Scattering Feature-Driven Superpixel Segmentation for Polarimetric SAR Images

Superpixel segmentation for polarimetric synthetic aperture radar (PolSAR) images plays a fundamental role in various PolSAR applications. Subject to the intrinsic limitations, the existing methods generally produce over or undersegmented superpixels in highly complex scenes of PolSAR images. In thi...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 2173 - 2183
Main Authors Quan, Sinong, Xiang, Deliang, Wang, Wei, Xiong, Boli, Kuang, Gangyao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Superpixel segmentation for polarimetric synthetic aperture radar (PolSAR) images plays a fundamental role in various PolSAR applications. Subject to the intrinsic limitations, the existing methods generally produce over or undersegmented superpixels in highly complex scenes of PolSAR images. In this article, we propose an efficient and effective scattering feature-driven superpixel segmentation method for PolSAR images, which is capable of preserving the global structure information and producing superpixels with both high boundary adherence and visual compactness. First, a hierarchical version of the refined five-component decomposition is proposed. The derived scattering features along with other well-used features are then combined to construct a low-dimensional feature vector. Second, a modified normalized cuts formulation using a distance measurement is presented, in which the feature similarity and the space proximity are both considered. During the superpixel segmentation, the edge information derived from our scattering mechanism-optimal contrast-based edge detector is incorporated. On this basis, a tradeoff factor according to the edge information and the equivalent number of looks is determined, which balances the relationship of feature similarity and space proximity so as to adaptively control the size and shape of superpixels. The performance of the proposed method is demonstrated and evaluated with fully PolSAR data over different test sites. The outputs show that the proposed method outperforms the state-of-the-art methods and the produced superpixels scale well especially for heterogeneous scattering cases.
AbstractList Superpixel segmentation for polarimetric synthetic aperture radar (PolSAR) images plays a fundamental role in various PolSAR applications. Subject to the intrinsic limitations, the existing methods generally produce over or undersegmented superpixels in highly complex scenes of PolSAR images. In this article, we propose an efficient and effective scattering feature-driven superpixel segmentation method for PolSAR images, which is capable of preserving the global structure information and producing superpixels with both high boundary adherence and visual compactness. First, a hierarchical version of the refined five-component decomposition is proposed. The derived scattering features along with other well-used features are then combined to construct a low-dimensional feature vector. Second, a modified normalized cuts formulation using a distance measurement is presented, in which the feature similarity and the space proximity are both considered. During the superpixel segmentation, the edge information derived from our scattering mechanism-optimal contrast-based edge detector is incorporated. On this basis, a tradeoff factor according to the edge information and the equivalent number of looks is determined, which balances the relationship of feature similarity and space proximity so as to adaptively control the size and shape of superpixels. The performance of the proposed method is demonstrated and evaluated with fully PolSAR data over different test sites. The outputs show that the proposed method outperforms the state-of-the-art methods and the produced superpixels scale well especially for heterogeneous scattering cases.
Author Quan, Sinong
Wang, Wei
Kuang, Gangyao
Xiong, Boli
Xiang, Deliang
Author_xml – sequence: 1
  givenname: Sinong
  orcidid: 0000-0002-6908-1975
  surname: Quan
  fullname: Quan, Sinong
  email: qsnong@hotmail.com
  organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Deliang
  orcidid: 0000-0003-0152-6621
  surname: Xiang
  fullname: Xiang, Deliang
  email: xiangdeliang@gmail.com
  organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering, and also with the Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology, Beijing, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0002-3421-3835
  surname: Wang
  fullname: Wang, Wei
  email: wangwei_nudt@hotmail.com
  organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Boli
  surname: Xiong
  fullname: Xiong, Boli
  email: bolixiong@gmail.com
  organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: Gangyao
  surname: Kuang
  fullname: Kuang, Gangyao
  email: kuangyeats@hotmail.com
  organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China
BookMark eNp9kUtP4zAUhS3ESBRmfgGbSKxT_I69rHhNEWhGTWdtuc515SqNi-Mi-PeTEmDBgtWVrs537tE9p-i4ix0gdE7wlBCsL-_r5WxRTymmZMqwYESSIzShRJCSCCaO0YRopkvCMT9Bp32_wVjSSrMJeqydzRlS6NbFLdi8T1Bep_AMXVHvd5B24QXaoob1Frpsc4hd4WMq_sbWprCFnIIr6tmimG_tGvqf6Ie3bQ-_3ucZ-nd7s7z6XT78uZtfzR5Kx7HKZSOlEMwp26w8pwr7lZCiwqLxvgLuQFMLoKXUFLyqMLNCUnB6JYjAcpCzMzQffZtoN2Y3JLHp1UQbzNsiprWxKQfXgqlW1g1HMFFUc-ek9q5y0HhlZcUpUYPXxei1S_FpD302m7hP3RDfUK5UxSUmbFDpUeVS7PsE3rgw_iMnG1pDsDk0YcYmzKEJ897EwLIv7Efi76nzkQoA8EloRjXmnP0HyHaWxg
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_rs15041123
crossref_primary_10_1109_LGRS_2022_3200311
crossref_primary_10_1109_TGRS_2021_3126669
crossref_primary_10_1109_TGRS_2022_3142068
crossref_primary_10_1109_LGRS_2022_3164464
crossref_primary_10_1109_JSTARS_2021_3140101
crossref_primary_10_3390_rs14122914
crossref_primary_10_3390_rs14194721
crossref_primary_10_1080_2150704X_2021_1966121
crossref_primary_10_1109_TGRS_2024_3404626
crossref_primary_10_1109_JSTARS_2025_3542952
crossref_primary_10_1080_01431161_2021_1993466
crossref_primary_10_3390_rs15112899
Cites_doi 10.1109/TGRS.2015.2401043
10.1109/36.673687
10.1109/TIP.2017.2651389
10.1109/CVPR.2011.5995323
10.1109/JSTARS.2017.2787591
10.1109/TIP.2017.2778569
10.1109/TGRS.2012.2203604
10.1109/TPAMI.2007.1115
10.1109/LGRS.2010.2089427
10.1109/TPAMI.2017.2686857
10.3390/rs6087158
10.3390/rs11050581
10.1109/LGRS.2019.2919422
10.1109/TGRS.2005.852084
10.1109/TIP.2018.2815759
10.1109/JSTARS.2017.2708418
10.1016/j.isprsjprs.2016.03.009
10.1109/TGRS.2018.2835513
10.1109/LGRS.2013.2259214
10.1109/LGRS.2004.830127
10.1109/34.868688
10.1109/TFUZZ.2018.2814591
10.1109/LGRS.2014.2322960
10.3390/rs9080856
10.1109/TPAMI.2012.120
10.1109/34.1000236
10.1109/LGRS.2018.2833492
10.1109/TGRS.2015.2410177
10.1109/TGRS.2017.2662010
10.1109/TGRS.2009.2019269
10.3390/rs8080619
10.1109/TPAMI.2006.191
10.1109/TGRS.2009.2024303
10.1016/j.isprsjprs.2018.03.026
10.1109/TGRS.2012.2203358
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2021.3053161
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: Acceso a contenido Full Text - Doaj
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 2183
ExternalDocumentID oai_doaj_org_article_7bacf42018294cc69fc7cedf8a674218
10_1109_JSTARS_2021_3053161
9329044
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62001487; 41801236; 61901500
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2020JJ5674
  funderid: 10.13039/501100004735
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-d66553c8adbf4280fb565705dff7e4ce92aee96692ef8703a562ec9b5150680f3
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Wed Aug 27 01:23:23 EDT 2025
Fri Jul 25 10:40:10 EDT 2025
Tue Jul 01 03:16:16 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Wed Aug 27 02:50:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-d66553c8adbf4280fb565705dff7e4ce92aee96692ef8703a562ec9b5150680f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6908-1975
0000-0002-3421-3835
0000-0003-0152-6621
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9329044
PQID 2488746013
PQPubID 75722
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2021_3053161
crossref_primary_10_1109_JSTARS_2021_3053161
doaj_primary_oai_doaj_org_article_7bacf42018294cc69fc7cedf8a674218
ieee_primary_9329044
proquest_journals_2488746013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
van der maaten (ref27) 2008; 2008
ref2
ref39
ref17
ref38
ref16
ref19
ref18
li (ref35) 2015
ref24
ref23
ref26
ref25
bin (ref7) 2015; 53
ref20
ref21
ref28
ref29
cloude (ref34) 2010
ref8
lee (ref1) 2009
ref9
ref4
ref3
ref6
ref5
qin (ref22) 2015; 12
References_xml – ident: ref31
  doi: 10.1109/TGRS.2015.2401043
– ident: ref28
  doi: 10.1109/36.673687
– start-page: 1356
  year: 2015
  ident: ref35
  article-title: Superpixel segmentation using linear spectral clustering
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref13
  doi: 10.1109/TIP.2017.2651389
– ident: ref17
  doi: 10.1109/CVPR.2011.5995323
– ident: ref30
  doi: 10.1109/JSTARS.2017.2787591
– ident: ref9
  doi: 10.1109/TIP.2017.2778569
– ident: ref2
  doi: 10.1109/TGRS.2012.2203604
– ident: ref36
  doi: 10.1109/TPAMI.2007.1115
– ident: ref15
  doi: 10.1109/LGRS.2010.2089427
– ident: ref8
  doi: 10.1109/TPAMI.2017.2686857
– ident: ref23
  doi: 10.3390/rs6087158
– ident: ref25
  doi: 10.3390/rs11050581
– ident: ref37
  doi: 10.1109/LGRS.2019.2919422
– ident: ref29
  doi: 10.1109/TGRS.2005.852084
– ident: ref3
  doi: 10.1109/TIP.2018.2815759
– ident: ref16
  doi: 10.1109/JSTARS.2017.2708418
– ident: ref26
  doi: 10.1016/j.isprsjprs.2016.03.009
– ident: ref33
  doi: 10.1109/TGRS.2018.2835513
– ident: ref5
  doi: 10.1109/LGRS.2013.2259214
– volume: 2008
  start-page: 2579
  year: 2008
  ident: ref27
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– year: 2009
  ident: ref1
  publication-title: Polarimetric Radar Imaging From Basics to Applications
– ident: ref39
  doi: 10.1109/LGRS.2004.830127
– ident: ref12
  doi: 10.1109/34.868688
– ident: ref14
  doi: 10.1109/TFUZZ.2018.2814591
– volume: 12
  start-page: 13
  year: 2015
  ident: ref22
  article-title: Superpixel segmentation for polarimetric SAR imagery using local iterative clustering
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2014.2322960
– ident: ref32
  doi: 10.3390/rs9080856
– ident: ref11
  doi: 10.1109/TPAMI.2012.120
– ident: ref10
  doi: 10.1109/34.1000236
– ident: ref19
  doi: 10.1109/LGRS.2018.2833492
– volume: 53
  start-page: 4797
  year: 2015
  ident: ref7
  article-title: Representation and spatially adaptive segmentation for PolSAR images based on wedgelet analysis
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2015.2410177
– ident: ref24
  doi: 10.1109/TGRS.2017.2662010
– ident: ref38
  doi: 10.1109/TGRS.2009.2019269
– ident: ref18
  doi: 10.3390/rs8080619
– ident: ref4
  doi: 10.1109/TPAMI.2006.191
– ident: ref21
  doi: 10.1109/TGRS.2009.2024303
– year: 2010
  ident: ref34
  publication-title: Polarisation Applications in Remote Sensing
– ident: ref6
  doi: 10.1016/j.isprsjprs.2018.03.026
– ident: ref20
  doi: 10.1109/TGRS.2012.2203358
SSID ssj0062793
Score 2.3339226
Snippet Superpixel segmentation for polarimetric synthetic aperture radar (PolSAR) images plays a fundamental role in various PolSAR applications. Subject to the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2173
SubjectTerms Adaptation models
Distance measurement
Image edge detection
Image processing
Image segmentation
Local clustering
Matrix decomposition
polarimetric synthetic aperture radar (PolSAR)
Production methods
Radar imaging
Radar polarimetry
SAR (radar)
Scattering
scattering feature
Shape
Similarity
superpixel representation
Synthetic aperture radar
Urban areas
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA4yEHwRdYrVKXnw0bo2TZvmcV7mFCayOthbaNJUBlsdu4D-e0_SbCiCvvhaTnr5cnLO-drmOwhdQAaKiyLnvqJF4FOaaz-XjPgm9aqAMRlbyfz-U9Ib0sdRPPrS6sv8E1bLA9fAtZnMVUkhTaWEU6USXiqmdFGmeQKsLrTbfCHnrclUHYMTAm7nNIbCgLfByTuDDNggCa8i43ZJ-C0PWbl-11_lR1C2maa7h3ZdiYg79a3toy1dHaDte9uC96OJ-pmympiQc7Ap4FZz7d_OTdDC2Wqm57Pxu57gTL9O3baiCkNhip8Nhx1PTQMthbPOAD9MIZQsDtGwe_dy0_NdUwRAM0iXfpEkcRypNC8kwJIGpTQfLgHwsmSaKs1JrjVwGE50CWsxyqHA0YrL2EgJgnl0hBrVW6WPEZYaxkZESSqBt5QRQFtAxZGqSKYFC6WHyBoioZxiuGlcMRGWOQRc1LgKg6twuHrocjNoVgtm_G5-bbDfmBq1a3sAfEA4HxB_-YCHmmbmNieBmpQHlHqotZ5J4VbmQhCIWIwCDY1O_uPSp2jHPE79UqaFGsv5Sp9BmbKU59YjPwHSvOJE
  priority: 102
  providerName: Directory of Open Access Journals
Title Scattering Feature-Driven Superpixel Segmentation for Polarimetric SAR Images
URI https://ieeexplore.ieee.org/document/9329044
https://www.proquest.com/docview/2488746013
https://doaj.org/article/7bacf42018294cc69fc7cedf8a674218
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED7aQmEv27puLGtX9LDHOnVs2bIesx_9BSmjXqFvwjqdR1mThjSGdX_9TrISaDfG3kKQgpzvdPd9tvUdwAeuQIVzjU5QujSRsqGksSpLfOnFVClbBMv8yUV5eiXPr4vrDThcn4UhovDyGQ39x_As391h52-VHTHX0KmUm7DJwq0_q7XKumWmgsEu8xGdeMuY6DA0SvURh_j4smYtmI2GuQ-6cvSoCgWz_thd5Y-UHOrM8QuYrFbYv17yY9gt7RB_PTFv_N9LeAnPI-EU4z5CdmCDZq9g-yQ09H3YhUmNwWGTK5jwdLBbUPJ54VOgqLs5LeY3P-lW1PR9Gg8pzQTTXPHVK-KbqW_HhaIeX4qzKSem-9dwdfzl26fTJLZYYGzSapm4siyKHKvG2ZaFSNpa_xiU4WtbRRJJZw0RKyKdUcs7O2-YLhFqW3hjQh6ev4Gt2d2M3oKwxHPzDK20rILaXLfomL9UmNvKqZEdQLb6yw1G_3HfBuPWBB2SatPjZDxOJuI0gMP1pHlvv_Hv4R89luuh3js7fMEYmLgVjbIN8sWmrKy0RCx5oQrJtVVTKsmMZwC7Hrf1j0TIBrC_igwT9_m9yTj_KcmiNn_391l78MwvsL9psw9by0VH75nGLO1BkP8HIYp_A9Yj7gI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RUNVe-kVRt0DrQ49kyYcTx8elQJeWRRUBiZsV2xOEYJfVspFafj1jx7tSS1VxiyI7svPGM28S-w3AF4pAubW1jAy3ccR5jVGtRRq50GtiIXTuJfNHJ8XwnH-_yC9WYGd5FgYR_eYz7LtL_y_f3prWfSrbJa4hY86fwRrF_TzpTmst_G6RCi-xS4xERk40JmgMJbHcJSMfnFaUDaZJP3NmVyR_xCEv1x_qqzxyyj7SHL6G0WKM3QaT6347131z_5d841Mn8QZeBcrJBp2NvIUVnLyD5998Sd_f6zCqjNfYpBjGHCFsZxjtz5wTZFU7xdn06hfesAovx-GY0oQR0WU_XU58NXYFuQyrBqfsaEyu6e49nB8enH0dRqHIAqETl_PIFkWeZ6asrW4oFYkb7X6EEoBNI5AblGmNSDmRTLGhtZ3VRJjQSJ07aUJqnm3A6uR2gh-AaaS-WWo015QHNZlsjCUGU5pMl1Ykugfp4pUrExTIXSGMG-UzkViqDiflcFIBpx7sLDtNOwGO_zffc1gumzr1bH-DMFBhMSqha0OTjSm3ktyYggYqDNqmrAvBifP0YN3htnxIgKwHWwvLUGGl36mUPKDglNZmH__d6zO8GJ6NjtXx0cmPTXjpBtt9wtmC1fmsxW0iNXP9ydvyA8kx8FY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scattering+Feature-Driven+Superpixel+Segmentation+for+Polarimetric+SAR+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Quan%2C+Sinong&rft.au=Xiang%2C+Deliang&rft.au=Wang%2C+Wei&rft.au=Xiong%2C+Boli&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=2173&rft.epage=2183&rft_id=info:doi/10.1109%2FJSTARS.2021.3053161&rft.externalDocID=9329044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon