – start-page: 98 year: 1998 ident: p_12/p_12_1 publication-title: Oregon. Inf. Rep. contributor: fullname: Chilcote M.W. – volume: 131 start-page: 70 year: 2002 ident: p_44/p_44_1 publication-title: Peninsula. Trans. Am. Fish. Soc. doi: 10.1577/1548-8659(2002)131<0070:DOSFAT>2.0.CO;2 contributor: fullname: Zorn T.G. – volume: 6 start-page: 461 year: 1978 ident: p_39/p_39_1 publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 contributor: fullname: Schwarz G. – volume: 19 start-page: 15 year: 1977 ident: p_13/p_13_1 publication-title: Technometrics contributor: fullname: Cook R.D. – volume: 132 start-page: 780 year: 2003 ident: p_20/p_20_1 publication-title: Trans. Am. Fish. Soc. doi: 10.1577/T02-051 contributor: fullname: Kostow K.E. – volume: 45 start-page: 502 year: 1988 ident: p_19/p_19_1 publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f88-060 contributor: fullname: Holtby L.B. – volume: 56 start-page: 377 year: 1999 ident: p_24/p_24_1 publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f98-181 contributor: fullname: Montgomery D.R. – volume: 38 start-page: 137 year: 1981 ident: p_25/p_25_1 publication-title: Oregon. Can. J. Fish. Aquat. Sci. doi: 10.1139/f81-018 contributor: fullname: Murphy M.L. – volume: 32 start-page: 667 year: 1975 ident: p_10/p_10_1 publication-title: J. Fish. Res. Board Can. doi: 10.1139/f75-086 contributor: fullname: Bustard D.R. – volume: 6 start-page: 271 year: 2003 ident: p_15/p_15_1 publication-title: Anim. Conserv. doi: 10.1017/S1367943003003330 contributor: fullname: Feist B.E. – volume: 16 start-page: 391 year: 1997 ident: p_31/p_31_1 publication-title: J. North Am. Benthol. Soc. doi: 10.2307/1468026 contributor: fullname: Poff N.L. – volume: 33 start-page: 140 year: 1994 ident: p_14/p_14_1 publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2 contributor: fullname: Daly C. – volume: 57 start-page: 1636 year: 2000 ident: p_16/p_16_1 publication-title: Columbia River. Can. J. Fish. Aquat. Sci. doi: 10.1139/f00-101 contributor: fullname: Geist D.R. – volume: 95 start-page: 843 year: 1998 ident: p_17/p_17_1 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.95.25.14843 contributor: fullname: Harding J.S. – volume: 55 start-page: 201 year: 1998 ident: p_32/p_32_1 publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/d98-013 contributor: fullname: Poff N.L. – volume: 63 start-page: 1219 year: 1997 ident: p_22/p_22_1 publication-title: Photogramm. Eng. Remote Sensing contributor: fullname: Lunetta R.S. – volume: 53 start-page: 295 year: 1996 ident: p_36/p_36_1 publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f96-006 contributor: fullname: Richards C. – volume: 49 start-page: 671 year: 1992 ident: p_27/p_27_1 publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f92-076 contributor: fullname: Osborne L.L. – volume: 19 start-page: 83 year: 1991 ident: p_8/p_8_1 publication-title: Meehan. Am. Fish. Soc. Spec. Publ. contributor: fullname: Bjornn T.C. – volume: 59 start-page: 613 year: 2002 ident: p_29/p_29_1 publication-title: USA. Can. J. Fish. Aquat. Sci. doi: 10.1139/f02-035 contributor: fullname: Pess G.R. |
SSID | ssj0012510 |
Score | 1.9648762 |
Snippet | We use linear mixed models to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River... Linear mixed models are used to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette... |
SourceID | proquest crossref pascalfrancis nrcresearch |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 999 |
SubjectTerms | Agnatha. Pisces Agricultural land Alluvium Animal and plant ecology Animal migration Animal populations Animal, plant and microbial ecology Animals Biological and medical sciences Climate change Comparative studies Decision making Demecology Density Fish Freshwater Fundamental and applied biological sciences. Psychology Geology Habitats Land management Land use Landscape Landslides Life history Oncorhynchus mykiss River basins Rivers Salmon Scale models Spawning Upstream Vegetation Vertebrata |
Title | Landscape models to understand steelhead (Oncorhynchus mykiss) distribution and help prioritize barrier removals in the Willamette basin, Oregon, USA |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/f04-042 https://www.proquest.com/docview/219343115 https://search.proquest.com/docview/18048762 https://search.proquest.com/docview/18059481 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB-0RfAeRE_l6mld0AcFw-Vjk2yepNWrh-idqIW-heyXLVyTmrQP9f_w_3Um2VYP9Z4S2EkCmd3ZmdmZ3w_gecC1Dq1QnkHDR9kq7clAGC9JpLLovlrewjV9PE_Opvz9LJ652pzGlVXubGJrqHWlKEd-gisr4gQN83r13SPSKDpcdQwaN6EfYqDg96A_Pj3_9Hl_jICbd5tkSTFsTuJw1nXNBuj1nNi2ACO8sh0dlLVyGDtzKpIsGvxPtiO4-MtWtxvQ5C7ccZ4jG3Wqvgc3THkIB6NvtUPPMIdwq2OW3OLdu5axd3sffn6gZl4qc2It603D1hXb7FtaGGrZXKJF1uzFBWFazrelmm8attyia9m8ZJqQdR0pFqMH5uZyxVb1oiI4pB-GyaIm1jtWm2WF07Zhi5KhV8kok1MsqZIIRZpF-YpdUD8MXqdfRg9gOjn9-ubMc1wMnuK-WHs6DWxK6O2JoojFV0XIVRAajC_9Io6MNiKVIjFZYTm3kRRxIn1prTaZzaz1o4fQK6vSHAEThYmtkASUY3mhUhET5IwQUgSJxXhuAGynknzVQW7kbagSZTlqLUetDeDZH6r6v9TTf0m50Xyl7QCGV5T8-03oVfIsiAdwvNN67hZ3k--nIn5gP4qrko5aitJUmyYPBFpG3GeulWiRch5d-4VjuN2VClHa5zH01vXGPEEvaC2H0B-N344nQzfnfwF20gvr |
link.rule.ids | 315,783,787,21400,27936,27937,33756,33757,43817,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKwQ9VFBAhL5WggNIWPVjba9PKEUtAdIUQSPlZu2TRGpsYyeH8D_4v8zYm0AF9GRLO7Ylz-7szOzM9xHyMmBah5Yrz4Dhw2yV9mTAjZckUllwXy1r4ZouRslgzD5O4omrzWlcWeXaJraGWpcKc-QnsLIihtAwb6vvHpJG4eGqY9C4S7YRqQpir-3Ts9HnL5tjBNi82yRLCmFzEoeTrms2AK_nxLYFGOGN7WinqJXD2JlikaRo4D_ZjuDiL1vdbkDnD8mu8xxpv1P1I3LHFHtkp_-tdugZZo_c65glV3D3vmXsXT0mP4fYzItlTrRlvWnooqTLTUsLBS2ba7DImr66REzL6apQ02VD5ytwLZvXVCOyriPFovjA1FxXtKpnJcIh_TBUihpZ72ht5iVM24bOCgpeJcVMjphjJRGINLPiDb3Efhi4jr_2n5Dx-dnVu4HnuBg8xXy-8HQa2BTR2xOFEYuvRMhUEBqIL30RR0YbnkqemExYxmwkeZxIX1qrTWYza_3oKdkqysI8I5QLE1suESjHMqFSHiPkDOeSB4mFeK5H6FoledVBbuRtqBJlOWgtB631yIs_VPV_qeN_SbnRvNK2R45uKPn3m8CrZFkQ98j-Wuu5W9xNvpmK8IHNKKxKPGoRhSmXTR5wsIywz9wq0SLlPL_1C8fk_uDqYpgPP4w-7ZMHXdkQpoAOyNaiXppD8IgW8sjN-1_smg1z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKhA9ICgg0kK7EhxAwoofa3t9QgEaCpS0AiLltvK-SKTGdu3kEP4H_5cZexOogJ5sade25Jmd185-HyHPA6Z1aLnyDBg-rFZpTwbceEkilYXw1bIWrunzODmZsI_TeOoghRrXVrmxia2h1qXCGvkAVlbEEBpmYF1XxPm70evq0kMCKdxodWwaN8lOypLI75GdN8fj8y_bLQVw5G3BJYUUOonDaXeCNoAIaGDbZozwimvaLWrl8HZm2DCZN_DPbEd28Zfdbp3R6B6566JIOuzEfp_cMMUe2R1-rx2ShtkjtzqWyTXcvW_Ze9cPyM9TPNiLLU-0ZcBp6LKkq-3xFgoSNxdgnTV9cYb4lrN1oWarhi7WEGY2L6lGlF1HkEXxgZm5qGhVz0uERvphqMxrZMCjtVmUoMINnRcUIkyKVZ18gV1FMKWZF6_oGZ6Ngevk6_AhmYyOv7098Rwvg6eYz5eeTgObIpJ7ojB78VUeMhWEBnJNP48jow1PJU9MllvGbCR5nEhfWqtNZjNr_egR6RVlYR4TynMTWy4RNMeyXKU8RvgZziUPEgu5XZ_QjUhE1cFviDZtiTIBUhMgtT559oeo_j_r6F-z3KiotO2TwytC_v0miDBZFsR9crCRunALvRFbtYQPbEdhheK2S16YctWIgIOVBJ9z7YwWNWf_2i8ckdug8uL0w_jTAbnTdRBhNegJ6S3rlXkKwdFSHjq1_wVVRRGh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landscape+models+to+understand+steelhead+%28Oncorhynchus+mykiss%29+distribution+and+help+prioritize+barrier+removals+in+the+Willamette+Basin%2C+Oregon%2C+USA&rft.jtitle=Canadian+journal+of+fisheries+and+aquatic+sciences&rft.au=Steel%2C+E+A&rft.au=Feist%2C+B+E&rft.au=Jensen%2C+D+W&rft.au=Pess%2C+G+R&rft.date=2004-06-01&rft.issn=0706-652X&rft.eissn=1205-7533&rft.volume=61&rft.issue=6&rft.spage=999&rft.epage=1011&rft_id=info:doi/10.1139%2Ff04-042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0706-652X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0706-652X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0706-652X&client=summon |