Scattering Feature-Driven Superpixel Segmentation for Polarimetric SAR Images
Superpixel segmentation for polarimetric synthetic aperture radar (PolSAR) images plays a fundamental role in various PolSAR applications. Subject to the intrinsic limitations, the existing methods generally produce over or undersegmented superpixels in highly complex scenes of PolSAR images. In thi...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 2173 - 2183 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Superpixel segmentation for polarimetric synthetic aperture radar (PolSAR) images plays a fundamental role in various PolSAR applications. Subject to the intrinsic limitations, the existing methods generally produce over or undersegmented superpixels in highly complex scenes of PolSAR images. In this article, we propose an efficient and effective scattering feature-driven superpixel segmentation method for PolSAR images, which is capable of preserving the global structure information and producing superpixels with both high boundary adherence and visual compactness. First, a hierarchical version of the refined five-component decomposition is proposed. The derived scattering features along with other well-used features are then combined to construct a low-dimensional feature vector. Second, a modified normalized cuts formulation using a distance measurement is presented, in which the feature similarity and the space proximity are both considered. During the superpixel segmentation, the edge information derived from our scattering mechanism-optimal contrast-based edge detector is incorporated. On this basis, a tradeoff factor according to the edge information and the equivalent number of looks is determined, which balances the relationship of feature similarity and space proximity so as to adaptively control the size and shape of superpixels. The performance of the proposed method is demonstrated and evaluated with fully PolSAR data over different test sites. The outputs show that the proposed method outperforms the state-of-the-art methods and the produced superpixels scale well especially for heterogeneous scattering cases. |
---|---|
AbstractList | Superpixel segmentation for polarimetric synthetic aperture radar (PolSAR) images plays a fundamental role in various PolSAR applications. Subject to the intrinsic limitations, the existing methods generally produce over or undersegmented superpixels in highly complex scenes of PolSAR images. In this article, we propose an efficient and effective scattering feature-driven superpixel segmentation method for PolSAR images, which is capable of preserving the global structure information and producing superpixels with both high boundary adherence and visual compactness. First, a hierarchical version of the refined five-component decomposition is proposed. The derived scattering features along with other well-used features are then combined to construct a low-dimensional feature vector. Second, a modified normalized cuts formulation using a distance measurement is presented, in which the feature similarity and the space proximity are both considered. During the superpixel segmentation, the edge information derived from our scattering mechanism-optimal contrast-based edge detector is incorporated. On this basis, a tradeoff factor according to the edge information and the equivalent number of looks is determined, which balances the relationship of feature similarity and space proximity so as to adaptively control the size and shape of superpixels. The performance of the proposed method is demonstrated and evaluated with fully PolSAR data over different test sites. The outputs show that the proposed method outperforms the state-of-the-art methods and the produced superpixels scale well especially for heterogeneous scattering cases. |
Author | Quan, Sinong Wang, Wei Kuang, Gangyao Xiong, Boli Xiang, Deliang |
Author_xml | – sequence: 1 givenname: Sinong orcidid: 0000-0002-6908-1975 surname: Quan fullname: Quan, Sinong email: qsnong@hotmail.com organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China – sequence: 2 givenname: Deliang orcidid: 0000-0003-0152-6621 surname: Xiang fullname: Xiang, Deliang email: xiangdeliang@gmail.com organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering, and also with the Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology, Beijing, China – sequence: 3 givenname: Wei orcidid: 0000-0002-3421-3835 surname: Wang fullname: Wang, Wei email: wangwei_nudt@hotmail.com organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China – sequence: 4 givenname: Boli surname: Xiong fullname: Xiong, Boli email: bolixiong@gmail.com organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China – sequence: 5 givenname: Gangyao surname: Kuang fullname: Kuang, Gangyao email: kuangyeats@hotmail.com organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China |
BookMark | eNp9kUtP4zAUhS3ESBRmfgGbSKxT_I69rHhNEWhGTWdtuc515SqNi-Mi-PeTEmDBgtWVrs537tE9p-i4ix0gdE7wlBCsL-_r5WxRTymmZMqwYESSIzShRJCSCCaO0YRopkvCMT9Bp32_wVjSSrMJeqydzRlS6NbFLdi8T1Bep_AMXVHvd5B24QXaoob1Frpsc4hd4WMq_sbWprCFnIIr6tmimG_tGvqf6Ie3bQ-_3ucZ-nd7s7z6XT78uZtfzR5Kx7HKZSOlEMwp26w8pwr7lZCiwqLxvgLuQFMLoKXUFLyqMLNCUnB6JYjAcpCzMzQffZtoN2Y3JLHp1UQbzNsiprWxKQfXgqlW1g1HMFFUc-ek9q5y0HhlZcUpUYPXxei1S_FpD302m7hP3RDfUK5UxSUmbFDpUeVS7PsE3rgw_iMnG1pDsDk0YcYmzKEJ897EwLIv7Efi76nzkQoA8EloRjXmnP0HyHaWxg |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_3390_rs15041123 crossref_primary_10_1109_LGRS_2022_3200311 crossref_primary_10_1109_TGRS_2021_3126669 crossref_primary_10_1109_TGRS_2022_3142068 crossref_primary_10_1109_LGRS_2022_3164464 crossref_primary_10_1109_JSTARS_2021_3140101 crossref_primary_10_3390_rs14122914 crossref_primary_10_3390_rs14194721 crossref_primary_10_1080_2150704X_2021_1966121 crossref_primary_10_1109_TGRS_2024_3404626 crossref_primary_10_1109_JSTARS_2025_3542952 crossref_primary_10_1080_01431161_2021_1993466 crossref_primary_10_3390_rs15112899 |
Cites_doi | 10.1109/TGRS.2015.2401043 10.1109/36.673687 10.1109/TIP.2017.2651389 10.1109/CVPR.2011.5995323 10.1109/JSTARS.2017.2787591 10.1109/TIP.2017.2778569 10.1109/TGRS.2012.2203604 10.1109/TPAMI.2007.1115 10.1109/LGRS.2010.2089427 10.1109/TPAMI.2017.2686857 10.3390/rs6087158 10.3390/rs11050581 10.1109/LGRS.2019.2919422 10.1109/TGRS.2005.852084 10.1109/TIP.2018.2815759 10.1109/JSTARS.2017.2708418 10.1016/j.isprsjprs.2016.03.009 10.1109/TGRS.2018.2835513 10.1109/LGRS.2013.2259214 10.1109/LGRS.2004.830127 10.1109/34.868688 10.1109/TFUZZ.2018.2814591 10.1109/LGRS.2014.2322960 10.3390/rs9080856 10.1109/TPAMI.2012.120 10.1109/34.1000236 10.1109/LGRS.2018.2833492 10.1109/TGRS.2015.2410177 10.1109/TGRS.2017.2662010 10.1109/TGRS.2009.2019269 10.3390/rs8080619 10.1109/TPAMI.2006.191 10.1109/TGRS.2009.2024303 10.1016/j.isprsjprs.2018.03.026 10.1109/TGRS.2012.2203358 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2021.3053161 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: Acceso a contenido Full Text - Doaj url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 2183 |
ExternalDocumentID | oai_doaj_org_article_7bacf42018294cc69fc7cedf8a674218 10_1109_JSTARS_2021_3053161 9329044 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62001487; 41801236; 61901500 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Hunan Province grantid: 2020JJ5674 funderid: 10.13039/501100004735 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c408t-d66553c8adbf4280fb565705dff7e4ce92aee96692ef8703a562ec9b5150680f3 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:23:23 EDT 2025 Fri Jul 25 10:40:10 EDT 2025 Tue Jul 01 03:16:16 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Wed Aug 27 02:50:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-d66553c8adbf4280fb565705dff7e4ce92aee96692ef8703a562ec9b5150680f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6908-1975 0000-0002-3421-3835 0000-0003-0152-6621 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9329044 |
PQID | 2488746013 |
PQPubID | 75722 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_JSTARS_2021_3053161 crossref_primary_10_1109_JSTARS_2021_3053161 doaj_primary_oai_doaj_org_article_7bacf42018294cc69fc7cedf8a674218 ieee_primary_9329044 proquest_journals_2488746013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 van der maaten (ref27) 2008; 2008 ref2 ref39 ref17 ref38 ref16 ref19 ref18 li (ref35) 2015 ref24 ref23 ref26 ref25 bin (ref7) 2015; 53 ref20 ref21 ref28 ref29 cloude (ref34) 2010 ref8 lee (ref1) 2009 ref9 ref4 ref3 ref6 ref5 qin (ref22) 2015; 12 |
References_xml | – ident: ref31 doi: 10.1109/TGRS.2015.2401043 – ident: ref28 doi: 10.1109/36.673687 – start-page: 1356 year: 2015 ident: ref35 article-title: Superpixel segmentation using linear spectral clustering publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref13 doi: 10.1109/TIP.2017.2651389 – ident: ref17 doi: 10.1109/CVPR.2011.5995323 – ident: ref30 doi: 10.1109/JSTARS.2017.2787591 – ident: ref9 doi: 10.1109/TIP.2017.2778569 – ident: ref2 doi: 10.1109/TGRS.2012.2203604 – ident: ref36 doi: 10.1109/TPAMI.2007.1115 – ident: ref15 doi: 10.1109/LGRS.2010.2089427 – ident: ref8 doi: 10.1109/TPAMI.2017.2686857 – ident: ref23 doi: 10.3390/rs6087158 – ident: ref25 doi: 10.3390/rs11050581 – ident: ref37 doi: 10.1109/LGRS.2019.2919422 – ident: ref29 doi: 10.1109/TGRS.2005.852084 – ident: ref3 doi: 10.1109/TIP.2018.2815759 – ident: ref16 doi: 10.1109/JSTARS.2017.2708418 – ident: ref26 doi: 10.1016/j.isprsjprs.2016.03.009 – ident: ref33 doi: 10.1109/TGRS.2018.2835513 – ident: ref5 doi: 10.1109/LGRS.2013.2259214 – volume: 2008 start-page: 2579 year: 2008 ident: ref27 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – year: 2009 ident: ref1 publication-title: Polarimetric Radar Imaging From Basics to Applications – ident: ref39 doi: 10.1109/LGRS.2004.830127 – ident: ref12 doi: 10.1109/34.868688 – ident: ref14 doi: 10.1109/TFUZZ.2018.2814591 – volume: 12 start-page: 13 year: 2015 ident: ref22 article-title: Superpixel segmentation for polarimetric SAR imagery using local iterative clustering publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2014.2322960 – ident: ref32 doi: 10.3390/rs9080856 – ident: ref11 doi: 10.1109/TPAMI.2012.120 – ident: ref10 doi: 10.1109/34.1000236 – ident: ref19 doi: 10.1109/LGRS.2018.2833492 – volume: 53 start-page: 4797 year: 2015 ident: ref7 article-title: Representation and spatially adaptive segmentation for PolSAR images based on wedgelet analysis publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2015.2410177 – ident: ref24 doi: 10.1109/TGRS.2017.2662010 – ident: ref38 doi: 10.1109/TGRS.2009.2019269 – ident: ref18 doi: 10.3390/rs8080619 – ident: ref4 doi: 10.1109/TPAMI.2006.191 – ident: ref21 doi: 10.1109/TGRS.2009.2024303 – year: 2010 ident: ref34 publication-title: Polarisation Applications in Remote Sensing – ident: ref6 doi: 10.1016/j.isprsjprs.2018.03.026 – ident: ref20 doi: 10.1109/TGRS.2012.2203358 |
SSID | ssj0062793 |
Score | 2.3339226 |
Snippet | Superpixel segmentation for polarimetric synthetic aperture radar (PolSAR) images plays a fundamental role in various PolSAR applications. Subject to the... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2173 |
SubjectTerms | Adaptation models Distance measurement Image edge detection Image processing Image segmentation Local clustering Matrix decomposition polarimetric synthetic aperture radar (PolSAR) Production methods Radar imaging Radar polarimetry SAR (radar) Scattering scattering feature Shape Similarity superpixel representation Synthetic aperture radar Urban areas |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA4yEHwRdYrVKXnw0bo2TZvmcV7mFCayOthbaNJUBlsdu4D-e0_SbCiCvvhaTnr5cnLO-drmOwhdQAaKiyLnvqJF4FOaaz-XjPgm9aqAMRlbyfz-U9Ib0sdRPPrS6sv8E1bLA9fAtZnMVUkhTaWEU6USXiqmdFGmeQKsLrTbfCHnrclUHYMTAm7nNIbCgLfByTuDDNggCa8i43ZJ-C0PWbl-11_lR1C2maa7h3ZdiYg79a3toy1dHaDte9uC96OJ-pmympiQc7Ap4FZz7d_OTdDC2Wqm57Pxu57gTL9O3baiCkNhip8Nhx1PTQMthbPOAD9MIZQsDtGwe_dy0_NdUwRAM0iXfpEkcRypNC8kwJIGpTQfLgHwsmSaKs1JrjVwGE50CWsxyqHA0YrL2EgJgnl0hBrVW6WPEZYaxkZESSqBt5QRQFtAxZGqSKYFC6WHyBoioZxiuGlcMRGWOQRc1LgKg6twuHrocjNoVgtm_G5-bbDfmBq1a3sAfEA4HxB_-YCHmmbmNieBmpQHlHqotZ5J4VbmQhCIWIwCDY1O_uPSp2jHPE79UqaFGsv5Sp9BmbKU59YjPwHSvOJE priority: 102 providerName: Directory of Open Access Journals |
Title | Scattering Feature-Driven Superpixel Segmentation for Polarimetric SAR Images |
URI | https://ieeexplore.ieee.org/document/9329044 https://www.proquest.com/docview/2488746013 https://doaj.org/article/7bacf42018294cc69fc7cedf8a674218 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED7aQmEv27puLGtX9LDHOnVs2bIesx_9BSmjXqFvwjqdR1mThjSGdX_9TrISaDfG3kKQgpzvdPd9tvUdwAeuQIVzjU5QujSRsqGksSpLfOnFVClbBMv8yUV5eiXPr4vrDThcn4UhovDyGQ39x_As391h52-VHTHX0KmUm7DJwq0_q7XKumWmgsEu8xGdeMuY6DA0SvURh_j4smYtmI2GuQ-6cvSoCgWz_thd5Y-UHOrM8QuYrFbYv17yY9gt7RB_PTFv_N9LeAnPI-EU4z5CdmCDZq9g-yQ09H3YhUmNwWGTK5jwdLBbUPJ54VOgqLs5LeY3P-lW1PR9Gg8pzQTTXPHVK-KbqW_HhaIeX4qzKSem-9dwdfzl26fTJLZYYGzSapm4siyKHKvG2ZaFSNpa_xiU4WtbRRJJZw0RKyKdUcs7O2-YLhFqW3hjQh6ev4Gt2d2M3oKwxHPzDK20rILaXLfomL9UmNvKqZEdQLb6yw1G_3HfBuPWBB2SatPjZDxOJuI0gMP1pHlvv_Hv4R89luuh3js7fMEYmLgVjbIN8sWmrKy0RCx5oQrJtVVTKsmMZwC7Hrf1j0TIBrC_igwT9_m9yTj_KcmiNn_391l78MwvsL9psw9by0VH75nGLO1BkP8HIYp_A9Yj7gI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RUNVe-kVRt0DrQ49kyYcTx8elQJeWRRUBiZsV2xOEYJfVspFafj1jx7tSS1VxiyI7svPGM28S-w3AF4pAubW1jAy3ccR5jVGtRRq50GtiIXTuJfNHJ8XwnH-_yC9WYGd5FgYR_eYz7LtL_y_f3prWfSrbJa4hY86fwRrF_TzpTmst_G6RCi-xS4xERk40JmgMJbHcJSMfnFaUDaZJP3NmVyR_xCEv1x_qqzxyyj7SHL6G0WKM3QaT6347131z_5d841Mn8QZeBcrJBp2NvIUVnLyD5998Sd_f6zCqjNfYpBjGHCFsZxjtz5wTZFU7xdn06hfesAovx-GY0oQR0WU_XU58NXYFuQyrBqfsaEyu6e49nB8enH0dRqHIAqETl_PIFkWeZ6asrW4oFYkb7X6EEoBNI5AblGmNSDmRTLGhtZ3VRJjQSJ07aUJqnm3A6uR2gh-AaaS-WWo015QHNZlsjCUGU5pMl1Ykugfp4pUrExTIXSGMG-UzkViqDiflcFIBpx7sLDtNOwGO_zffc1gumzr1bH-DMFBhMSqha0OTjSm3ktyYggYqDNqmrAvBifP0YN3htnxIgKwHWwvLUGGl36mUPKDglNZmH__d6zO8GJ6NjtXx0cmPTXjpBtt9wtmC1fmsxW0iNXP9ydvyA8kx8FY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scattering+Feature-Driven+Superpixel+Segmentation+for+Polarimetric+SAR+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Quan%2C+Sinong&rft.au=Xiang%2C+Deliang&rft.au=Wang%2C+Wei&rft.au=Xiong%2C+Boli&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=2173&rft.epage=2183&rft_id=info:doi/10.1109%2FJSTARS.2021.3053161&rft.externalDocID=9329044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |