Physical properties of bacterial cellulose composites for wound dressings

To test various formulas and techniques for manufacturing dry-fabricated bio-film (DFBF) that exhibits physical properties advantageous to the use of the DFBF in wound dressings, a DFBF was fabricated by adding chitosan (Chi) and alginate (Alg) to homogenized bacterial cellulose (BC) obtained from v...

Full description

Saved in:
Bibliographic Details
Published inFood hydrocolloids Vol. 53; pp. 75 - 83
Main Authors Chang, Wen-Shuo, Chen, Hui-Huang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To test various formulas and techniques for manufacturing dry-fabricated bio-film (DFBF) that exhibits physical properties advantageous to the use of the DFBF in wound dressings, a DFBF was fabricated by adding chitosan (Chi) and alginate (Alg) to homogenized bacterial cellulose (BC) obtained from vinegar pellicles in vinegar brewing byproducts in this study. The results revealed that the degree of oxidation in DFBF manufactured using hydrogen peroxide oxidized BC (HOBC), with 0.092% carboxyl group content, was lower than that in DFBF manufactured using periodic acid oxidized BC (POBC), but DFBF made using HOBC exhibited higher elongation, rehydration, swelling ratios, and water vapor transmission than that fabricated using POBC. A DFBF composite gel with 98.5% water content possessed appropriate fluidity for molding. After 10 min of rinsing cross-linked HOBC, 72 ppm of calcium remained in the final DFBF, which not only prevented cell toxicity but also demonstrated desirable mechanical and rehydration properties. Overall, the modified DFBF possessed a high rehydration ratio of 51.69% and could absorb and gradually release naringin by up to 80% within 24 h. This modified DFBF has the potential for exudate absorption and the controlled release of medicinal substances at the initial stage of healing when used in wound dressings. (Release of naringin from DFBF) [Display omitted] •DFBF was fabricated by adding chitosan and alginate to homogenized bacterial cellulose.•DFBF manufactured using H2O2 exhibited higher mechanical properties, hydrophilicity and WVTR.•A DFBF composite gel with 98.5% water content possessed appropriate fluidity for molding.•DFBF possessed biocompatibility and gradually release naringin by up to 80% within 24 h.•DFBF has potential for exudate absorption and controlled release of medicines in wound dressings.
AbstractList To test various formulas and techniques for manufacturing dry-fabricated bio-film (DFBF) that exhibits physical properties advantageous to the use of the DFBF in wound dressings, a DFBF was fabricated by adding chitosan (Chi) and alginate (Alg) to homogenized bacterial cellulose (BC) obtained from vinegar pellicles in vinegar brewing byproducts in this study. The results revealed that the degree of oxidation in DFBF manufactured using hydrogen peroxide oxidized BC (HOBC), with 0.092% carboxyl group content, was lower than that in DFBF manufactured using periodic acid oxidized BC (POBC), but DFBF made using HOBC exhibited higher elongation, rehydration, swelling ratios, and water vapor transmission than that fabricated using POBC. A DFBF composite gel with 98.5% water content possessed appropriate fluidity for molding. After 10 min of rinsing cross-linked HOBC, 72 ppm of calcium remained in the final DFBF, which not only prevented cell toxicity but also demonstrated desirable mechanical and rehydration properties. Overall, the modified DFBF possessed a high rehydration ratio of 51.69% and could absorb and gradually release naringin by up to 80% within 24 h. This modified DFBF has the potential for exudate absorption and the controlled release of medicinal substances at the initial stage of healing when used in wound dressings. (Release of naringin from DFBF) [Display omitted] •DFBF was fabricated by adding chitosan and alginate to homogenized bacterial cellulose.•DFBF manufactured using H2O2 exhibited higher mechanical properties, hydrophilicity and WVTR.•A DFBF composite gel with 98.5% water content possessed appropriate fluidity for molding.•DFBF possessed biocompatibility and gradually release naringin by up to 80% within 24 h.•DFBF has potential for exudate absorption and controlled release of medicines in wound dressings.
To test various formulas and techniques for manufacturing dry-fabricated bio-film (DFBF) that exhibits physical properties advantageous to the use of the DFBF in wound dressings, a DFBF was fabricated by adding chitosan (Chi) and alginate (Alg) to homogenized bacterial cellulose (BC) obtained from vinegar pellicles in vinegar brewing byproducts in this study. The results revealed that the degree of oxidation in DFBF manufactured using hydrogen peroxide oxidized BC (HOBC), with 0.092% carboxyl group content, was lower than that in DFBF manufactured using periodic acid oxidized BC (POBC), but DFBF made using HOBC exhibited higher elongation, rehydration, swelling ratios, and water vapor transmission than that fabricated using POBC. A DFBF composite gel with 98.5% water content possessed appropriate fluidity for molding. After 10 min of rinsing cross-linked HOBC, 72 ppm of calcium remained in the final DFBF, which not only prevented cell toxicity but also demonstrated desirable mechanical and rehydration properties. Overall, the modified DFBF possessed a high rehydration ratio of 51.69% and could absorb and gradually release naringin by up to 80% within 24 h. This modified DFBF has the potential for exudate absorption and the controlled release of medicinal substances at the initial stage of healing when used in wound dressings.
Author Chang, Wen-Shuo
Chen, Hui-Huang
Author_xml – sequence: 1
  givenname: Wen-Shuo
  surname: Chang
  fullname: Chang, Wen-Shuo
– sequence: 2
  givenname: Hui-Huang
  orcidid: 0000-0003-2208-0323
  surname: Chen
  fullname: Chen, Hui-Huang
  email: hhchen@niu.edu.tw
BookMark eNqFkE1LAzEQhoNUsK3-BGGPXnadZLubXTyIFD8KBT0oeAtpMrEp282aZJX-e7e0Jy89DQzv8zLzTMiodS0Sck0ho0DL201mnNPrnc4Y0FlGWQZQn5ExrXiecprzERkDK6sUoPi8IJMQNgCUA6Vjsnhb74JVskk67zr00WJInElWUkX0dtgrbJq-cQET5badCzYOCeN88uv6VifaYwi2_QqX5NzIJuDVcU7Jx9Pj-_wlXb4-L-YPy1TNoIqphpwpVRVQM1XMjJRFpbXmUCHlyJAb1LWuGRgEWSuzUpLxFeO1BlmyXPN8Sm4OvcPB3z2GKLY27I-ULbo-CAbDc2VF63yIFoeo8i4Ej0Z03m6l3wkKYq9ObMRRndirE5SJQd3A3f3jlI0yWtdGL21zkr4_0DhY-LHoRVAWW4XaelRRaGdPNPwBXMeSOA
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_134829
crossref_primary_10_1016_j_carbpol_2017_03_012
crossref_primary_10_3390_pr12071282
crossref_primary_10_1007_s10570_024_05919_4
crossref_primary_10_1016_j_msec_2017_08_052
crossref_primary_10_1016_j_jddst_2021_102415
crossref_primary_10_1007_s10570_019_02566_y
crossref_primary_10_1007_s10570_018_2217_1
crossref_primary_10_3390_polym14204388
crossref_primary_10_1080_01932691_2019_1626739
crossref_primary_10_1016_j_ijbiomac_2019_12_103
crossref_primary_10_1021_acs_biomac_8b00208
crossref_primary_10_3390_nano10122508
crossref_primary_10_1002_asia_202200598
crossref_primary_10_1016_j_carbpol_2019_01_014
crossref_primary_10_1039_C9MH00291J
crossref_primary_10_3390_nano10122469
crossref_primary_10_1002_app_48155
crossref_primary_10_1134_S0965545X19030088
crossref_primary_10_3389_fbioe_2022_780409
crossref_primary_10_1016_j_cej_2019_03_216
crossref_primary_10_1134_S0006350918040188
crossref_primary_10_1021_acsami_9b20733
crossref_primary_10_1016_j_jclepro_2024_142204
crossref_primary_10_1007_s10570_019_02514_w
crossref_primary_10_1021_acs_biomac_1c01239
crossref_primary_10_1021_acs_biomac_9b01249
crossref_primary_10_1016_j_carbpol_2018_04_041
crossref_primary_10_1016_j_ijbiomac_2016_07_050
crossref_primary_10_1016_j_polymertesting_2019_106007
crossref_primary_10_1016_j_msec_2016_11_121
crossref_primary_10_1080_01932691_2019_1614947
crossref_primary_10_1016_j_polymertesting_2017_10_023
crossref_primary_10_1007_s00289_022_04617_0
crossref_primary_10_1039_C7RA06103J
crossref_primary_10_1080_15440478_2018_1563580
crossref_primary_10_1186_s43014_023_00188_3
crossref_primary_10_1007_s00289_023_04801_w
crossref_primary_10_1557_s43578_023_01116_4
crossref_primary_10_1016_j_eurpolymj_2019_109365
crossref_primary_10_1016_j_ijbiomac_2016_02_052
crossref_primary_10_1016_j_carbpol_2020_116062
crossref_primary_10_1016_j_msec_2017_03_035
crossref_primary_10_1007_s10570_018_2223_3
crossref_primary_10_1016_j_ijbiomac_2023_129033
crossref_primary_10_3389_fmicb_2022_972200
crossref_primary_10_1016_j_ijbiomac_2019_03_068
crossref_primary_10_1016_j_carbpol_2022_119932
crossref_primary_10_1111_1751_7915_13392
crossref_primary_10_1016_j_carpta_2024_100632
crossref_primary_10_3390_polym15040987
crossref_primary_10_1016_j_colsurfb_2017_12_054
crossref_primary_10_1111_1751_7915_14243
crossref_primary_10_1016_j_ijbiomac_2024_138673
crossref_primary_10_1007_s10570_017_1487_3
crossref_primary_10_3390_nano8100859
crossref_primary_10_1002_app_50057
crossref_primary_10_1007_s10570_018_2041_7
crossref_primary_10_1007_s12221_018_7850_7
crossref_primary_10_1016_j_ijbiomac_2024_129600
crossref_primary_10_1016_j_ebiom_2021_103792
crossref_primary_10_1007_s00289_016_1872_3
crossref_primary_10_1016_j_ijbiomac_2018_03_065
crossref_primary_10_1007_s10570_018_1750_2
crossref_primary_10_1016_j_carbpol_2022_119361
crossref_primary_10_1080_17425247_2021_1989407
crossref_primary_10_3390_ma14185313
crossref_primary_10_1016_j_matpr_2019_05_007
crossref_primary_10_1007_s10570_024_06278_w
crossref_primary_10_1016_j_carbpol_2018_05_055
crossref_primary_10_1016_j_jddst_2022_103557
crossref_primary_10_1088_2053_1591_aba8de
crossref_primary_10_3390_ma13204573
crossref_primary_10_1002_admt_202300710
crossref_primary_10_1007_s10570_020_03273_9
crossref_primary_10_1016_j_carbpol_2016_08_090
crossref_primary_10_2147_IJN_S289868
crossref_primary_10_1002_pen_24467
crossref_primary_10_1016_j_polymdegradstab_2017_05_026
crossref_primary_10_1021_acsami_0c05604
crossref_primary_10_1016_j_carbpol_2021_118995
crossref_primary_10_1016_j_ijbiomac_2025_140208
crossref_primary_10_1007_s13399_021_01973_1
crossref_primary_10_3390_nano12020192
crossref_primary_10_3390_nano10040628
crossref_primary_10_1016_j_ijbiomac_2020_07_272
crossref_primary_10_1016_j_carbpol_2019_115308
crossref_primary_10_1016_j_carbpol_2019_115383
crossref_primary_10_1016_j_ijbiomac_2024_131685
crossref_primary_10_1021_acs_iecr_6b01963
crossref_primary_10_1016_j_mser_2021_100623
crossref_primary_10_1016_j_ejmcr_2024_100190
crossref_primary_10_1111_jam_13916
crossref_primary_10_1016_j_ijbiomac_2020_05_170
crossref_primary_10_1007_s10853_023_08803_x
crossref_primary_10_1016_j_ijbiomac_2017_03_108
crossref_primary_10_1016_j_cej_2024_155409
crossref_primary_10_1155_2022_1214734
crossref_primary_10_3390_ma14195851
crossref_primary_10_1016_j_carbpol_2020_116423
Cites_doi 10.1016/j.burns.2007.08.020
10.1111/j.1365-2621.2011.02902.x
10.3390/md12010300
10.1016/j.biomaterials.2005.07.035
10.1088/1748-6041/9/3/035005
10.1002/adfm.200305197
10.1016/j.carbpol.2009.12.024
10.1016/j.jconrel.2006.03.007
10.1016/j.carbpol.2008.04.004
10.1016/0022-1759(86)90215-2
10.1021/bm0000337
10.1007/s00238-008-0217-3
10.1016/j.biortech.2010.03.031
10.1007/s10570-006-9073-0
10.1016/j.msec.2009.01.006
10.1177/0883911514537731
10.1016/j.biomaterials.2005.01.006
10.1016/0142-9612(82)90057-6
10.1016/j.toxlet.2009.06.849
10.1016/j.ijpharm.2009.04.048
10.1016/j.foodhyd.2011.08.004
10.4172/2155-9821.1000150
10.1007/BF02920250
10.1016/j.msec.2007.01.011
10.1016/j.carbpol.2011.03.011
10.1007/BF02922613
10.1016/S0268-005X(09)80032-5
10.1007/BF01139032
10.1111/j.1471-0528.1994.tb13001.x
10.1016/S0378-5173(99)00098-8
10.1016/S0928-0987(01)00095-1
10.1016/j.carbpol.2010.02.037
10.1271/bbb.61.1541
10.1016/0168-3659(87)90034-4
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.foodhyd.2014.12.009
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7137
EndPage 83
ExternalDocumentID 10_1016_j_foodhyd_2014_12_009
S0268005X14004500
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLY
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCE
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSZ
T5K
UHS
UNMZH
WH7
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c408t-d032cc85092c54faa58ddd708e17e2e7fed9d920fe0a9cfbca27b279d0a623d73
IEDL.DBID .~1
ISSN 0268-005X
IngestDate Fri Jul 11 07:36:07 EDT 2025
Tue Jul 01 02:19:33 EDT 2025
Thu Apr 24 23:10:26 EDT 2025
Fri Feb 23 02:32:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Physical property
Bacterial cellulose
Wound dressing
Chitosan
Composite
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-d032cc85092c54faa58ddd708e17e2e7fed9d920fe0a9cfbca27b279d0a623d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2208-0323
PQID 2000168193
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2000168193
crossref_primary_10_1016_j_foodhyd_2014_12_009
crossref_citationtrail_10_1016_j_foodhyd_2014_12_009
elsevier_sciencedirect_doi_10_1016_j_foodhyd_2014_12_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2016
2016-02-00
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationTitle Food hydrocolloids
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Morris, Ross-Murphy (bib30) 1981
Fernandes, Freire, Silvestre, Neto, Gandini, Berglund (bib12) 2010; 81
Venkatesan, Bhatnagar, Kim (bib38) 2014; 12
Yang, Yang, Lin, Wu, Chen (bib43) 2008; 28
Bowman, Cooke (bib4) 1994; 101
Meng, Tian, Yang, He, Xing, Li (bib28) 2010; 21
Sudheesh Kumar, Abhilash, Manzoor, Nair, Tamura, Jayakumar (bib37) 2010; 80
Fontana, Franco, Souza, Lyra, Souza (bib13) 1991; 28-29
Gerlier, Thomasset (bib15) 1986; 94
Chang, Chen, Lin, Chen (bib5) 2012; 27
Czaja, Krystynowicz, Bielecki, Brown (bib10) 2006; 27
Ritger, Peppas (bib35) 1987; 5
Chiaoprakobkij, Sanchavanakit, Subbalekha, Pavasant (bib7) 2011; 85
Okiyama, Shirae, Kano, Yamanaka (bib31) 1992; 6
Phisalaphong, Jatupaiboon (bib34) 2008; 74
Ho, Mi, Sung, Kuo (bib17) 2009; 376
Paul, Sharma (bib33) 2004; 18
ASTM (bib2) 2002
Fontana, Souza, Fontana, Toriani, Moreschi (bib14) 1990; 24–25
Ashammakhi, Ndreu, Yang, Ylikauppila, Nikkola (bib1) 2007; 35
Kawecki, Krystynowicz, Wysota, Czaja, Sakiel (bib44) 2006; 27
Bodhibukkana, Srichana, Kaewnopparat, Tangthong, Bouking, Martin (bib3) 2006; 113
Keshk (bib20) 2014; 4
Yamanaka, Watanabe, Kitamura, Iguchi, Mitsuhashi, Nishi (bib41) 1989; 24
Huang, Chen, Lin, Hsu, Chen (bib18) 2010; 101
Nakayama, Kakugo, Gong, Osada, Takai, Erata (bib45) 2004; 14
CNS9638-N5200 (bib8) 1982
Maeno, Niki, Matsumoto, Morika, Yatabe, Funayama (bib26) 2005; 26
Kumar, Yang (bib22) 1999; 184
Li, Wan, Li, Liang, Wang (bib25) 2009; 29
Shuangyun, Wenjuan, Gu (bib36) 2008; 34
Hungund, Prabhu, Shetty, Acharya, Prabhu, Gupta (bib19) 2013; 5
Moreira, Silva, Almeida-Lima, Rocha, Medeiros, Alves (bib29) 2009; 189
Wu, Zheng, Wen, Lin, Chen, Wu (bib40) 2014; 9
Menachen, Aharon (bib27) 1969; 3
Wiegand, Elsner, Hipler, Klemm (bib39) 2006; 13
Costa, Sousa Lobo (bib9) 2001; 13
Da Silva, Bierhalz, Kieckbusc (bib11) 2012; 47
Ougiya, Watanabe, Morinaga, Yoshinaga (bib32) 1997; 61
Yang (bib42) 2011
Kim, Kuga, Wada, Okano, Kondo (bib21) 2000; 1
Chawla, Bajaj, Survase, Singhal (bib6) 2009; 47
Li, Li, Ma, Wang, Zhang (bib24) 2014; 29
Gurny, Doelker, Peppas (bib16) 1982; 3
Ashammakhi (10.1016/j.foodhyd.2014.12.009_bib1) 2007; 35
Keshk (10.1016/j.foodhyd.2014.12.009_bib20) 2014; 4
ASTM (10.1016/j.foodhyd.2014.12.009_bib2) 2002
Hungund (10.1016/j.foodhyd.2014.12.009_bib19) 2013; 5
Menachen (10.1016/j.foodhyd.2014.12.009_bib27) 1969; 3
Morris (10.1016/j.foodhyd.2014.12.009_bib30) 1981
Fontana (10.1016/j.foodhyd.2014.12.009_bib14) 1990; 24–25
Chawla (10.1016/j.foodhyd.2014.12.009_bib6) 2009; 47
Ritger (10.1016/j.foodhyd.2014.12.009_bib35) 1987; 5
Bodhibukkana (10.1016/j.foodhyd.2014.12.009_bib3) 2006; 113
Shuangyun (10.1016/j.foodhyd.2014.12.009_bib36) 2008; 34
Gurny (10.1016/j.foodhyd.2014.12.009_bib16) 1982; 3
Huang (10.1016/j.foodhyd.2014.12.009_bib18) 2010; 101
Ho (10.1016/j.foodhyd.2014.12.009_bib17) 2009; 376
Bowman (10.1016/j.foodhyd.2014.12.009_bib4) 1994; 101
CNS9638-N5200 (10.1016/j.foodhyd.2014.12.009_bib8) 1982
Sudheesh Kumar (10.1016/j.foodhyd.2014.12.009_bib37) 2010; 80
Costa (10.1016/j.foodhyd.2014.12.009_bib9) 2001; 13
Yang (10.1016/j.foodhyd.2014.12.009_bib42) 2011
Phisalaphong (10.1016/j.foodhyd.2014.12.009_bib34) 2008; 74
Venkatesan (10.1016/j.foodhyd.2014.12.009_bib38) 2014; 12
Meng (10.1016/j.foodhyd.2014.12.009_bib28) 2010; 21
Wu (10.1016/j.foodhyd.2014.12.009_bib40) 2014; 9
Kim (10.1016/j.foodhyd.2014.12.009_bib21) 2000; 1
Li (10.1016/j.foodhyd.2014.12.009_bib24) 2014; 29
Paul (10.1016/j.foodhyd.2014.12.009_bib33) 2004; 18
Ougiya (10.1016/j.foodhyd.2014.12.009_bib32) 1997; 61
Chiaoprakobkij (10.1016/j.foodhyd.2014.12.009_bib7) 2011; 85
Okiyama (10.1016/j.foodhyd.2014.12.009_bib31) 1992; 6
Da Silva (10.1016/j.foodhyd.2014.12.009_bib11) 2012; 47
Wiegand (10.1016/j.foodhyd.2014.12.009_bib39) 2006; 13
Kumar (10.1016/j.foodhyd.2014.12.009_bib22) 1999; 184
Czaja (10.1016/j.foodhyd.2014.12.009_bib10) 2006; 27
Yang (10.1016/j.foodhyd.2014.12.009_bib43) 2008; 28
Yamanaka (10.1016/j.foodhyd.2014.12.009_bib41) 1989; 24
Fontana (10.1016/j.foodhyd.2014.12.009_bib13) 1991; 28-29
Kawecki (10.1016/j.foodhyd.2014.12.009_bib44) 2006; 27
Moreira (10.1016/j.foodhyd.2014.12.009_bib29) 2009; 189
Maeno (10.1016/j.foodhyd.2014.12.009_bib26) 2005; 26
Nakayama (10.1016/j.foodhyd.2014.12.009_bib45) 2004; 14
Chang (10.1016/j.foodhyd.2014.12.009_bib5) 2012; 27
Gerlier (10.1016/j.foodhyd.2014.12.009_bib15) 1986; 94
Fernandes (10.1016/j.foodhyd.2014.12.009_bib12) 2010; 81
Li (10.1016/j.foodhyd.2014.12.009_bib25) 2009; 29
References_xml – volume: 85
  start-page: 548
  year: 2011
  end-page: 553
  ident: bib7
  article-title: Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts
  publication-title: Carbohydrate Polymers
– volume: 101
  start-page: 6084
  year: 2010
  end-page: 6091
  ident: bib18
  article-title: In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation
  publication-title: Bioresource Technology
– volume: 6
  start-page: 471
  year: 1992
  end-page: 477
  ident: bib31
  article-title: Bacterial cellulose. I. Two-stage fermentation process for cellulose production by
  publication-title: Food Hydrocolloids
– volume: 28
  start-page: 150
  year: 2008
  end-page: 156
  ident: bib43
  article-title: Chitosan containing PU/Poly (NIPAAm) thermosensitive membrane for wound dressing
  publication-title: Materials Science and Engineering C
– volume: 94
  start-page: 57
  year: 1986
  end-page: 63
  ident: bib15
  article-title: Use of MTT colorimetric assay to measure cell activation
  publication-title: Journal of Immunological Methods
– volume: 5
  start-page: 31
  year: 2013
  end-page: 33
  ident: bib19
  article-title: Production of bacterial cellulose from
  publication-title: Microbial & Biochemical Technology
– volume: 27
  start-page: 145
  year: 2006
  end-page: 151
  ident: bib44
  article-title: Microbial cellulose—the natural power to heal wounds
  publication-title: Biomaterials
– volume: 26
  start-page: 4847
  year: 2005
  end-page: 4855
  ident: bib26
  article-title: The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture
  publication-title: Biomaterials
– volume: 47
  start-page: 740
  year: 2012
  end-page: 746
  ident: bib11
  article-title: Modelling natamycin release from alginate/chitosan active films
  publication-title: International Journal of Food Science and Technology
– start-page: 1
  year: 1981
  end-page: 46
  ident: bib30
  article-title: Chain flexibility of polysaccharides and glycoproteins from viscosity measurement
  publication-title: Techniques in carbohydrate metabolism
– start-page: 882
  year: 2002
  end-page: 902
  ident: bib2
  article-title: Standard test methods for tensile properties thin plastic sheeting
– volume: 101
  start-page: 3
  year: 1994
  end-page: 6
  ident: bib4
  article-title: The efficacy of synthetic adhesion barriers in infertility surgery
  publication-title: British Journal of Obstetrics and Gynaecology
– volume: 12
  start-page: 300
  year: 2014
  end-page: 316
  ident: bib38
  article-title: Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering
  publication-title: Marine Drugs
– volume: 113
  start-page: 43
  year: 2006
  end-page: 56
  ident: bib3
  article-title: Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol
  publication-title: Journal of Controlled Release
– volume: 13
  start-page: 123
  year: 2001
  end-page: 133
  ident: bib9
  article-title: Modeling and comparison of dissolution profiles
  publication-title: European Journal of Pharmaceutical Sciences
– volume: 47
  start-page: 107
  year: 2009
  end-page: 124
  ident: bib6
  article-title: Microbial cellulose: fermentative production and applications
  publication-title: Food Technology and Biotechnology
– volume: 29
  start-page: 398
  year: 2014
  end-page: 411
  ident: bib24
  article-title: Development of a silk fibroin/HTCC/PVA sponge for chronic wound dressing
  publication-title: Journal of Bioactive and Compatible Polymers
– volume: 29
  start-page: 1635
  year: 2009
  end-page: 1642
  ident: bib25
  article-title: Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds
  publication-title: Materials Science and Engineering C
– volume: 5
  start-page: 23
  year: 1987
  end-page: 36
  ident: bib35
  article-title: A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs
  publication-title: Journal of Controlled Release
– volume: 24
  start-page: 3141
  year: 1989
  end-page: 3145
  ident: bib41
  article-title: The structure and mechanical properties of sheets prepared from bacterial cellulose
  publication-title: Journal of Materials Science
– volume: 18
  start-page: 18
  year: 2004
  end-page: 23
  ident: bib33
  article-title: Chitosan and alginate wound dressings: a short review
  publication-title: Trends in Biomaterials & Artificial Organs
– year: 1982
  ident: bib8
  article-title: Method of test for calcium and phosphorus in food stuff
  publication-title: Chinese National Standard
– volume: 61
  start-page: 1541
  year: 1997
  end-page: 1545
  ident: bib32
  article-title: Emulsion effect of bacterial cellulose
  publication-title: Bioscience, Biotechnology, and Biochemistry
– volume: 1
  start-page: 488
  year: 2000
  end-page: 492
  ident: bib21
  article-title: Periodate oxidation of crystalline cellulose
  publication-title: Biomacromolecules
– volume: 21
  start-page: 1751
  year: 2010
  end-page: 1759
  ident: bib28
  article-title: Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application
  publication-title: Journal of Materials Science: Materials in Medicine
– volume: 24–25
  start-page: 253
  year: 1990
  end-page: 264
  ident: bib14
  article-title: cellulose pellicle as a temporary skin substitute
  publication-title: Applied Biochemistry and Biotechnology
– volume: 3
  start-page: 9
  year: 1969
  end-page: 20
  ident: bib27
  article-title: Oxidaton of cellulose by hydrogen peroxide
  publication-title: Cellulose Chemistry and Technology
– volume: 9
  year: 2014
  ident: bib40
  article-title: Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo
  publication-title: Biomedical Materials
– volume: 189
  start-page: 235
  year: 2009
  end-page: 241
  ident: bib29
  article-title: BC nanofibers:
  publication-title: Toxicology Letters
– volume: 184
  start-page: 219
  year: 1999
  end-page: 226
  ident: bib22
  article-title: Analysis of carboxyl content in oxidized celluloses by solid-state 13C CP: MAS NMR spectroscopy
  publication-title: International Journal of Pharmaceutics
– volume: 3
  start-page: 27
  year: 1982
  end-page: 32
  ident: bib16
  article-title: Modeling of drug sustained release of water soluble drugs from porous, hydrophobic polymers
  publication-title: Biomaterials
– volume: 34
  start-page: 623
  year: 2008
  end-page: 628
  ident: bib36
  article-title: Construction, application and biosafety of silver nanocrystalline chitosan wound dressing
  publication-title: Burns
– volume: 4
  start-page: 150
  year: 2014
  ident: bib20
  article-title: Bacterial cellulose production and its industrial applications
  publication-title: Journal of Bioprocessing & Biotechniques
– volume: 80
  start-page: 761
  year: 2010
  end-page: 767
  ident: bib37
  article-title: Preparation and characterization of novel b-chitin/nanosilver composite scaffolds for wound dressing applications
  publication-title: Carbohydrate Polymers
– volume: 35
  start-page: 135
  year: 2007
  end-page: 149
  ident: bib1
  article-title: Nanofiber based scaffolds for tissue engineering
  publication-title: European Journal of Plastic Surgery
– volume: 74
  start-page: 482
  year: 2008
  end-page: 488
  ident: bib34
  article-title: Biosynthesis and characterization of bacterial cellulose-chitosan film
  publication-title: Carbohydrate Polymers
– volume: 27
  start-page: 145
  year: 2006
  end-page: 151
  ident: bib10
  article-title: Microbial cellulose-the natural power to heal wounds
  publication-title: Biomaterials
– volume: 14
  start-page: 1124
  year: 2004
  end-page: 1128
  ident: bib45
  article-title: High mechanical strength double-network hydrogel with bacterial cellulose
  publication-title: Advanced Functional Materials
– volume: 28-29
  start-page: 341
  year: 1991
  end-page: 351
  ident: bib13
  article-title: Nature of plant stimulators in the production of
  publication-title: Applied Biochemistry and Biotechnology
– volume: 27
  start-page: 137
  year: 2012
  end-page: 144
  ident: bib5
  article-title: Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking
  publication-title: Food Hydrocolloids
– volume: 81
  start-page: 394
  year: 2010
  end-page: 401
  ident: bib12
  article-title: Transparent chitosan films reinforced with a high content of 317 nanofibrillated cellulose
  publication-title: Carbohydrate Polymers
– volume: 13
  start-page: 689
  year: 2006
  end-page: 696
  ident: bib39
  article-title: Protease and ROS activities influenced by a composite of bacterial cellulose and collagen typeⅠin vitro
  publication-title: Cellulose
– volume: 376
  start-page: 69
  year: 2009
  end-page: 75
  ident: bib17
  article-title: Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor
  publication-title: International Journal of Pharmaceutics
– year: 2011
  ident: bib42
  article-title: Development of fabricated composites film with bacterial cellulose and the investigation of its physical properties
– volume: 34
  start-page: 623
  year: 2008
  ident: 10.1016/j.foodhyd.2014.12.009_bib36
  article-title: Construction, application and biosafety of silver nanocrystalline chitosan wound dressing
  publication-title: Burns
  doi: 10.1016/j.burns.2007.08.020
– volume: 47
  start-page: 740
  year: 2012
  ident: 10.1016/j.foodhyd.2014.12.009_bib11
  article-title: Modelling natamycin release from alginate/chitosan active films
  publication-title: International Journal of Food Science and Technology
  doi: 10.1111/j.1365-2621.2011.02902.x
– volume: 12
  start-page: 300
  year: 2014
  ident: 10.1016/j.foodhyd.2014.12.009_bib38
  article-title: Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering
  publication-title: Marine Drugs
  doi: 10.3390/md12010300
– volume: 27
  start-page: 145
  year: 2006
  ident: 10.1016/j.foodhyd.2014.12.009_bib10
  article-title: Microbial cellulose-the natural power to heal wounds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.07.035
– volume: 9
  year: 2014
  ident: 10.1016/j.foodhyd.2014.12.009_bib40
  article-title: Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo
  publication-title: Biomedical Materials
  doi: 10.1088/1748-6041/9/3/035005
– year: 2011
  ident: 10.1016/j.foodhyd.2014.12.009_bib42
– volume: 14
  start-page: 1124
  year: 2004
  ident: 10.1016/j.foodhyd.2014.12.009_bib45
  article-title: High mechanical strength double-network hydrogel with bacterial cellulose
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.200305197
– volume: 80
  start-page: 761
  year: 2010
  ident: 10.1016/j.foodhyd.2014.12.009_bib37
  article-title: Preparation and characterization of novel b-chitin/nanosilver composite scaffolds for wound dressing applications
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2009.12.024
– volume: 113
  start-page: 43
  year: 2006
  ident: 10.1016/j.foodhyd.2014.12.009_bib3
  article-title: Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol
  publication-title: Journal of Controlled Release
  doi: 10.1016/j.jconrel.2006.03.007
– volume: 47
  start-page: 107
  year: 2009
  ident: 10.1016/j.foodhyd.2014.12.009_bib6
  article-title: Microbial cellulose: fermentative production and applications
  publication-title: Food Technology and Biotechnology
– volume: 74
  start-page: 482
  year: 2008
  ident: 10.1016/j.foodhyd.2014.12.009_bib34
  article-title: Biosynthesis and characterization of bacterial cellulose-chitosan film
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2008.04.004
– volume: 94
  start-page: 57
  year: 1986
  ident: 10.1016/j.foodhyd.2014.12.009_bib15
  article-title: Use of MTT colorimetric assay to measure cell activation
  publication-title: Journal of Immunological Methods
  doi: 10.1016/0022-1759(86)90215-2
– volume: 1
  start-page: 488
  year: 2000
  ident: 10.1016/j.foodhyd.2014.12.009_bib21
  article-title: Periodate oxidation of crystalline cellulose
  publication-title: Biomacromolecules
  doi: 10.1021/bm0000337
– volume: 27
  start-page: 145
  year: 2006
  ident: 10.1016/j.foodhyd.2014.12.009_bib44
  article-title: Microbial cellulose—the natural power to heal wounds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.07.035
– start-page: 1
  year: 1981
  ident: 10.1016/j.foodhyd.2014.12.009_bib30
  article-title: Chain flexibility of polysaccharides and glycoproteins from viscosity measurement
– volume: 35
  start-page: 135
  year: 2007
  ident: 10.1016/j.foodhyd.2014.12.009_bib1
  article-title: Nanofiber based scaffolds for tissue engineering
  publication-title: European Journal of Plastic Surgery
  doi: 10.1007/s00238-008-0217-3
– volume: 101
  start-page: 6084
  year: 2010
  ident: 10.1016/j.foodhyd.2014.12.009_bib18
  article-title: In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2010.03.031
– volume: 13
  start-page: 689
  year: 2006
  ident: 10.1016/j.foodhyd.2014.12.009_bib39
  article-title: Protease and ROS activities influenced by a composite of bacterial cellulose and collagen typeⅠin vitro
  publication-title: Cellulose
  doi: 10.1007/s10570-006-9073-0
– volume: 29
  start-page: 1635
  year: 2009
  ident: 10.1016/j.foodhyd.2014.12.009_bib25
  article-title: Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds
  publication-title: Materials Science and Engineering C
  doi: 10.1016/j.msec.2009.01.006
– volume: 29
  start-page: 398
  year: 2014
  ident: 10.1016/j.foodhyd.2014.12.009_bib24
  article-title: Development of a silk fibroin/HTCC/PVA sponge for chronic wound dressing
  publication-title: Journal of Bioactive and Compatible Polymers
  doi: 10.1177/0883911514537731
– volume: 26
  start-page: 4847
  year: 2005
  ident: 10.1016/j.foodhyd.2014.12.009_bib26
  article-title: The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.01.006
– volume: 3
  start-page: 27
  year: 1982
  ident: 10.1016/j.foodhyd.2014.12.009_bib16
  article-title: Modeling of drug sustained release of water soluble drugs from porous, hydrophobic polymers
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(82)90057-6
– volume: 5
  start-page: 31
  year: 2013
  ident: 10.1016/j.foodhyd.2014.12.009_bib19
  article-title: Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources
  publication-title: Microbial & Biochemical Technology
– volume: 189
  start-page: 235
  year: 2009
  ident: 10.1016/j.foodhyd.2014.12.009_bib29
  article-title: BC nanofibers: In vitro study of genotoxicity and cell proliferation
  publication-title: Toxicology Letters
  doi: 10.1016/j.toxlet.2009.06.849
– volume: 376
  start-page: 69
  year: 2009
  ident: 10.1016/j.foodhyd.2014.12.009_bib17
  article-title: Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor
  publication-title: International Journal of Pharmaceutics
  doi: 10.1016/j.ijpharm.2009.04.048
– year: 1982
  ident: 10.1016/j.foodhyd.2014.12.009_bib8
  article-title: Method of test for calcium and phosphorus in food stuff
– volume: 27
  start-page: 137
  year: 2012
  ident: 10.1016/j.foodhyd.2014.12.009_bib5
  article-title: Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2011.08.004
– volume: 4
  start-page: 150
  year: 2014
  ident: 10.1016/j.foodhyd.2014.12.009_bib20
  article-title: Bacterial cellulose production and its industrial applications
  publication-title: Journal of Bioprocessing & Biotechniques
  doi: 10.4172/2155-9821.1000150
– volume: 21
  start-page: 1751
  year: 2010
  ident: 10.1016/j.foodhyd.2014.12.009_bib28
  article-title: Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application
  publication-title: Journal of Materials Science: Materials in Medicine
– volume: 3
  start-page: 9
  year: 1969
  ident: 10.1016/j.foodhyd.2014.12.009_bib27
  article-title: Oxidaton of cellulose by hydrogen peroxide
  publication-title: Cellulose Chemistry and Technology
– volume: 24–25
  start-page: 253
  year: 1990
  ident: 10.1016/j.foodhyd.2014.12.009_bib14
  article-title: Acetobacter cellulose pellicle as a temporary skin substitute
  publication-title: Applied Biochemistry and Biotechnology
  doi: 10.1007/BF02920250
– volume: 28
  start-page: 150
  year: 2008
  ident: 10.1016/j.foodhyd.2014.12.009_bib43
  article-title: Chitosan containing PU/Poly (NIPAAm) thermosensitive membrane for wound dressing
  publication-title: Materials Science and Engineering C
  doi: 10.1016/j.msec.2007.01.011
– volume: 85
  start-page: 548
  year: 2011
  ident: 10.1016/j.foodhyd.2014.12.009_bib7
  article-title: Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2011.03.011
– volume: 28-29
  start-page: 341
  year: 1991
  ident: 10.1016/j.foodhyd.2014.12.009_bib13
  article-title: Nature of plant stimulators in the production of Acetobacter xylinum (“Tea Fungus”) bio-film used in skin therapy
  publication-title: Applied Biochemistry and Biotechnology
  doi: 10.1007/BF02922613
– volume: 6
  start-page: 471
  year: 1992
  ident: 10.1016/j.foodhyd.2014.12.009_bib31
  article-title: Bacterial cellulose. I. Two-stage fermentation process for cellulose production by Acetobacter aceti
  publication-title: Food Hydrocolloids
  doi: 10.1016/S0268-005X(09)80032-5
– volume: 18
  start-page: 18
  year: 2004
  ident: 10.1016/j.foodhyd.2014.12.009_bib33
  article-title: Chitosan and alginate wound dressings: a short review
  publication-title: Trends in Biomaterials & Artificial Organs
– start-page: 882
  year: 2002
  ident: 10.1016/j.foodhyd.2014.12.009_bib2
– volume: 24
  start-page: 3141
  year: 1989
  ident: 10.1016/j.foodhyd.2014.12.009_bib41
  article-title: The structure and mechanical properties of sheets prepared from bacterial cellulose
  publication-title: Journal of Materials Science
  doi: 10.1007/BF01139032
– volume: 101
  start-page: 3
  year: 1994
  ident: 10.1016/j.foodhyd.2014.12.009_bib4
  article-title: The efficacy of synthetic adhesion barriers in infertility surgery
  publication-title: British Journal of Obstetrics and Gynaecology
  doi: 10.1111/j.1471-0528.1994.tb13001.x
– volume: 184
  start-page: 219
  year: 1999
  ident: 10.1016/j.foodhyd.2014.12.009_bib22
  article-title: Analysis of carboxyl content in oxidized celluloses by solid-state 13C CP: MAS NMR spectroscopy
  publication-title: International Journal of Pharmaceutics
  doi: 10.1016/S0378-5173(99)00098-8
– volume: 13
  start-page: 123
  year: 2001
  ident: 10.1016/j.foodhyd.2014.12.009_bib9
  article-title: Modeling and comparison of dissolution profiles
  publication-title: European Journal of Pharmaceutical Sciences
  doi: 10.1016/S0928-0987(01)00095-1
– volume: 81
  start-page: 394
  year: 2010
  ident: 10.1016/j.foodhyd.2014.12.009_bib12
  article-title: Transparent chitosan films reinforced with a high content of 317 nanofibrillated cellulose
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2010.02.037
– volume: 61
  start-page: 1541
  year: 1997
  ident: 10.1016/j.foodhyd.2014.12.009_bib32
  article-title: Emulsion effect of bacterial cellulose
  publication-title: Bioscience, Biotechnology, and Biochemistry
  doi: 10.1271/bbb.61.1541
– volume: 5
  start-page: 23
  year: 1987
  ident: 10.1016/j.foodhyd.2014.12.009_bib35
  article-title: A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs
  publication-title: Journal of Controlled Release
  doi: 10.1016/0168-3659(87)90034-4
SSID ssj0017011
Score 2.483956
Snippet To test various formulas and techniques for manufacturing dry-fabricated bio-film (DFBF) that exhibits physical properties advantageous to the use of the DFBF...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms absorption
Bacterial cellulose
brewery byproducts
calcium
cellulose
Chitosan
Composite
crosslinking
cytotoxicity
gels
hydrocolloids
hydrogen peroxide
manufacturing
naringin
oxidation
physical properties
Physical property
rehydration
vinegars
water content
water vapor
Wound dressing
Title Physical properties of bacterial cellulose composites for wound dressings
URI https://dx.doi.org/10.1016/j.foodhyd.2014.12.009
https://www.proquest.com/docview/2000168193
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6iL_ognnhTwdfupmm6SR9lUdYDEQ_Yt5CrHki7uLuIL_52Z9rUC0HwqbRkSvkynXwZvswQciB6jgpBZay19DG31MSaawO-LHWSGtw31wLZi97glp8Os-EM6bdnYVBWGWJ_E9PraB2edAOa3dHDQ_cadg_AdrJhgm6YUdy3cy7QyztvHzIPLDeeNHkWGePoz1M83cdOUVXu_hULhia8zgqiLvH39elHpK6Xn-Mlshh4Y3TYfNoymfHlCln4Uk1wlZxcBsyjEWbYn7FUalQVkWkKMsNzzNJPn6qxj1BJjnItGAGsNXrB5kqRqzWx5d14jdweH930B3HolBBbTuUkdjRl1kpY_JnNeKF1Jp1zMAU-EZ55UXiXu5zRwlOd28JYzYRhIndUA_1xIl0ns2VV-g0SscTlXDpuuXHc0J42mvdcWrAMqJOnxSbhLT7KhjLi2M3iSbV6sUcVYFUIq0qYAlg3SefDbNTU0fjLQLbgq28OoSDW_2W6306Wgp8FsdWlr6Zj7LkJVkCC0q3_v36bzMNdkG7vkNnJ89TvAjOZmL3a9fbI3GH_6vwSrydng4t308_nEw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7S9ND2UPok6SNVIT16V5bltXzIobQJu82DQhPYm6qX8yDYS3aXkEv_VP9gZmw5fVAIFHKVPUJ8M54ZyZ9mADaLkedFwVVijAqJdNwmRhqLtqxMmlnaN7cE2YPR-Eh-mebTFfjZ34UhWmX0_Z1Pb711HBlGNIez09PhN9w9YLaTT1Myw5zzyKzcDVeXuG-bb00-o5I_CLGzffhpnMTWAomTXC0SzzPhnMJoKVwuK2Ny5b3HNYe0CCIUVfClLwWvAjelq6wzorCiKD03mC_4IsN578F9ie6C2iYMftzwSqi-edod7KiElvfr2tDwbFA1jT-5ogqlqWyPIYkI-e-A-FdoaOPdzhN4HBNV9rHD4imshPoZPPqtfOFzmHyNSmYzOtK_oNqsrKmY7SpA4zj9FlieN_PAiLpO_DB8A9NkdkndnJhvSbj18fwFHN0Jfi9htW7qsAZMpL6UyksnrZeWj4w1cuSzSuSYqwVerYPs8dEu1i2n9hnnuieonekIqyZYdSo0wroOgxuxWVe44zYB1YOv_7BAjcHlNtH3vbI0fp2EralDs5xTk0-Uwqwre_X_07-DB-PD_T29NznYfQ0P8Unkjb-B1cXFMrzFtGhhN1ozZPD9ru3-GmQFItU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physical+properties+of+bacterial+cellulose+composites+for+wound+dressings&rft.jtitle=Food+hydrocolloids&rft.au=Chang%2C+Wen-Shuo&rft.au=Chen%2C+Hui-Huang&rft.date=2016-02-01&rft.issn=0268-005X&rft.volume=53&rft.spage=75&rft.epage=83&rft_id=info:doi/10.1016%2Fj.foodhyd.2014.12.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foodhyd_2014_12_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon