Physical properties of bacterial cellulose composites for wound dressings
To test various formulas and techniques for manufacturing dry-fabricated bio-film (DFBF) that exhibits physical properties advantageous to the use of the DFBF in wound dressings, a DFBF was fabricated by adding chitosan (Chi) and alginate (Alg) to homogenized bacterial cellulose (BC) obtained from v...
Saved in:
Published in | Food hydrocolloids Vol. 53; pp. 75 - 83 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To test various formulas and techniques for manufacturing dry-fabricated bio-film (DFBF) that exhibits physical properties advantageous to the use of the DFBF in wound dressings, a DFBF was fabricated by adding chitosan (Chi) and alginate (Alg) to homogenized bacterial cellulose (BC) obtained from vinegar pellicles in vinegar brewing byproducts in this study. The results revealed that the degree of oxidation in DFBF manufactured using hydrogen peroxide oxidized BC (HOBC), with 0.092% carboxyl group content, was lower than that in DFBF manufactured using periodic acid oxidized BC (POBC), but DFBF made using HOBC exhibited higher elongation, rehydration, swelling ratios, and water vapor transmission than that fabricated using POBC. A DFBF composite gel with 98.5% water content possessed appropriate fluidity for molding. After 10 min of rinsing cross-linked HOBC, 72 ppm of calcium remained in the final DFBF, which not only prevented cell toxicity but also demonstrated desirable mechanical and rehydration properties. Overall, the modified DFBF possessed a high rehydration ratio of 51.69% and could absorb and gradually release naringin by up to 80% within 24 h. This modified DFBF has the potential for exudate absorption and the controlled release of medicinal substances at the initial stage of healing when used in wound dressings.
(Release of naringin from DFBF) [Display omitted]
•DFBF was fabricated by adding chitosan and alginate to homogenized bacterial cellulose.•DFBF manufactured using H2O2 exhibited higher mechanical properties, hydrophilicity and WVTR.•A DFBF composite gel with 98.5% water content possessed appropriate fluidity for molding.•DFBF possessed biocompatibility and gradually release naringin by up to 80% within 24 h.•DFBF has potential for exudate absorption and controlled release of medicines in wound dressings. |
---|---|
AbstractList | To test various formulas and techniques for manufacturing dry-fabricated bio-film (DFBF) that exhibits physical properties advantageous to the use of the DFBF in wound dressings, a DFBF was fabricated by adding chitosan (Chi) and alginate (Alg) to homogenized bacterial cellulose (BC) obtained from vinegar pellicles in vinegar brewing byproducts in this study. The results revealed that the degree of oxidation in DFBF manufactured using hydrogen peroxide oxidized BC (HOBC), with 0.092% carboxyl group content, was lower than that in DFBF manufactured using periodic acid oxidized BC (POBC), but DFBF made using HOBC exhibited higher elongation, rehydration, swelling ratios, and water vapor transmission than that fabricated using POBC. A DFBF composite gel with 98.5% water content possessed appropriate fluidity for molding. After 10 min of rinsing cross-linked HOBC, 72 ppm of calcium remained in the final DFBF, which not only prevented cell toxicity but also demonstrated desirable mechanical and rehydration properties. Overall, the modified DFBF possessed a high rehydration ratio of 51.69% and could absorb and gradually release naringin by up to 80% within 24 h. This modified DFBF has the potential for exudate absorption and the controlled release of medicinal substances at the initial stage of healing when used in wound dressings.
(Release of naringin from DFBF) [Display omitted]
•DFBF was fabricated by adding chitosan and alginate to homogenized bacterial cellulose.•DFBF manufactured using H2O2 exhibited higher mechanical properties, hydrophilicity and WVTR.•A DFBF composite gel with 98.5% water content possessed appropriate fluidity for molding.•DFBF possessed biocompatibility and gradually release naringin by up to 80% within 24 h.•DFBF has potential for exudate absorption and controlled release of medicines in wound dressings. To test various formulas and techniques for manufacturing dry-fabricated bio-film (DFBF) that exhibits physical properties advantageous to the use of the DFBF in wound dressings, a DFBF was fabricated by adding chitosan (Chi) and alginate (Alg) to homogenized bacterial cellulose (BC) obtained from vinegar pellicles in vinegar brewing byproducts in this study. The results revealed that the degree of oxidation in DFBF manufactured using hydrogen peroxide oxidized BC (HOBC), with 0.092% carboxyl group content, was lower than that in DFBF manufactured using periodic acid oxidized BC (POBC), but DFBF made using HOBC exhibited higher elongation, rehydration, swelling ratios, and water vapor transmission than that fabricated using POBC. A DFBF composite gel with 98.5% water content possessed appropriate fluidity for molding. After 10 min of rinsing cross-linked HOBC, 72 ppm of calcium remained in the final DFBF, which not only prevented cell toxicity but also demonstrated desirable mechanical and rehydration properties. Overall, the modified DFBF possessed a high rehydration ratio of 51.69% and could absorb and gradually release naringin by up to 80% within 24 h. This modified DFBF has the potential for exudate absorption and the controlled release of medicinal substances at the initial stage of healing when used in wound dressings. |
Author | Chang, Wen-Shuo Chen, Hui-Huang |
Author_xml | – sequence: 1 givenname: Wen-Shuo surname: Chang fullname: Chang, Wen-Shuo – sequence: 2 givenname: Hui-Huang orcidid: 0000-0003-2208-0323 surname: Chen fullname: Chen, Hui-Huang email: hhchen@niu.edu.tw |
BookMark | eNqFkE1LAzEQhoNUsK3-BGGPXnadZLubXTyIFD8KBT0oeAtpMrEp282aZJX-e7e0Jy89DQzv8zLzTMiodS0Sck0ho0DL201mnNPrnc4Y0FlGWQZQn5ExrXiecprzERkDK6sUoPi8IJMQNgCUA6Vjsnhb74JVskk67zr00WJInElWUkX0dtgrbJq-cQET5badCzYOCeN88uv6VifaYwi2_QqX5NzIJuDVcU7Jx9Pj-_wlXb4-L-YPy1TNoIqphpwpVRVQM1XMjJRFpbXmUCHlyJAb1LWuGRgEWSuzUpLxFeO1BlmyXPN8Sm4OvcPB3z2GKLY27I-ULbo-CAbDc2VF63yIFoeo8i4Ej0Z03m6l3wkKYq9ObMRRndirE5SJQd3A3f3jlI0yWtdGL21zkr4_0DhY-LHoRVAWW4XaelRRaGdPNPwBXMeSOA |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_134829 crossref_primary_10_1016_j_carbpol_2017_03_012 crossref_primary_10_3390_pr12071282 crossref_primary_10_1007_s10570_024_05919_4 crossref_primary_10_1016_j_msec_2017_08_052 crossref_primary_10_1016_j_jddst_2021_102415 crossref_primary_10_1007_s10570_019_02566_y crossref_primary_10_1007_s10570_018_2217_1 crossref_primary_10_3390_polym14204388 crossref_primary_10_1080_01932691_2019_1626739 crossref_primary_10_1016_j_ijbiomac_2019_12_103 crossref_primary_10_1021_acs_biomac_8b00208 crossref_primary_10_3390_nano10122508 crossref_primary_10_1002_asia_202200598 crossref_primary_10_1016_j_carbpol_2019_01_014 crossref_primary_10_1039_C9MH00291J crossref_primary_10_3390_nano10122469 crossref_primary_10_1002_app_48155 crossref_primary_10_1134_S0965545X19030088 crossref_primary_10_3389_fbioe_2022_780409 crossref_primary_10_1016_j_cej_2019_03_216 crossref_primary_10_1134_S0006350918040188 crossref_primary_10_1021_acsami_9b20733 crossref_primary_10_1016_j_jclepro_2024_142204 crossref_primary_10_1007_s10570_019_02514_w crossref_primary_10_1021_acs_biomac_1c01239 crossref_primary_10_1021_acs_biomac_9b01249 crossref_primary_10_1016_j_carbpol_2018_04_041 crossref_primary_10_1016_j_ijbiomac_2016_07_050 crossref_primary_10_1016_j_polymertesting_2019_106007 crossref_primary_10_1016_j_msec_2016_11_121 crossref_primary_10_1080_01932691_2019_1614947 crossref_primary_10_1016_j_polymertesting_2017_10_023 crossref_primary_10_1007_s00289_022_04617_0 crossref_primary_10_1039_C7RA06103J crossref_primary_10_1080_15440478_2018_1563580 crossref_primary_10_1186_s43014_023_00188_3 crossref_primary_10_1007_s00289_023_04801_w crossref_primary_10_1557_s43578_023_01116_4 crossref_primary_10_1016_j_eurpolymj_2019_109365 crossref_primary_10_1016_j_ijbiomac_2016_02_052 crossref_primary_10_1016_j_carbpol_2020_116062 crossref_primary_10_1016_j_msec_2017_03_035 crossref_primary_10_1007_s10570_018_2223_3 crossref_primary_10_1016_j_ijbiomac_2023_129033 crossref_primary_10_3389_fmicb_2022_972200 crossref_primary_10_1016_j_ijbiomac_2019_03_068 crossref_primary_10_1016_j_carbpol_2022_119932 crossref_primary_10_1111_1751_7915_13392 crossref_primary_10_1016_j_carpta_2024_100632 crossref_primary_10_3390_polym15040987 crossref_primary_10_1016_j_colsurfb_2017_12_054 crossref_primary_10_1111_1751_7915_14243 crossref_primary_10_1016_j_ijbiomac_2024_138673 crossref_primary_10_1007_s10570_017_1487_3 crossref_primary_10_3390_nano8100859 crossref_primary_10_1002_app_50057 crossref_primary_10_1007_s10570_018_2041_7 crossref_primary_10_1007_s12221_018_7850_7 crossref_primary_10_1016_j_ijbiomac_2024_129600 crossref_primary_10_1016_j_ebiom_2021_103792 crossref_primary_10_1007_s00289_016_1872_3 crossref_primary_10_1016_j_ijbiomac_2018_03_065 crossref_primary_10_1007_s10570_018_1750_2 crossref_primary_10_1016_j_carbpol_2022_119361 crossref_primary_10_1080_17425247_2021_1989407 crossref_primary_10_3390_ma14185313 crossref_primary_10_1016_j_matpr_2019_05_007 crossref_primary_10_1007_s10570_024_06278_w crossref_primary_10_1016_j_carbpol_2018_05_055 crossref_primary_10_1016_j_jddst_2022_103557 crossref_primary_10_1088_2053_1591_aba8de crossref_primary_10_3390_ma13204573 crossref_primary_10_1002_admt_202300710 crossref_primary_10_1007_s10570_020_03273_9 crossref_primary_10_1016_j_carbpol_2016_08_090 crossref_primary_10_2147_IJN_S289868 crossref_primary_10_1002_pen_24467 crossref_primary_10_1016_j_polymdegradstab_2017_05_026 crossref_primary_10_1021_acsami_0c05604 crossref_primary_10_1016_j_carbpol_2021_118995 crossref_primary_10_1016_j_ijbiomac_2025_140208 crossref_primary_10_1007_s13399_021_01973_1 crossref_primary_10_3390_nano12020192 crossref_primary_10_3390_nano10040628 crossref_primary_10_1016_j_ijbiomac_2020_07_272 crossref_primary_10_1016_j_carbpol_2019_115308 crossref_primary_10_1016_j_carbpol_2019_115383 crossref_primary_10_1016_j_ijbiomac_2024_131685 crossref_primary_10_1021_acs_iecr_6b01963 crossref_primary_10_1016_j_mser_2021_100623 crossref_primary_10_1016_j_ejmcr_2024_100190 crossref_primary_10_1111_jam_13916 crossref_primary_10_1016_j_ijbiomac_2020_05_170 crossref_primary_10_1007_s10853_023_08803_x crossref_primary_10_1016_j_ijbiomac_2017_03_108 crossref_primary_10_1016_j_cej_2024_155409 crossref_primary_10_1155_2022_1214734 crossref_primary_10_3390_ma14195851 crossref_primary_10_1016_j_carbpol_2020_116423 |
Cites_doi | 10.1016/j.burns.2007.08.020 10.1111/j.1365-2621.2011.02902.x 10.3390/md12010300 10.1016/j.biomaterials.2005.07.035 10.1088/1748-6041/9/3/035005 10.1002/adfm.200305197 10.1016/j.carbpol.2009.12.024 10.1016/j.jconrel.2006.03.007 10.1016/j.carbpol.2008.04.004 10.1016/0022-1759(86)90215-2 10.1021/bm0000337 10.1007/s00238-008-0217-3 10.1016/j.biortech.2010.03.031 10.1007/s10570-006-9073-0 10.1016/j.msec.2009.01.006 10.1177/0883911514537731 10.1016/j.biomaterials.2005.01.006 10.1016/0142-9612(82)90057-6 10.1016/j.toxlet.2009.06.849 10.1016/j.ijpharm.2009.04.048 10.1016/j.foodhyd.2011.08.004 10.4172/2155-9821.1000150 10.1007/BF02920250 10.1016/j.msec.2007.01.011 10.1016/j.carbpol.2011.03.011 10.1007/BF02922613 10.1016/S0268-005X(09)80032-5 10.1007/BF01139032 10.1111/j.1471-0528.1994.tb13001.x 10.1016/S0378-5173(99)00098-8 10.1016/S0928-0987(01)00095-1 10.1016/j.carbpol.2010.02.037 10.1271/bbb.61.1541 10.1016/0168-3659(87)90034-4 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.foodhyd.2014.12.009 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7137 |
EndPage | 83 |
ExternalDocumentID | 10_1016_j_foodhyd_2014_12_009 S0268005X14004500 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLY HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCE SDF SDG SES SEW SPC SPCBC SSA SSG SSZ T5K UHS UNMZH WH7 Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-d032cc85092c54faa58ddd708e17e2e7fed9d920fe0a9cfbca27b279d0a623d73 |
IEDL.DBID | .~1 |
ISSN | 0268-005X |
IngestDate | Fri Jul 11 07:36:07 EDT 2025 Tue Jul 01 02:19:33 EDT 2025 Thu Apr 24 23:10:26 EDT 2025 Fri Feb 23 02:32:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Physical property Bacterial cellulose Wound dressing Chitosan Composite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-d032cc85092c54faa58ddd708e17e2e7fed9d920fe0a9cfbca27b279d0a623d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2208-0323 |
PQID | 2000168193 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000168193 crossref_primary_10_1016_j_foodhyd_2014_12_009 crossref_citationtrail_10_1016_j_foodhyd_2014_12_009 elsevier_sciencedirect_doi_10_1016_j_foodhyd_2014_12_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2016 2016-02-00 20160201 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: February 2016 |
PublicationDecade | 2010 |
PublicationTitle | Food hydrocolloids |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Morris, Ross-Murphy (bib30) 1981 Fernandes, Freire, Silvestre, Neto, Gandini, Berglund (bib12) 2010; 81 Venkatesan, Bhatnagar, Kim (bib38) 2014; 12 Yang, Yang, Lin, Wu, Chen (bib43) 2008; 28 Bowman, Cooke (bib4) 1994; 101 Meng, Tian, Yang, He, Xing, Li (bib28) 2010; 21 Sudheesh Kumar, Abhilash, Manzoor, Nair, Tamura, Jayakumar (bib37) 2010; 80 Fontana, Franco, Souza, Lyra, Souza (bib13) 1991; 28-29 Gerlier, Thomasset (bib15) 1986; 94 Chang, Chen, Lin, Chen (bib5) 2012; 27 Czaja, Krystynowicz, Bielecki, Brown (bib10) 2006; 27 Ritger, Peppas (bib35) 1987; 5 Chiaoprakobkij, Sanchavanakit, Subbalekha, Pavasant (bib7) 2011; 85 Okiyama, Shirae, Kano, Yamanaka (bib31) 1992; 6 Phisalaphong, Jatupaiboon (bib34) 2008; 74 Ho, Mi, Sung, Kuo (bib17) 2009; 376 Paul, Sharma (bib33) 2004; 18 ASTM (bib2) 2002 Fontana, Souza, Fontana, Toriani, Moreschi (bib14) 1990; 24–25 Ashammakhi, Ndreu, Yang, Ylikauppila, Nikkola (bib1) 2007; 35 Kawecki, Krystynowicz, Wysota, Czaja, Sakiel (bib44) 2006; 27 Bodhibukkana, Srichana, Kaewnopparat, Tangthong, Bouking, Martin (bib3) 2006; 113 Keshk (bib20) 2014; 4 Yamanaka, Watanabe, Kitamura, Iguchi, Mitsuhashi, Nishi (bib41) 1989; 24 Huang, Chen, Lin, Hsu, Chen (bib18) 2010; 101 Nakayama, Kakugo, Gong, Osada, Takai, Erata (bib45) 2004; 14 CNS9638-N5200 (bib8) 1982 Maeno, Niki, Matsumoto, Morika, Yatabe, Funayama (bib26) 2005; 26 Kumar, Yang (bib22) 1999; 184 Li, Wan, Li, Liang, Wang (bib25) 2009; 29 Shuangyun, Wenjuan, Gu (bib36) 2008; 34 Hungund, Prabhu, Shetty, Acharya, Prabhu, Gupta (bib19) 2013; 5 Moreira, Silva, Almeida-Lima, Rocha, Medeiros, Alves (bib29) 2009; 189 Wu, Zheng, Wen, Lin, Chen, Wu (bib40) 2014; 9 Menachen, Aharon (bib27) 1969; 3 Wiegand, Elsner, Hipler, Klemm (bib39) 2006; 13 Costa, Sousa Lobo (bib9) 2001; 13 Da Silva, Bierhalz, Kieckbusc (bib11) 2012; 47 Ougiya, Watanabe, Morinaga, Yoshinaga (bib32) 1997; 61 Yang (bib42) 2011 Kim, Kuga, Wada, Okano, Kondo (bib21) 2000; 1 Chawla, Bajaj, Survase, Singhal (bib6) 2009; 47 Li, Li, Ma, Wang, Zhang (bib24) 2014; 29 Gurny, Doelker, Peppas (bib16) 1982; 3 Ashammakhi (10.1016/j.foodhyd.2014.12.009_bib1) 2007; 35 Keshk (10.1016/j.foodhyd.2014.12.009_bib20) 2014; 4 ASTM (10.1016/j.foodhyd.2014.12.009_bib2) 2002 Hungund (10.1016/j.foodhyd.2014.12.009_bib19) 2013; 5 Menachen (10.1016/j.foodhyd.2014.12.009_bib27) 1969; 3 Morris (10.1016/j.foodhyd.2014.12.009_bib30) 1981 Fontana (10.1016/j.foodhyd.2014.12.009_bib14) 1990; 24–25 Chawla (10.1016/j.foodhyd.2014.12.009_bib6) 2009; 47 Ritger (10.1016/j.foodhyd.2014.12.009_bib35) 1987; 5 Bodhibukkana (10.1016/j.foodhyd.2014.12.009_bib3) 2006; 113 Shuangyun (10.1016/j.foodhyd.2014.12.009_bib36) 2008; 34 Gurny (10.1016/j.foodhyd.2014.12.009_bib16) 1982; 3 Huang (10.1016/j.foodhyd.2014.12.009_bib18) 2010; 101 Ho (10.1016/j.foodhyd.2014.12.009_bib17) 2009; 376 Bowman (10.1016/j.foodhyd.2014.12.009_bib4) 1994; 101 CNS9638-N5200 (10.1016/j.foodhyd.2014.12.009_bib8) 1982 Sudheesh Kumar (10.1016/j.foodhyd.2014.12.009_bib37) 2010; 80 Costa (10.1016/j.foodhyd.2014.12.009_bib9) 2001; 13 Yang (10.1016/j.foodhyd.2014.12.009_bib42) 2011 Phisalaphong (10.1016/j.foodhyd.2014.12.009_bib34) 2008; 74 Venkatesan (10.1016/j.foodhyd.2014.12.009_bib38) 2014; 12 Meng (10.1016/j.foodhyd.2014.12.009_bib28) 2010; 21 Wu (10.1016/j.foodhyd.2014.12.009_bib40) 2014; 9 Kim (10.1016/j.foodhyd.2014.12.009_bib21) 2000; 1 Li (10.1016/j.foodhyd.2014.12.009_bib24) 2014; 29 Paul (10.1016/j.foodhyd.2014.12.009_bib33) 2004; 18 Ougiya (10.1016/j.foodhyd.2014.12.009_bib32) 1997; 61 Chiaoprakobkij (10.1016/j.foodhyd.2014.12.009_bib7) 2011; 85 Okiyama (10.1016/j.foodhyd.2014.12.009_bib31) 1992; 6 Da Silva (10.1016/j.foodhyd.2014.12.009_bib11) 2012; 47 Wiegand (10.1016/j.foodhyd.2014.12.009_bib39) 2006; 13 Kumar (10.1016/j.foodhyd.2014.12.009_bib22) 1999; 184 Czaja (10.1016/j.foodhyd.2014.12.009_bib10) 2006; 27 Yang (10.1016/j.foodhyd.2014.12.009_bib43) 2008; 28 Yamanaka (10.1016/j.foodhyd.2014.12.009_bib41) 1989; 24 Fontana (10.1016/j.foodhyd.2014.12.009_bib13) 1991; 28-29 Kawecki (10.1016/j.foodhyd.2014.12.009_bib44) 2006; 27 Moreira (10.1016/j.foodhyd.2014.12.009_bib29) 2009; 189 Maeno (10.1016/j.foodhyd.2014.12.009_bib26) 2005; 26 Nakayama (10.1016/j.foodhyd.2014.12.009_bib45) 2004; 14 Chang (10.1016/j.foodhyd.2014.12.009_bib5) 2012; 27 Gerlier (10.1016/j.foodhyd.2014.12.009_bib15) 1986; 94 Fernandes (10.1016/j.foodhyd.2014.12.009_bib12) 2010; 81 Li (10.1016/j.foodhyd.2014.12.009_bib25) 2009; 29 |
References_xml | – volume: 85 start-page: 548 year: 2011 end-page: 553 ident: bib7 article-title: Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts publication-title: Carbohydrate Polymers – volume: 101 start-page: 6084 year: 2010 end-page: 6091 ident: bib18 article-title: In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation publication-title: Bioresource Technology – volume: 6 start-page: 471 year: 1992 end-page: 477 ident: bib31 article-title: Bacterial cellulose. I. Two-stage fermentation process for cellulose production by publication-title: Food Hydrocolloids – volume: 28 start-page: 150 year: 2008 end-page: 156 ident: bib43 article-title: Chitosan containing PU/Poly (NIPAAm) thermosensitive membrane for wound dressing publication-title: Materials Science and Engineering C – volume: 94 start-page: 57 year: 1986 end-page: 63 ident: bib15 article-title: Use of MTT colorimetric assay to measure cell activation publication-title: Journal of Immunological Methods – volume: 5 start-page: 31 year: 2013 end-page: 33 ident: bib19 article-title: Production of bacterial cellulose from publication-title: Microbial & Biochemical Technology – volume: 27 start-page: 145 year: 2006 end-page: 151 ident: bib44 article-title: Microbial cellulose—the natural power to heal wounds publication-title: Biomaterials – volume: 26 start-page: 4847 year: 2005 end-page: 4855 ident: bib26 article-title: The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture publication-title: Biomaterials – volume: 47 start-page: 740 year: 2012 end-page: 746 ident: bib11 article-title: Modelling natamycin release from alginate/chitosan active films publication-title: International Journal of Food Science and Technology – start-page: 1 year: 1981 end-page: 46 ident: bib30 article-title: Chain flexibility of polysaccharides and glycoproteins from viscosity measurement publication-title: Techniques in carbohydrate metabolism – start-page: 882 year: 2002 end-page: 902 ident: bib2 article-title: Standard test methods for tensile properties thin plastic sheeting – volume: 101 start-page: 3 year: 1994 end-page: 6 ident: bib4 article-title: The efficacy of synthetic adhesion barriers in infertility surgery publication-title: British Journal of Obstetrics and Gynaecology – volume: 12 start-page: 300 year: 2014 end-page: 316 ident: bib38 article-title: Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering publication-title: Marine Drugs – volume: 113 start-page: 43 year: 2006 end-page: 56 ident: bib3 article-title: Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol publication-title: Journal of Controlled Release – volume: 13 start-page: 123 year: 2001 end-page: 133 ident: bib9 article-title: Modeling and comparison of dissolution profiles publication-title: European Journal of Pharmaceutical Sciences – volume: 47 start-page: 107 year: 2009 end-page: 124 ident: bib6 article-title: Microbial cellulose: fermentative production and applications publication-title: Food Technology and Biotechnology – volume: 29 start-page: 398 year: 2014 end-page: 411 ident: bib24 article-title: Development of a silk fibroin/HTCC/PVA sponge for chronic wound dressing publication-title: Journal of Bioactive and Compatible Polymers – volume: 29 start-page: 1635 year: 2009 end-page: 1642 ident: bib25 article-title: Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds publication-title: Materials Science and Engineering C – volume: 5 start-page: 23 year: 1987 end-page: 36 ident: bib35 article-title: A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs publication-title: Journal of Controlled Release – volume: 24 start-page: 3141 year: 1989 end-page: 3145 ident: bib41 article-title: The structure and mechanical properties of sheets prepared from bacterial cellulose publication-title: Journal of Materials Science – volume: 18 start-page: 18 year: 2004 end-page: 23 ident: bib33 article-title: Chitosan and alginate wound dressings: a short review publication-title: Trends in Biomaterials & Artificial Organs – year: 1982 ident: bib8 article-title: Method of test for calcium and phosphorus in food stuff publication-title: Chinese National Standard – volume: 61 start-page: 1541 year: 1997 end-page: 1545 ident: bib32 article-title: Emulsion effect of bacterial cellulose publication-title: Bioscience, Biotechnology, and Biochemistry – volume: 1 start-page: 488 year: 2000 end-page: 492 ident: bib21 article-title: Periodate oxidation of crystalline cellulose publication-title: Biomacromolecules – volume: 21 start-page: 1751 year: 2010 end-page: 1759 ident: bib28 article-title: Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application publication-title: Journal of Materials Science: Materials in Medicine – volume: 24–25 start-page: 253 year: 1990 end-page: 264 ident: bib14 article-title: cellulose pellicle as a temporary skin substitute publication-title: Applied Biochemistry and Biotechnology – volume: 3 start-page: 9 year: 1969 end-page: 20 ident: bib27 article-title: Oxidaton of cellulose by hydrogen peroxide publication-title: Cellulose Chemistry and Technology – volume: 9 year: 2014 ident: bib40 article-title: Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo publication-title: Biomedical Materials – volume: 189 start-page: 235 year: 2009 end-page: 241 ident: bib29 article-title: BC nanofibers: publication-title: Toxicology Letters – volume: 184 start-page: 219 year: 1999 end-page: 226 ident: bib22 article-title: Analysis of carboxyl content in oxidized celluloses by solid-state 13C CP: MAS NMR spectroscopy publication-title: International Journal of Pharmaceutics – volume: 3 start-page: 27 year: 1982 end-page: 32 ident: bib16 article-title: Modeling of drug sustained release of water soluble drugs from porous, hydrophobic polymers publication-title: Biomaterials – volume: 34 start-page: 623 year: 2008 end-page: 628 ident: bib36 article-title: Construction, application and biosafety of silver nanocrystalline chitosan wound dressing publication-title: Burns – volume: 4 start-page: 150 year: 2014 ident: bib20 article-title: Bacterial cellulose production and its industrial applications publication-title: Journal of Bioprocessing & Biotechniques – volume: 80 start-page: 761 year: 2010 end-page: 767 ident: bib37 article-title: Preparation and characterization of novel b-chitin/nanosilver composite scaffolds for wound dressing applications publication-title: Carbohydrate Polymers – volume: 35 start-page: 135 year: 2007 end-page: 149 ident: bib1 article-title: Nanofiber based scaffolds for tissue engineering publication-title: European Journal of Plastic Surgery – volume: 74 start-page: 482 year: 2008 end-page: 488 ident: bib34 article-title: Biosynthesis and characterization of bacterial cellulose-chitosan film publication-title: Carbohydrate Polymers – volume: 27 start-page: 145 year: 2006 end-page: 151 ident: bib10 article-title: Microbial cellulose-the natural power to heal wounds publication-title: Biomaterials – volume: 14 start-page: 1124 year: 2004 end-page: 1128 ident: bib45 article-title: High mechanical strength double-network hydrogel with bacterial cellulose publication-title: Advanced Functional Materials – volume: 28-29 start-page: 341 year: 1991 end-page: 351 ident: bib13 article-title: Nature of plant stimulators in the production of publication-title: Applied Biochemistry and Biotechnology – volume: 27 start-page: 137 year: 2012 end-page: 144 ident: bib5 article-title: Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking publication-title: Food Hydrocolloids – volume: 81 start-page: 394 year: 2010 end-page: 401 ident: bib12 article-title: Transparent chitosan films reinforced with a high content of 317 nanofibrillated cellulose publication-title: Carbohydrate Polymers – volume: 13 start-page: 689 year: 2006 end-page: 696 ident: bib39 article-title: Protease and ROS activities influenced by a composite of bacterial cellulose and collagen typeⅠin vitro publication-title: Cellulose – volume: 376 start-page: 69 year: 2009 end-page: 75 ident: bib17 article-title: Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor publication-title: International Journal of Pharmaceutics – year: 2011 ident: bib42 article-title: Development of fabricated composites film with bacterial cellulose and the investigation of its physical properties – volume: 34 start-page: 623 year: 2008 ident: 10.1016/j.foodhyd.2014.12.009_bib36 article-title: Construction, application and biosafety of silver nanocrystalline chitosan wound dressing publication-title: Burns doi: 10.1016/j.burns.2007.08.020 – volume: 47 start-page: 740 year: 2012 ident: 10.1016/j.foodhyd.2014.12.009_bib11 article-title: Modelling natamycin release from alginate/chitosan active films publication-title: International Journal of Food Science and Technology doi: 10.1111/j.1365-2621.2011.02902.x – volume: 12 start-page: 300 year: 2014 ident: 10.1016/j.foodhyd.2014.12.009_bib38 article-title: Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering publication-title: Marine Drugs doi: 10.3390/md12010300 – volume: 27 start-page: 145 year: 2006 ident: 10.1016/j.foodhyd.2014.12.009_bib10 article-title: Microbial cellulose-the natural power to heal wounds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.07.035 – volume: 9 year: 2014 ident: 10.1016/j.foodhyd.2014.12.009_bib40 article-title: Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo publication-title: Biomedical Materials doi: 10.1088/1748-6041/9/3/035005 – year: 2011 ident: 10.1016/j.foodhyd.2014.12.009_bib42 – volume: 14 start-page: 1124 year: 2004 ident: 10.1016/j.foodhyd.2014.12.009_bib45 article-title: High mechanical strength double-network hydrogel with bacterial cellulose publication-title: Advanced Functional Materials doi: 10.1002/adfm.200305197 – volume: 80 start-page: 761 year: 2010 ident: 10.1016/j.foodhyd.2014.12.009_bib37 article-title: Preparation and characterization of novel b-chitin/nanosilver composite scaffolds for wound dressing applications publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2009.12.024 – volume: 113 start-page: 43 year: 2006 ident: 10.1016/j.foodhyd.2014.12.009_bib3 article-title: Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2006.03.007 – volume: 47 start-page: 107 year: 2009 ident: 10.1016/j.foodhyd.2014.12.009_bib6 article-title: Microbial cellulose: fermentative production and applications publication-title: Food Technology and Biotechnology – volume: 74 start-page: 482 year: 2008 ident: 10.1016/j.foodhyd.2014.12.009_bib34 article-title: Biosynthesis and characterization of bacterial cellulose-chitosan film publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2008.04.004 – volume: 94 start-page: 57 year: 1986 ident: 10.1016/j.foodhyd.2014.12.009_bib15 article-title: Use of MTT colorimetric assay to measure cell activation publication-title: Journal of Immunological Methods doi: 10.1016/0022-1759(86)90215-2 – volume: 1 start-page: 488 year: 2000 ident: 10.1016/j.foodhyd.2014.12.009_bib21 article-title: Periodate oxidation of crystalline cellulose publication-title: Biomacromolecules doi: 10.1021/bm0000337 – volume: 27 start-page: 145 year: 2006 ident: 10.1016/j.foodhyd.2014.12.009_bib44 article-title: Microbial cellulose—the natural power to heal wounds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.07.035 – start-page: 1 year: 1981 ident: 10.1016/j.foodhyd.2014.12.009_bib30 article-title: Chain flexibility of polysaccharides and glycoproteins from viscosity measurement – volume: 35 start-page: 135 year: 2007 ident: 10.1016/j.foodhyd.2014.12.009_bib1 article-title: Nanofiber based scaffolds for tissue engineering publication-title: European Journal of Plastic Surgery doi: 10.1007/s00238-008-0217-3 – volume: 101 start-page: 6084 year: 2010 ident: 10.1016/j.foodhyd.2014.12.009_bib18 article-title: In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation publication-title: Bioresource Technology doi: 10.1016/j.biortech.2010.03.031 – volume: 13 start-page: 689 year: 2006 ident: 10.1016/j.foodhyd.2014.12.009_bib39 article-title: Protease and ROS activities influenced by a composite of bacterial cellulose and collagen typeⅠin vitro publication-title: Cellulose doi: 10.1007/s10570-006-9073-0 – volume: 29 start-page: 1635 year: 2009 ident: 10.1016/j.foodhyd.2014.12.009_bib25 article-title: Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds publication-title: Materials Science and Engineering C doi: 10.1016/j.msec.2009.01.006 – volume: 29 start-page: 398 year: 2014 ident: 10.1016/j.foodhyd.2014.12.009_bib24 article-title: Development of a silk fibroin/HTCC/PVA sponge for chronic wound dressing publication-title: Journal of Bioactive and Compatible Polymers doi: 10.1177/0883911514537731 – volume: 26 start-page: 4847 year: 2005 ident: 10.1016/j.foodhyd.2014.12.009_bib26 article-title: The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.01.006 – volume: 3 start-page: 27 year: 1982 ident: 10.1016/j.foodhyd.2014.12.009_bib16 article-title: Modeling of drug sustained release of water soluble drugs from porous, hydrophobic polymers publication-title: Biomaterials doi: 10.1016/0142-9612(82)90057-6 – volume: 5 start-page: 31 year: 2013 ident: 10.1016/j.foodhyd.2014.12.009_bib19 article-title: Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources publication-title: Microbial & Biochemical Technology – volume: 189 start-page: 235 year: 2009 ident: 10.1016/j.foodhyd.2014.12.009_bib29 article-title: BC nanofibers: In vitro study of genotoxicity and cell proliferation publication-title: Toxicology Letters doi: 10.1016/j.toxlet.2009.06.849 – volume: 376 start-page: 69 year: 2009 ident: 10.1016/j.foodhyd.2014.12.009_bib17 article-title: Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor publication-title: International Journal of Pharmaceutics doi: 10.1016/j.ijpharm.2009.04.048 – year: 1982 ident: 10.1016/j.foodhyd.2014.12.009_bib8 article-title: Method of test for calcium and phosphorus in food stuff – volume: 27 start-page: 137 year: 2012 ident: 10.1016/j.foodhyd.2014.12.009_bib5 article-title: Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2011.08.004 – volume: 4 start-page: 150 year: 2014 ident: 10.1016/j.foodhyd.2014.12.009_bib20 article-title: Bacterial cellulose production and its industrial applications publication-title: Journal of Bioprocessing & Biotechniques doi: 10.4172/2155-9821.1000150 – volume: 21 start-page: 1751 year: 2010 ident: 10.1016/j.foodhyd.2014.12.009_bib28 article-title: Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application publication-title: Journal of Materials Science: Materials in Medicine – volume: 3 start-page: 9 year: 1969 ident: 10.1016/j.foodhyd.2014.12.009_bib27 article-title: Oxidaton of cellulose by hydrogen peroxide publication-title: Cellulose Chemistry and Technology – volume: 24–25 start-page: 253 year: 1990 ident: 10.1016/j.foodhyd.2014.12.009_bib14 article-title: Acetobacter cellulose pellicle as a temporary skin substitute publication-title: Applied Biochemistry and Biotechnology doi: 10.1007/BF02920250 – volume: 28 start-page: 150 year: 2008 ident: 10.1016/j.foodhyd.2014.12.009_bib43 article-title: Chitosan containing PU/Poly (NIPAAm) thermosensitive membrane for wound dressing publication-title: Materials Science and Engineering C doi: 10.1016/j.msec.2007.01.011 – volume: 85 start-page: 548 year: 2011 ident: 10.1016/j.foodhyd.2014.12.009_bib7 article-title: Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2011.03.011 – volume: 28-29 start-page: 341 year: 1991 ident: 10.1016/j.foodhyd.2014.12.009_bib13 article-title: Nature of plant stimulators in the production of Acetobacter xylinum (“Tea Fungus”) bio-film used in skin therapy publication-title: Applied Biochemistry and Biotechnology doi: 10.1007/BF02922613 – volume: 6 start-page: 471 year: 1992 ident: 10.1016/j.foodhyd.2014.12.009_bib31 article-title: Bacterial cellulose. I. Two-stage fermentation process for cellulose production by Acetobacter aceti publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(09)80032-5 – volume: 18 start-page: 18 year: 2004 ident: 10.1016/j.foodhyd.2014.12.009_bib33 article-title: Chitosan and alginate wound dressings: a short review publication-title: Trends in Biomaterials & Artificial Organs – start-page: 882 year: 2002 ident: 10.1016/j.foodhyd.2014.12.009_bib2 – volume: 24 start-page: 3141 year: 1989 ident: 10.1016/j.foodhyd.2014.12.009_bib41 article-title: The structure and mechanical properties of sheets prepared from bacterial cellulose publication-title: Journal of Materials Science doi: 10.1007/BF01139032 – volume: 101 start-page: 3 year: 1994 ident: 10.1016/j.foodhyd.2014.12.009_bib4 article-title: The efficacy of synthetic adhesion barriers in infertility surgery publication-title: British Journal of Obstetrics and Gynaecology doi: 10.1111/j.1471-0528.1994.tb13001.x – volume: 184 start-page: 219 year: 1999 ident: 10.1016/j.foodhyd.2014.12.009_bib22 article-title: Analysis of carboxyl content in oxidized celluloses by solid-state 13C CP: MAS NMR spectroscopy publication-title: International Journal of Pharmaceutics doi: 10.1016/S0378-5173(99)00098-8 – volume: 13 start-page: 123 year: 2001 ident: 10.1016/j.foodhyd.2014.12.009_bib9 article-title: Modeling and comparison of dissolution profiles publication-title: European Journal of Pharmaceutical Sciences doi: 10.1016/S0928-0987(01)00095-1 – volume: 81 start-page: 394 year: 2010 ident: 10.1016/j.foodhyd.2014.12.009_bib12 article-title: Transparent chitosan films reinforced with a high content of 317 nanofibrillated cellulose publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2010.02.037 – volume: 61 start-page: 1541 year: 1997 ident: 10.1016/j.foodhyd.2014.12.009_bib32 article-title: Emulsion effect of bacterial cellulose publication-title: Bioscience, Biotechnology, and Biochemistry doi: 10.1271/bbb.61.1541 – volume: 5 start-page: 23 year: 1987 ident: 10.1016/j.foodhyd.2014.12.009_bib35 article-title: A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs publication-title: Journal of Controlled Release doi: 10.1016/0168-3659(87)90034-4 |
SSID | ssj0017011 |
Score | 2.483956 |
Snippet | To test various formulas and techniques for manufacturing dry-fabricated bio-film (DFBF) that exhibits physical properties advantageous to the use of the DFBF... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 75 |
SubjectTerms | absorption Bacterial cellulose brewery byproducts calcium cellulose Chitosan Composite crosslinking cytotoxicity gels hydrocolloids hydrogen peroxide manufacturing naringin oxidation physical properties Physical property rehydration vinegars water content water vapor Wound dressing |
Title | Physical properties of bacterial cellulose composites for wound dressings |
URI | https://dx.doi.org/10.1016/j.foodhyd.2014.12.009 https://www.proquest.com/docview/2000168193 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6iL_ognnhTwdfupmm6SR9lUdYDEQ_Yt5CrHki7uLuIL_52Z9rUC0HwqbRkSvkynXwZvswQciB6jgpBZay19DG31MSaawO-LHWSGtw31wLZi97glp8Os-EM6bdnYVBWGWJ_E9PraB2edAOa3dHDQ_cadg_AdrJhgm6YUdy3cy7QyztvHzIPLDeeNHkWGePoz1M83cdOUVXu_hULhia8zgqiLvH39elHpK6Xn-Mlshh4Y3TYfNoymfHlCln4Uk1wlZxcBsyjEWbYn7FUalQVkWkKMsNzzNJPn6qxj1BJjnItGAGsNXrB5kqRqzWx5d14jdweH930B3HolBBbTuUkdjRl1kpY_JnNeKF1Jp1zMAU-EZ55UXiXu5zRwlOd28JYzYRhIndUA_1xIl0ns2VV-g0SscTlXDpuuXHc0J42mvdcWrAMqJOnxSbhLT7KhjLi2M3iSbV6sUcVYFUIq0qYAlg3SefDbNTU0fjLQLbgq28OoSDW_2W6306Wgp8FsdWlr6Zj7LkJVkCC0q3_v36bzMNdkG7vkNnJ89TvAjOZmL3a9fbI3GH_6vwSrydng4t308_nEw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7S9ND2UPok6SNVIT16V5bltXzIobQJu82DQhPYm6qX8yDYS3aXkEv_VP9gZmw5fVAIFHKVPUJ8M54ZyZ9mADaLkedFwVVijAqJdNwmRhqLtqxMmlnaN7cE2YPR-Eh-mebTFfjZ34UhWmX0_Z1Pb711HBlGNIez09PhN9w9YLaTT1Myw5zzyKzcDVeXuG-bb00-o5I_CLGzffhpnMTWAomTXC0SzzPhnMJoKVwuK2Ny5b3HNYe0CCIUVfClLwWvAjelq6wzorCiKD03mC_4IsN578F9ie6C2iYMftzwSqi-edod7KiElvfr2tDwbFA1jT-5ogqlqWyPIYkI-e-A-FdoaOPdzhN4HBNV9rHD4imshPoZPPqtfOFzmHyNSmYzOtK_oNqsrKmY7SpA4zj9FlieN_PAiLpO_DB8A9NkdkndnJhvSbj18fwFHN0Jfi9htW7qsAZMpL6UyksnrZeWj4w1cuSzSuSYqwVerYPs8dEu1i2n9hnnuieonekIqyZYdSo0wroOgxuxWVe44zYB1YOv_7BAjcHlNtH3vbI0fp2EralDs5xTk0-Uwqwre_X_07-DB-PD_T29NznYfQ0P8Unkjb-B1cXFMrzFtGhhN1ozZPD9ru3-GmQFItU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physical+properties+of+bacterial+cellulose+composites+for+wound+dressings&rft.jtitle=Food+hydrocolloids&rft.au=Chang%2C+Wen-Shuo&rft.au=Chen%2C+Hui-Huang&rft.date=2016-02-01&rft.issn=0268-005X&rft.volume=53&rft.spage=75&rft.epage=83&rft_id=info:doi/10.1016%2Fj.foodhyd.2014.12.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foodhyd_2014_12_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon |