Landscape models to understand steelhead (Oncorhynchus mykiss) distribution and help prioritize barrier removals in the Willamette basin, Oregon, USA

We use linear mixed models to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River basin, Oregon. Landscape variables included in the set of best models were alluvium, hillslope < 6%, landslide-derived geology, young (&l...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of fisheries and aquatic sciences Vol. 61; no. 6; pp. 999 - 1011
Main Authors Steel, E Ashley, Feist, Blake E, Jensen, David W, Pess, George R, Sheer, Mindi B, Brauner, Jody B, Bilby, Robert E
Format Journal Article
LanguageEnglish
Published Ottawa, Canada NRC Research Press 01.06.2004
National Research Council of Canada
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We use linear mixed models to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River basin, Oregon. Landscape variables included in the set of best models were alluvium, hillslope < 6%, landslide-derived geology, young (<40 years) forest, shrub vegetation, agricultural land use, and mafic volcanic geology. Our approach enables us to model the temporal correlation between annual redd counts at the same site while extracting patterns of relative redd density across sites that are consistent even among years with varying strengths of steelhead returns. We use our model to predict redd density (redds per kilometre) upstream of 111 probable migration barriers as well as the 95% confidence interval around the redd density prediction and the total number of potential redds behind each barrier. Using a metric that incorporates uncertainty, we identified high-priority barriers that might have been overlooked using only stream length or mean predicted fish benefit and we clearly differentiated between otherwise similar barriers. We show that landscape features can be used to describe and predict the distribution of winter steelhead redds and that these models can be used immediately to improve decision-making for anadromous salmonids.
AbstractList We use linear mixed models to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River basin, Oregon. Landscape variables included in the set of best models were alluvium, hillslope < 6%, landslide-derived geology, young (<40 years) forest, shrub vegetation, agricultural land use, and mafic volcanic geology. Our approach enables us to model the temporal correlation between annual redd counts at the same site while extracting patterns of relative redd density across sites that are consistent even among years with varying strengths of steelhead returns. We use our model to predict redd density (redds per kilometre) upstream of 111 probable migration barriers as well as the 95% confidence interval around the redd density prediction and the total number of potential redds behind each barrier. Using a metric that incorporates uncertainty, we identified high-priority barriers that might have been overlooked using only stream length or mean predicted fish benefit and we clearly differentiated between otherwise similar barriers. We show that landscape features can be used to describe and predict the distribution of winter steelhead redds and that these models can be used immediately to improve decision-making for anadromous salmonids.
We use linear mixed models to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River basin, Oregon. Landscape variables included in the set of best models were alluvium, hillslope < 6%, landslide-derived geology, young (<40 years) forest, shrub vegetation, agricultural land use, and mafic volcanic geology. Our approach enables us to model the temporal correlation between annual redd counts at the same site while extracting patterns of relative redd density across sites that are consistent even among years with varying strengths of steelhead returns. We use our model to predict redd density (redds per kilometre) upstream of 111 probable migration barriers as well as the 95% confidence interval around the redd density prediction and the total number of potential redds behind each barrier. Using a metric that incorporates uncertainty, we identified high-priority barriers that might have been overlooked using only stream length or mean predicted fish benefit and we clearly differentiated between otherwise similar barriers. We show that landscape features can be used to describe and predict the distribution of winter steelhead redds and that these models can be used immediately to improve decision-making for anadromous salmonids. [PUBLICATION ABSTRACT]
Linear mixed models are used to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River basin, Oregon. Landscape variable included in the set of best models were alluvium, hillslope < 6%, landslide-derived geology, young (<40 years) forest, shrub vegetation, agricultural land use, and mafic volcanic geology. Modelling the temporal correlation between annual redd counts was enabled by this approach at the same site while extracting patterns of relative redd density across sites that are consistent even among years with varying strengths of steelhead returns. The model is used to predict redd density (redds per kilometre) upstream of 111 probable migration barriers as well as the 95% confidence interval around the redd density prediction and the total number of potential redds behind each barrier. Using a metric that incorporates uncertainty, high-priority barriers were identified that might have been overlooked using only stream length or mean predicted fish benefit and otherwise similar barriers were clearly differentiated. It is shown that landscape features can be used to describe and predict the distribution of winter steelhead redds and that these models can be used immediately to improve decision-making for anadromous salmonids.
We use linear mixed models to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River basin, Oregon. Landscape variables included in the set of best models were alluvium, hillslope < 6%, landslide-derived geology, young (<40 years) forest, shrub vegetation, agricultural land use, and mafic volcanic geology. Our approach enables us to model the temporal correlation between annual redd counts at the same site while extracting patterns of relative redd density across sites that are consistent even among years with varying strengths of steelhead returns. We use our model to predict redd density (redds per kilometre) upstream of 111 probable migration barriers as well as the 95% confidence interval around the redd density prediction and the total number of potential redds behind each barrier. Using a metric that incorporates uncertainty, we identified high-priority barriers that might have been overlooked using only stream length or mean predicted fish benefit and we clearly differentiated between otherwise similar barriers. We show that landscape features can be used to describe and predict the distribution of winter steelhead redds and that these models can be used immediately to improve decision-making for anadromous salmonids.Original Abstract: Des modeles lineaires mixtes utilisant des variables reliees a la geologie, a l'utilisation des terres et au climat nous ont servi a predire la densite des nids de truites arc-en-ciel anadromes (Oncorhynchus mykiss) d'hiver dans la riviere Willamette, en Oregon. Les variables du paysage incluses dans la serie des meilleurs modeles comprennent l'alluvion, les versants <6 %, la geologie reliee aux glissements de terrains, les forets jeunes (<40 ans), la vegetation arbustive, les terres agricoles et la geologie volcanique mafique. Notre methode nous permet de modeliser la correlation temporelle entre les inventaires annuels de nids a un meme site, tout en extrayant des patterns de densite relative des nids a travers les sites qui sont coherents meme entre les annees qui ont des retours de truites arc-en-ciel anadromes d'importance inegale. Notre modele a servi a predire la densite des nids (nids par kilometre) en amont de 111 barrieres probables a la migration, de calculer l'intervalle de confiance de 95 % autour de la prediction de densite des nids et d'estimer le nombre total de nids potentiels derriere chaque barriere. A l'aide d'une metrique qui inclut l'incertitude, nous avons identifie des barrieres de forte priorite qui ont pu passer inapercues d'apres la seule longueur du cours d'eau ou d'apres le benefice moyen predit pour les poissons; cela nous a permis ainsi de differencier clairement des barrieres semblables par ailleurs. Nous demontrons que des caracteristiques du paysage permettent de decrire et de predire la repartition des nids des truites arc-en-ciel d'hiver et que ces modeles peuvent servir des a present pour ameliorer les prises de decision concernant les salmonides anadromes.
Abstract_FL Des modèles linéaires mixtes utilisant des variables reliées à la géologie, à l'utilisation des terres et au climat nous ont servi à prédire la densité des nids de truites arc-en-ciel anadromes (Oncorhynchus mykiss) d'hiver dans la rivière Willamette, en Oregon. Les variables du paysage incluses dans la série des meilleurs modèles comprennent l'alluvion, les versants <6 %, la géologie reliée aux glissements de terrains, les forêts jeunes (<40 ans), la végétation arbustive, les terres agricoles et la géologie volcanique mafique. Notre méthode nous permet de modéliser la corrélation temporelle entre les inventaires annuels de nids à un même site, tout en extrayant des patterns de densité relative des nids à travers les sites qui sont cohérents même entre les années qui ont des retours de truites arc-en-ciel anadromes d'importance inégale. Notre modèle a servi à prédire la densité des nids (nids par kilomètre) en amont de 111 barrières probables à la migration, de calculer l'intervalle de confiance de 95 % autour de la prédiction de densité des nids et d'estimer le nombre total de nids potentiels derrière chaque barrière. À l'aide d'une métrique qui inclut l'incertitude, nous avons identifié des barrières de forte priorité qui ont pu passer inaperçues d'après la seule longueur du cours d'eau ou d'après le bénéfice moyen prédit pour les poissons; cela nous a permis ainsi de différencier clairement des barrières semblables par ailleurs. Nous démontrons que des caractéristiques du paysage permettent de décrire et de prédire la répartition des nids des truites arc-en-ciel d'hiver et que ces modèles peuvent servir dès à présent pour améliorer les prises de décision concernant les salmonidés anadromes.[Traduit par la Rédaction]
Author Sheer, Mindi B
Brauner, Jody B
Steel, E Ashley
Feist, Blake E
Jensen, David W
Pess, George R
Bilby, Robert E
Author_xml – sequence: 1
  givenname: E Ashley
  surname: Steel
  fullname: Steel, E Ashley
– sequence: 2
  givenname: Blake E
  surname: Feist
  fullname: Feist, Blake E
– sequence: 3
  givenname: David W
  surname: Jensen
  fullname: Jensen, David W
– sequence: 4
  givenname: George R
  surname: Pess
  fullname: Pess, George R
– sequence: 5
  givenname: Mindi B
  surname: Sheer
  fullname: Sheer, Mindi B
– sequence: 6
  givenname: Jody B
  surname: Brauner
  fullname: Brauner, Jody B
– sequence: 7
  givenname: Robert E
  surname: Bilby
  fullname: Bilby, Robert E
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16104915$$DView record in Pascal Francis
BookMark eNqN0cuKFDEUBuAgI9gziq8QBK9YmqRSt-UweIOGXuigu5BKnVgZq5Kak5TQvofva9ppFAYEV1nky5-T_KfkxAcPhDzk7BXnZffaMlkwKe6QDResKpqqLE_IhjWsLupKfLlHTmO8YoyLirMN-bnVfohGL0DnMMAUaQp09QNgTHmHxgQwjaAH-mznTcBx7824Rjrvv7kYn9PBxYSuX5MLnh4OjDAtdEEX0CX3A2ivER0gRZjDd53znadpBPrZTZOeIaUDic6_pDuEryGvlx_P75O7Nlt4cFzPyOXbN58u3hfb3bsPF-fbwkjWpmJouG1EzZva1FK0zGghDRcgKsl0VcIAbdO3NXTaSmnLvq3qnvXWDtDZzlpWnpEnN7kLhusVYlKziwbyZB7CGhVvWdXJlv8PlG1Tiwwf3YJXYUWfH6EE70pZcl5l9PQGGQwxIliVP2zWuFecqUOJKpeocolZPj7G6VzSZFF74-JfXnMmu9-Jx_k8GoQIGs34Rx3D1DLYDF_8G96-_RfhArr-
CODEN CJFSDX
CitedBy_id crossref_primary_10_1080_00028487_2015_1022220
crossref_primary_10_1890_1051_0761_2007_017_0066_DOSPRT_2_0_CO_2
crossref_primary_10_1139_cjfas_2016_0221
crossref_primary_10_1080_00028487_2011_567854
crossref_primary_10_1111_fwb_13801
crossref_primary_10_1111_1365_2664_12725
crossref_primary_10_1139_cjfas_2013_0646
crossref_primary_10_1080_00028487_2014_880739
crossref_primary_10_1002_aqc_1221
crossref_primary_10_1111_j_1365_2400_2010_00751_x
crossref_primary_10_1577_T05_221_1
crossref_primary_10_1139_f2011_161
crossref_primary_10_1080_02755947_2012_728179
crossref_primary_10_3996_042015_JFWM_039
crossref_primary_10_1577_T08_204_1
crossref_primary_10_1016_j_landusepol_2015_01_008
crossref_primary_10_1139_F08_113
crossref_primary_10_1007_s10661_015_4546_y
crossref_primary_10_1139_f07_161
crossref_primary_10_1007_s10980_013_9883_z
crossref_primary_10_1080_02755947_2015_1079572
crossref_primary_10_1080_13658816_2012_717628
crossref_primary_10_1139_cjfas_2015_0589
crossref_primary_10_1002_eap_2701
crossref_primary_10_3390_fishes9040113
crossref_primary_10_1139_cjfas_2017_0243
crossref_primary_10_1890_07_1040_1
crossref_primary_10_1038_s41467_021_26897_2
crossref_primary_10_1007_s10980_010_9458_1
crossref_primary_10_1111_j_1600_0587_2010_06607_x
crossref_primary_10_1890_05_1949
Cites_doi 10.1577/1548-8659(2003)132<0468:RTACGS>2.0.CO;2
10.1577/1548-8675(2002)022<0001:AROSRT>2.0.CO;2
10.1139/f92-140
10.1139/f01-022
10.1139/f00-135
10.1577/1548-8659(2002)131<0070:DOSFAT>2.0.CO;2
10.1214/aos/1176344136
10.1577/T02-051
10.1139/f88-060
10.1139/f98-181
10.1139/f81-018
10.1139/f75-086
10.1017/S1367943003003330
10.2307/1468026
10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
10.1139/f00-101
10.1073/pnas.95.25.14843
10.1139/d98-013
10.1139/f96-006
10.1139/f92-076
10.1139/f02-035
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright National Research Council of Canada Jun 2004
Copyright_xml – notice: 2004 INIST-CNRS
– notice: Copyright National Research Council of Canada Jun 2004
DBID IQODW
AAYXX
CITATION
3V.
7QG
7QH
7QP
7QR
7SN
7SS
7U7
7UA
7XB
88I
8AF
8FD
8FK
8FQ
8FV
8G5
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
M2O
M2P
M3G
M7N
MBDVC
P64
PADUT
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
RC3
F1W
H96
L.G
H95
H97
DOI 10.1139/f04-042
DatabaseName Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Aqualine
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Toxicology Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Canadian Business & Current Affairs Database (CBCA)
Canadian Business & Current Affairs Database (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Research Library
Science Database (ProQuest)
CBCA Reference & Current Events
Algology Mycology and Protozoology Abstracts (Microbiology C)
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
CBCA Complete (Alumni Edition)
Earth, Atmospheric & Aquatic Science Collection
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
CBCA Complete
ProQuest Research Library
Chemoreception Abstracts
Research Library China
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
CBCA Reference & Current Events
Ecology Abstracts
Aqualine
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest Central (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitleList
Research Library Prep
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Geology
EISSN 1205-7533
EndPage 1011
ExternalDocumentID 702834951
10_1139_f04_042
16104915
Genre Article
Feature
GeographicLocations Oregon
United States
North America
America
Willamette River
USA, Oregon
USA, Oregon, Willamette R
GeographicLocations_xml – name: Willamette River
– name: USA, Oregon
– name: USA, Oregon, Willamette R
GroupedDBID 02
0R
1AW
29B
3V.
4.4
42X
4P2
5GY
5RP
7XC
85S
88I
8AF
8CJ
8FE
8FH
8FQ
8G5
A8Z
AADNC
AAIKC
ABDBF
ABFLS
ABPTK
ABUWG
ACGFS
ACGOD
ACIWK
ACPRK
ACVYA
ADKFC
ADKZR
AENEX
AFKRA
AFRAH
AGCDD
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
BPHCQ
CAG
COF
CS3
D1J
D8U
DWQXO
EAD
EAP
EAS
EBD
EBS
ECC
EDH
EJD
EMK
EPL
ESX
GNUQQ
GUQSH
HCIFZ
HZ
IAO
IOF
L7B
LA8
LK5
M2O
M2P
M2Q
M3C
M3E
M3G
M7R
MBDVC
MV1
MYA
NRXXU
O9-
OVD
P2P
PADUT
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PRG
PRINS
PROAC
PYCSY
QF4
QM4
QM9
QN7
QO4
QRP
RIG
RRP
TN5
TUS
TWZ
UAO
UPT
WH7
X
XJT
ZCG
-~X
..I
00T
08R
0R~
2XV
6J9
AAMNW
ACGFO
AFFNX
AFMIJ
AIAGR
BCR
BES
BLC
CCPQU
DATHI
ESTFP
HZ~
ICQ
IEP
IFM
IPNFZ
IQODW
ISN
ISR
ITC
NMEPN
NYCZX
ONR
PV9
RRCRK
RZL
TEORI
VQG
XOL
YV5
~02
AAHBH
AAYXX
ABJNI
CITATION
7QG
7QH
7QP
7QR
7SN
7SS
7U7
7UA
7XB
8FD
8FK
C1K
FR3
M7N
P64
Q9U
RC3
F1W
H96
L.G
H95
H97
ID FETCH-LOGICAL-c408t-d71f726176c64280ca24c12e2540a53ede87b86e9af44f3b856b0bffde9f9ff03
IEDL.DBID BENPR
ISSN 0706-652X
IngestDate Wed Jul 24 19:20:56 EDT 2024
Wed Jul 24 12:59:47 EDT 2024
Fri Nov 08 03:50:51 EST 2024
Fri Aug 23 03:10:00 EDT 2024
Sun Oct 22 16:09:04 EDT 2023
Thu May 23 14:20:24 EDT 2019
Wed Nov 11 00:32:54 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Salmonidae
Aquatic environment
Vertebrata
Landscape
Spatial distribution
Migratory
Pisces
Models
Oncorhynchus mykiss
Population density
Linear model
Anadromy
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-d71f726176c64280ca24c12e2540a53ede87b86e9af44f3b856b0bffde9f9ff03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 219343115
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_18059481
crossref_primary_10_1139_f04_042
nrcresearch_primary_10_1139_f04_042
proquest_miscellaneous_18048762
proquest_journals_219343115
pascalfrancis_primary_16104915
PublicationCentury 2000
PublicationDate 2004-06-01
PublicationDateYYYYMMDD 2004-06-01
PublicationDate_xml – month: 06
  year: 2004
  text: 2004-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Ottawa, Canada
PublicationPlace_xml – name: Ottawa, Canada
– name: Ottawa, ON
– name: Ottawa
PublicationTitle Canadian journal of fisheries and aquatic sciences
PublicationYear 2004
Publisher NRC Research Press
National Research Council of Canada
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: National Research Council of Canada
– name: Canadian Science Publishing NRC Research Press
References Schwarz G. (p_39/p_39_1) 1978; 6
Richards C. (p_36/p_36_1) 1996; 53
Daly C. (p_14/p_14_1) 1994; 33
Murphy M.L. (p_25/p_25_1) 1981; 38
Benda L. (p_6/p_6_1) 1992; 49
Hicks B.J. (p_18/p_18_1) 2003; 132
Pess G.R. (p_29/p_29_1) 2002; 59
Bustard D.R. (p_10/p_10_1) 1975; 32
Roni P. (p_38/p_38_1) 2002; 22
Lunetta R.S. (p_22/p_22_1) 1997; 63
Geist D.R. (p_16/p_16_1) 2000; 57
Holtby L.B. (p_19/p_19_1) 1988; 45
Chilcote M.W. (p_12/p_12_1) 1998
Montgomery D.R. (p_24/p_24_1) 1999; 56
Cook R.D. (p_13/p_13_1) 1977; 19
Thompson W.L. (p_41/p_41_1) 2000; 57
Osborne L.L. (p_27/p_27_1) 1992; 49
Rice S.P. (p_35/p_35_1) 2001; 58
Poff N.L. (p_31/p_31_1) 1997; 16
Poff N.L. (p_32/p_32_1) 1998; 55
Kostow K.E. (p_20/p_20_1) 2003; 132
Feist B.E. (p_15/p_15_1) 2003; 6
Zorn T.G. (p_44/p_44_1) 2002; 131
Harding J.S. (p_17/p_17_1) 1998; 95
Bjornn T.C. (p_8/p_8_1) 1991; 19
References_xml – volume: 132
  start-page: 468
  year: 2003
  ident: p_18/p_18_1
  publication-title: Range. Trans. Am. Fish. Soc.
  doi: 10.1577/1548-8659(2003)132<0468:RTACGS>2.0.CO;2
  contributor:
    fullname: Hicks B.J.
– volume: 22
  start-page: 1
  year: 2002
  ident: p_38/p_38_1
  publication-title: N. Am. J. Fish. Manag.
  doi: 10.1577/1548-8675(2002)022<0001:AROSRT>2.0.CO;2
  contributor:
    fullname: Roni P.
– volume: 49
  start-page: 1246
  year: 1992
  ident: p_6/p_6_1
  publication-title: USA. Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f92-140
  contributor:
    fullname: Benda L.
– volume: 58
  start-page: 824
  year: 2001
  ident: p_35/p_35_1
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f01-022
  contributor:
    fullname: Rice S.P.
– volume: 57
  start-page: 1834
  year: 2000
  ident: p_41/p_41_1
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f00-135
  contributor:
    fullname: Thompson W.L.
– start-page: 98
  year: 1998
  ident: p_12/p_12_1
  publication-title: Oregon. Inf. Rep.
  contributor:
    fullname: Chilcote M.W.
– volume: 131
  start-page: 70
  year: 2002
  ident: p_44/p_44_1
  publication-title: Peninsula. Trans. Am. Fish. Soc.
  doi: 10.1577/1548-8659(2002)131<0070:DOSFAT>2.0.CO;2
  contributor:
    fullname: Zorn T.G.
– volume: 6
  start-page: 461
  year: 1978
  ident: p_39/p_39_1
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
  contributor:
    fullname: Schwarz G.
– volume: 19
  start-page: 15
  year: 1977
  ident: p_13/p_13_1
  publication-title: Technometrics
  contributor:
    fullname: Cook R.D.
– volume: 132
  start-page: 780
  year: 2003
  ident: p_20/p_20_1
  publication-title: Trans. Am. Fish. Soc.
  doi: 10.1577/T02-051
  contributor:
    fullname: Kostow K.E.
– volume: 45
  start-page: 502
  year: 1988
  ident: p_19/p_19_1
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f88-060
  contributor:
    fullname: Holtby L.B.
– volume: 56
  start-page: 377
  year: 1999
  ident: p_24/p_24_1
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f98-181
  contributor:
    fullname: Montgomery D.R.
– volume: 38
  start-page: 137
  year: 1981
  ident: p_25/p_25_1
  publication-title: Oregon. Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f81-018
  contributor:
    fullname: Murphy M.L.
– volume: 32
  start-page: 667
  year: 1975
  ident: p_10/p_10_1
  publication-title: J. Fish. Res. Board Can.
  doi: 10.1139/f75-086
  contributor:
    fullname: Bustard D.R.
– volume: 6
  start-page: 271
  year: 2003
  ident: p_15/p_15_1
  publication-title: Anim. Conserv.
  doi: 10.1017/S1367943003003330
  contributor:
    fullname: Feist B.E.
– volume: 16
  start-page: 391
  year: 1997
  ident: p_31/p_31_1
  publication-title: J. North Am. Benthol. Soc.
  doi: 10.2307/1468026
  contributor:
    fullname: Poff N.L.
– volume: 33
  start-page: 140
  year: 1994
  ident: p_14/p_14_1
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
  contributor:
    fullname: Daly C.
– volume: 57
  start-page: 1636
  year: 2000
  ident: p_16/p_16_1
  publication-title: Columbia River. Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f00-101
  contributor:
    fullname: Geist D.R.
– volume: 95
  start-page: 843
  year: 1998
  ident: p_17/p_17_1
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.95.25.14843
  contributor:
    fullname: Harding J.S.
– volume: 55
  start-page: 201
  year: 1998
  ident: p_32/p_32_1
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/d98-013
  contributor:
    fullname: Poff N.L.
– volume: 63
  start-page: 1219
  year: 1997
  ident: p_22/p_22_1
  publication-title: Photogramm. Eng. Remote Sensing
  contributor:
    fullname: Lunetta R.S.
– volume: 53
  start-page: 295
  year: 1996
  ident: p_36/p_36_1
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f96-006
  contributor:
    fullname: Richards C.
– volume: 49
  start-page: 671
  year: 1992
  ident: p_27/p_27_1
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f92-076
  contributor:
    fullname: Osborne L.L.
– volume: 19
  start-page: 83
  year: 1991
  ident: p_8/p_8_1
  publication-title: Meehan. Am. Fish. Soc. Spec. Publ.
  contributor:
    fullname: Bjornn T.C.
– volume: 59
  start-page: 613
  year: 2002
  ident: p_29/p_29_1
  publication-title: USA. Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f02-035
  contributor:
    fullname: Pess G.R.
SSID ssj0012510
Score 1.9648762
Snippet We use linear mixed models to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette River...
Linear mixed models are used to predict winter steelhead (Oncorhynchus mykiss) redd density from geology, land use, and climate variables in the Willamette...
SourceID proquest
crossref
pascalfrancis
nrcresearch
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 999
SubjectTerms Agnatha. Pisces
Agricultural land
Alluvium
Animal and plant ecology
Animal migration
Animal populations
Animal, plant and microbial ecology
Animals
Biological and medical sciences
Climate change
Comparative studies
Decision making
Demecology
Density
Fish
Freshwater
Fundamental and applied biological sciences. Psychology
Geology
Habitats
Land management
Land use
Landscape
Landslides
Life history
Oncorhynchus mykiss
River basins
Rivers
Salmon
Scale models
Spawning
Upstream
Vegetation
Vertebrata
Title Landscape models to understand steelhead (Oncorhynchus mykiss) distribution and help prioritize barrier removals in the Willamette basin, Oregon, USA
URI http://www.nrcresearchpress.com/doi/abs/10.1139/f04-042
https://www.proquest.com/docview/219343115
https://search.proquest.com/docview/18048762
https://search.proquest.com/docview/18059481
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB-0RfAeRE_l6mld0AcFw-Vjk2yepNWrh-idqIW-heyXLVyTmrQP9f_w_3Um2VYP9Z4S2EkCmd3ZmdmZ3w_gecC1Dq1QnkHDR9kq7clAGC9JpLLovlrewjV9PE_Opvz9LJ652pzGlVXubGJrqHWlKEd-gisr4gQN83r13SPSKDpcdQwaN6EfYqDg96A_Pj3_9Hl_jICbd5tkSTFsTuJw1nXNBuj1nNi2ACO8sh0dlLVyGDtzKpIsGvxPtiO4-MtWtxvQ5C7ccZ4jG3Wqvgc3THkIB6NvtUPPMIdwq2OW3OLdu5axd3sffn6gZl4qc2It603D1hXb7FtaGGrZXKJF1uzFBWFazrelmm8attyia9m8ZJqQdR0pFqMH5uZyxVb1oiI4pB-GyaIm1jtWm2WF07Zhi5KhV8kok1MsqZIIRZpF-YpdUD8MXqdfRg9gOjn9-ubMc1wMnuK-WHs6DWxK6O2JoojFV0XIVRAajC_9Io6MNiKVIjFZYTm3kRRxIn1prTaZzaz1o4fQK6vSHAEThYmtkASUY3mhUhET5IwQUgSJxXhuAGynknzVQW7kbagSZTlqLUetDeDZH6r6v9TTf0m50Xyl7QCGV5T8-03oVfIsiAdwvNN67hZ3k--nIn5gP4qrko5aitJUmyYPBFpG3GeulWiRch5d-4VjuN2VClHa5zH01vXGPEEvaC2H0B-N344nQzfnfwF20gvr
link.rule.ids 315,783,787,21400,27936,27937,33756,33757,43817,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKwQ9VFBAhL5WggNIWPVjba9PKEUtAdIUQSPlZu2TRGpsYyeH8D_4v8zYm0AF9GRLO7Ylz-7szOzM9xHyMmBah5Yrz4Dhw2yV9mTAjZckUllwXy1r4ZouRslgzD5O4omrzWlcWeXaJraGWpcKc-QnsLIihtAwb6vvHpJG4eGqY9C4S7YRqQpir-3Ts9HnL5tjBNi82yRLCmFzEoeTrms2AK_nxLYFGOGN7WinqJXD2JlikaRo4D_ZjuDiL1vdbkDnD8mu8xxpv1P1I3LHFHtkp_-tdugZZo_c65glV3D3vmXsXT0mP4fYzItlTrRlvWnooqTLTUsLBS2ba7DImr66REzL6apQ02VD5ytwLZvXVCOyriPFovjA1FxXtKpnJcIh_TBUihpZ72ht5iVM24bOCgpeJcVMjphjJRGINLPiDb3Efhi4jr_2n5Dx-dnVu4HnuBg8xXy-8HQa2BTR2xOFEYuvRMhUEBqIL30RR0YbnkqemExYxmwkeZxIX1qrTWYza_3oKdkqysI8I5QLE1suESjHMqFSHiPkDOeSB4mFeK5H6FoledVBbuRtqBJlOWgtB631yIs_VPV_qeN_SbnRvNK2R45uKPn3m8CrZFkQ98j-Wuu5W9xNvpmK8IHNKKxKPGoRhSmXTR5wsIywz9wq0SLlPL_1C8fk_uDqYpgPP4w-7ZMHXdkQpoAOyNaiXppD8IgW8sjN-1_smg1z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKhA9ICgg0kK7EhxAwoofa3t9QgEaCpS0AiLltvK-SKTGdu3kEP4H_5cZexOogJ5sade25Jmd185-HyHPA6Z1aLnyDBg-rFZpTwbceEkilYXw1bIWrunzODmZsI_TeOoghRrXVrmxia2h1qXCGvkAVlbEEBpmYF1XxPm70evq0kMCKdxodWwaN8lOypLI75GdN8fj8y_bLQVw5G3BJYUUOonDaXeCNoAIaGDbZozwimvaLWrl8HZm2DCZN_DPbEd28Zfdbp3R6B6566JIOuzEfp_cMMUe2R1-rx2ShtkjtzqWyTXcvW_Ze9cPyM9TPNiLLU-0ZcBp6LKkq-3xFgoSNxdgnTV9cYb4lrN1oWarhi7WEGY2L6lGlF1HkEXxgZm5qGhVz0uERvphqMxrZMCjtVmUoMINnRcUIkyKVZ18gV1FMKWZF6_oGZ6Ngevk6_AhmYyOv7098Rwvg6eYz5eeTgObIpJ7ojB78VUeMhWEBnJNP48jow1PJU9MllvGbCR5nEhfWqtNZjNr_egR6RVlYR4TynMTWy4RNMeyXKU8RvgZziUPEgu5XZ_QjUhE1cFviDZtiTIBUhMgtT559oeo_j_r6F-z3KiotO2TwytC_v0miDBZFsR9crCRunALvRFbtYQPbEdhheK2S16YctWIgIOVBJ9z7YwWNWf_2i8ckdug8uL0w_jTAbnTdRBhNegJ6S3rlXkKwdFSHjq1_wVVRRGh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landscape+models+to+understand+steelhead+%28Oncorhynchus+mykiss%29+distribution+and+help+prioritize+barrier+removals+in+the+Willamette+Basin%2C+Oregon%2C+USA&rft.jtitle=Canadian+journal+of+fisheries+and+aquatic+sciences&rft.au=Steel%2C+E+A&rft.au=Feist%2C+B+E&rft.au=Jensen%2C+D+W&rft.au=Pess%2C+G+R&rft.date=2004-06-01&rft.issn=0706-652X&rft.eissn=1205-7533&rft.volume=61&rft.issue=6&rft.spage=999&rft.epage=1011&rft_id=info:doi/10.1139%2Ff04-042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0706-652X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0706-652X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0706-652X&client=summon