Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy

We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co25Ni25Fe25Al7.5Cu17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co25Ni25Fe25Al7.5Cu17.5 HEA with the face-centered...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 107; pp. 59 - 71
Main Authors Fu, Zhiqiang, Chen, Weiping, Wen, Haiming, Zhang, Dalong, Chen, Zhen, Zheng, Baolong, Zhou, Yizhang, Lavernia, Enrique J.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co25Ni25Fe25Al7.5Cu17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co25Ni25Fe25Al7.5Cu17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co25Ni25Fe25Al7.5Cu17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (∼130–700 MPa). Compared to those of the bulk coarse-grained (CG) Co25Ni25Fe25Al7.5Cu17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA. [Display omitted]
AbstractList We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co25Ni25Fe25Al7.5Cu17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co25Ni25Fe25Al7.5Cu17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co25Ni25Fe25Al7.5Cu17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (130-700 MPa). Compared to those of the bulk coarse-grained (CG) Co25Ni25Fe25Al7.5Cu17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA.
We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co25Ni25Fe25Al7.5Cu17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co25Ni25Fe25Al7.5Cu17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co25Ni25Fe25Al7.5Cu17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (∼130–700 MPa). Compared to those of the bulk coarse-grained (CG) Co25Ni25Fe25Al7.5Cu17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA. [Display omitted]
Author Chen, Weiping
Zhang, Dalong
Wen, Haiming
Fu, Zhiqiang
Chen, Zhen
Zhou, Yizhang
Zheng, Baolong
Lavernia, Enrique J.
Author_xml – sequence: 1
  givenname: Zhiqiang
  surname: Fu
  fullname: Fu, Zhiqiang
  email: fzqfu@ucdavis.edu
  organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
– sequence: 2
  givenname: Weiping
  surname: Chen
  fullname: Chen, Weiping
  organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
– sequence: 3
  givenname: Haiming
  surname: Wen
  fullname: Wen, Haiming
  email: wenhaim@isu.edu
  organization: Department of Nuclear Engineering and Health Physics, Idaho State University, Idaho Falls, ID, 83402, USA
– sequence: 4
  givenname: Dalong
  surname: Zhang
  fullname: Zhang, Dalong
  organization: Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA, 95616, USA
– sequence: 5
  givenname: Zhen
  surname: Chen
  fullname: Chen, Zhen
  organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
– sequence: 6
  givenname: Baolong
  surname: Zheng
  fullname: Zheng, Baolong
  organization: Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA, 95616, USA
– sequence: 7
  givenname: Yizhang
  surname: Zhou
  fullname: Zhou, Yizhang
  organization: Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA, 95616, USA
– sequence: 8
  givenname: Enrique J.
  surname: Lavernia
  fullname: Lavernia, Enrique J.
  email: lavernia@uci.edu
  organization: Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA, 95616, USA
BookMark eNqFkM9q3DAQh0VJoUmaRwjomItd_bVlcijBdNtAkl7as1Dk8VqLLW0lubBvkMeulg095JKLpEHfb5j5LtCZDx4QuqakpoQ2X3a1sdksJteslDWhNZHkAzqnquUVE5KflTeXXdUIKT6hi5R2hFDWCnKOXh6djSHluNq8RsDGD7hU4Ld5Au_8Fi9gJ-NdWhJ2vvzjTd_j_4FCF2iGaj-ZBNgbH2w8pGzm2XnAfWDyyTG5ASbv5raW_UrLiSe3nSrwOYb9ARc2HD6jj6OZE1y93pfo9-bbr_5H9fDz-31_91BZQVSubKcUpYK1diTcSsEEfR7U2PGmIZQb3o2MKjbYVkoxcFa2p_DcWtNZJYxRhF-im1PffQx_VkhZLy5ZmGfjIaxJU0UUkarrmoLentCjoRRh1NZlk10ocxs3a0r00b_e6Vf_-uhfE6qL_5KWb9L76BYTD-_mvp5yUCz8dRB1sg68hcFFsFkPwb3T4R8UMqUT
CitedBy_id crossref_primary_10_1007_s10854_021_07562_2
crossref_primary_10_1016_j_msea_2023_145656
crossref_primary_10_1016_j_jmrt_2021_06_021
crossref_primary_10_3989_revmetalm_147
crossref_primary_10_1016_j_matdes_2017_01_036
crossref_primary_10_1016_j_matchar_2020_110323
crossref_primary_10_1007_s11661_022_06701_6
crossref_primary_10_1016_j_corsci_2019_108145
crossref_primary_10_1007_s44210_024_00038_y
crossref_primary_10_3390_ma14195835
crossref_primary_10_1016_j_jallcom_2021_161963
crossref_primary_10_1007_s12540_019_00565_z
crossref_primary_10_1007_s11666_021_01317_5
crossref_primary_10_1016_j_matdes_2022_111167
crossref_primary_10_1016_j_matdes_2022_111165
crossref_primary_10_1126_sciadv_adi5817
crossref_primary_10_1016_j_msea_2017_11_089
crossref_primary_10_1016_j_jallcom_2022_167659
crossref_primary_10_1016_j_jmrt_2022_01_141
crossref_primary_10_3390_ma14205994
crossref_primary_10_1016_j_matdes_2020_108662
crossref_primary_10_1016_j_intermet_2018_02_014
crossref_primary_10_1016_j_msea_2017_09_119
crossref_primary_10_1016_j_msea_2020_140018
crossref_primary_10_1016_j_intermet_2018_09_005
crossref_primary_10_1016_j_msea_2022_144190
crossref_primary_10_1016_j_msea_2018_12_005
crossref_primary_10_1016_j_msea_2022_144192
crossref_primary_10_1177_14644207211051038
crossref_primary_10_1016_j_jallcom_2024_177700
crossref_primary_10_1016_j_jallcom_2024_175401
crossref_primary_10_1016_j_intermet_2023_108071
crossref_primary_10_1016_j_ijlmm_2019_10_002
crossref_primary_10_1016_j_msea_2020_139028
crossref_primary_10_1088_2053_1591_ad31dd
crossref_primary_10_1007_s12540_023_01584_7
crossref_primary_10_1016_j_wear_2021_203755
crossref_primary_10_1007_s12540_022_01314_5
crossref_primary_10_1016_j_actamat_2022_118654
crossref_primary_10_1016_j_mtcomm_2025_111789
crossref_primary_10_1007_s13204_021_01856_x
crossref_primary_10_1016_j_jallcom_2023_172185
crossref_primary_10_1016_j_jallcom_2019_153388
crossref_primary_10_3390_ma14174945
crossref_primary_10_1039_D2TA08126A
crossref_primary_10_1016_j_matlet_2024_136940
crossref_primary_10_1016_j_msea_2024_146822
crossref_primary_10_1016_j_jmrt_2023_08_233
crossref_primary_10_2139_ssrn_4147567
crossref_primary_10_1016_j_mser_2018_04_003
crossref_primary_10_1016_j_actamat_2018_01_002
crossref_primary_10_3390_cryst10121102
crossref_primary_10_1016_j_ijrmhm_2021_105636
crossref_primary_10_1016_j_intermet_2021_107310
crossref_primary_10_1016_j_msea_2025_148178
crossref_primary_10_1007_s10853_017_0808_0
crossref_primary_10_1016_j_jallcom_2021_161526
crossref_primary_10_1016_j_jallcom_2024_174331
crossref_primary_10_3389_fmats_2021_804918
crossref_primary_10_1016_j_pmatsci_2021_100777
crossref_primary_10_1016_j_tsf_2021_138866
crossref_primary_10_1016_j_jallcom_2016_10_288
crossref_primary_10_1016_j_msea_2023_145582
crossref_primary_10_1007_s10853_020_05570_x
crossref_primary_10_1016_j_intermet_2021_107314
crossref_primary_10_3390_met8020123
crossref_primary_10_3390_met11060922
crossref_primary_10_1016_j_msea_2019_138873
crossref_primary_10_3390_ma16155388
crossref_primary_10_1016_j_matlet_2022_132728
crossref_primary_10_1016_j_intermet_2022_107820
crossref_primary_10_1016_j_msea_2021_140842
crossref_primary_10_1039_C9NR08338C
crossref_primary_10_1016_j_msea_2018_05_022
crossref_primary_10_1016_j_matdes_2018_02_036
crossref_primary_10_1016_j_msea_2023_145695
crossref_primary_10_2139_ssrn_3973912
crossref_primary_10_1016_j_jallcom_2016_09_186
crossref_primary_10_1016_j_jallcom_2025_179086
crossref_primary_10_1016_j_jmmm_2017_06_124
crossref_primary_10_1016_j_jallcom_2017_11_233
crossref_primary_10_1016_j_jallcom_2023_168861
crossref_primary_10_1016_j_ceramint_2021_06_042
crossref_primary_10_1039_D0RA08322D
crossref_primary_10_1016_j_jmst_2024_10_001
crossref_primary_10_1016_j_matlet_2016_06_014
crossref_primary_10_1016_j_jmrt_2022_01_118
crossref_primary_10_1016_j_msea_2019_138616
crossref_primary_10_1016_j_jallcom_2018_07_145
crossref_primary_10_1007_s41230_022_1007_4
crossref_primary_10_1016_j_msea_2022_143071
crossref_primary_10_1038_s41598_019_52809_y
crossref_primary_10_1038_s41467_021_25264_5
crossref_primary_10_1016_j_matchemphys_2023_127556
crossref_primary_10_1016_j_matdes_2017_04_086
crossref_primary_10_1016_j_msea_2023_144606
crossref_primary_10_1016_j_msea_2023_144848
crossref_primary_10_1016_j_actamat_2019_01_048
crossref_primary_10_1016_j_promfg_2019_05_022
crossref_primary_10_3390_nano13060968
crossref_primary_10_1016_j_matchemphys_2023_128768
crossref_primary_10_1557_jmr_2020_272
crossref_primary_10_1016_j_jallcom_2023_171267
crossref_primary_10_1016_j_surfcoat_2024_131545
crossref_primary_10_1016_j_actamat_2016_11_046
crossref_primary_10_1016_j_jmst_2021_01_060
crossref_primary_10_1016_j_msea_2022_143360
crossref_primary_10_1016_j_matchar_2019_110046
crossref_primary_10_1016_j_intermet_2019_02_006
crossref_primary_10_1016_j_vacuum_2022_110930
crossref_primary_10_1016_j_jmst_2024_06_033
crossref_primary_10_1557_s43579_023_00405_7
crossref_primary_10_1016_j_jmrt_2022_07_067
crossref_primary_10_1016_j_jallcom_2017_11_075
crossref_primary_10_1016_j_jallcom_2019_06_157
crossref_primary_10_1016_j_ijplas_2023_103730
crossref_primary_10_1016_j_msea_2018_12_097
crossref_primary_10_1016_j_msea_2016_09_007
crossref_primary_10_1007_s11661_022_06802_2
crossref_primary_10_1063_5_0187760
crossref_primary_10_1016_j_actamat_2024_120366
crossref_primary_10_1039_D0NR02483J
crossref_primary_10_1016_j_ijplas_2020_102819
crossref_primary_10_1016_j_msea_2019_138881
crossref_primary_10_1016_j_intermet_2025_108669
crossref_primary_10_1016_j_jallcom_2025_179447
crossref_primary_10_1016_j_jallcom_2022_166719
crossref_primary_10_1016_j_jallcom_2024_178199
crossref_primary_10_3390_met10060761
crossref_primary_10_1016_j_actamat_2017_08_045
crossref_primary_10_1016_j_ijlmm_2023_08_001
crossref_primary_10_1016_j_intermet_2024_108494
crossref_primary_10_1038_s41467_021_24228_z
crossref_primary_10_1088_2053_1591_ac69b3
crossref_primary_10_1016_j_scriptamat_2016_11_019
crossref_primary_10_1016_j_ijplas_2021_103073
crossref_primary_10_1063_1_5004241
crossref_primary_10_1016_j_scriptamat_2019_01_012
crossref_primary_10_1016_j_matdes_2019_107893
crossref_primary_10_1007_s40843_023_2623_x
crossref_primary_10_1038_srep46720
crossref_primary_10_1016_j_matchar_2023_113122
crossref_primary_10_1016_j_jmrt_2024_12_219
crossref_primary_10_1016_j_jmst_2020_08_015
crossref_primary_10_1016_j_msea_2019_138107
crossref_primary_10_1007_s11661_023_07235_1
crossref_primary_10_1016_j_jmrt_2023_07_156
crossref_primary_10_3390_ma16196407
crossref_primary_10_1016_j_actamat_2016_06_063
crossref_primary_10_1007_s11837_017_2484_6
crossref_primary_10_1016_j_triboint_2022_107617
crossref_primary_10_3389_fmats_2020_537812
crossref_primary_10_1016_j_msea_2023_145741
crossref_primary_10_1016_j_ijmecsci_2022_107881
crossref_primary_10_1016_j_intermet_2019_106569
crossref_primary_10_1016_j_intermet_2019_106570
crossref_primary_10_1016_j_msea_2023_145600
crossref_primary_10_1051_matecconf_202440606003
crossref_primary_10_1016_j_msea_2018_04_062
crossref_primary_10_1080_09593330_2020_1795932
crossref_primary_10_1016_j_actamat_2024_120399
crossref_primary_10_1016_j_msea_2019_138116
crossref_primary_10_3390_met11091484
crossref_primary_10_1016_j_corsci_2022_110666
crossref_primary_10_1016_j_actamat_2016_11_016
crossref_primary_10_1016_j_intermet_2017_09_013
crossref_primary_10_1002_adfm_202308229
crossref_primary_10_1016_j_intermet_2025_108655
crossref_primary_10_1016_j_msea_2017_09_101
crossref_primary_10_1080_00084433_2021_1969497
crossref_primary_10_1016_j_apsusc_2024_162093
crossref_primary_10_1016_j_jmatprotec_2020_116945
crossref_primary_10_1016_j_actamat_2016_12_074
crossref_primary_10_1002_adem_202000848
crossref_primary_10_1007_s10853_023_08758_z
crossref_primary_10_1080_00325899_2019_1584454
crossref_primary_10_1016_j_jmst_2021_02_059
crossref_primary_10_1016_j_msea_2020_140611
crossref_primary_10_1016_j_ijrmhm_2023_106289
crossref_primary_10_3390_ma14113065
crossref_primary_10_1063_5_0070470
crossref_primary_10_1016_j_matchar_2023_113354
crossref_primary_10_1016_j_corsci_2021_110020
crossref_primary_10_1016_j_jallcom_2022_165562
crossref_primary_10_1016_j_msea_2019_04_104
crossref_primary_10_1016_j_commatsci_2020_110213
crossref_primary_10_1016_j_msea_2020_140600
crossref_primary_10_1016_j_msea_2024_147073
crossref_primary_10_1016_j_intermet_2025_108753
crossref_primary_10_1016_j_matchar_2024_113889
crossref_primary_10_1016_j_intermet_2019_106599
crossref_primary_10_3390_e21090880
crossref_primary_10_1007_s11665_023_08351_0
crossref_primary_10_3390_cryst10100929
crossref_primary_10_1016_j_msea_2022_143111
crossref_primary_10_1016_j_ijrmhm_2023_106535
crossref_primary_10_1038_s41598_018_32552_6
crossref_primary_10_1016_j_actamat_2021_116638
crossref_primary_10_1016_j_jmrt_2025_03_057
crossref_primary_10_1016_S1006_706X_17_30068_7
crossref_primary_10_1016_j_apsusc_2024_160535
crossref_primary_10_1016_j_jmst_2020_07_012
crossref_primary_10_1016_j_mprp_2019_08_001
crossref_primary_10_1021_acs_nanolett_0c04572
crossref_primary_10_1016_j_matchar_2021_111254
crossref_primary_10_1016_j_scriptamat_2017_06_009
crossref_primary_10_1016_j_jallcom_2025_179944
crossref_primary_10_1016_j_msea_2024_146236
crossref_primary_10_1016_j_jallcom_2024_175066
crossref_primary_10_1016_j_msea_2018_10_094
crossref_primary_10_1016_j_mtcomm_2023_106150
crossref_primary_10_1515_ntrev_2021_0071
crossref_primary_10_1016_j_jallcom_2018_02_029
crossref_primary_10_1557_jmr_2019_5
crossref_primary_10_1016_j_matdes_2022_110637
crossref_primary_10_1016_j_jmst_2018_02_026
crossref_primary_10_1016_j_msea_2018_08_058
crossref_primary_10_1007_s40195_019_00977_1
crossref_primary_10_1016_j_matlet_2020_128200
crossref_primary_10_1016_j_msea_2019_138039
crossref_primary_10_1557_jmr_2018_161
crossref_primary_10_1016_j_intermet_2022_107588
crossref_primary_10_1007_s12540_021_01125_0
crossref_primary_10_1016_j_jallcom_2023_170225
crossref_primary_10_1016_j_msea_2019_138394
crossref_primary_10_3389_fmats_2021_792359
crossref_primary_10_1016_j_msea_2018_09_089
crossref_primary_10_1002_cctc_202001163
crossref_primary_10_1016_j_jallcom_2020_156796
crossref_primary_10_1016_j_msea_2024_147337
crossref_primary_10_1016_j_jallcom_2024_176384
crossref_primary_10_1016_j_matt_2019_12_023
crossref_primary_10_1016_j_matdes_2022_110667
crossref_primary_10_1016_j_pmatsci_2020_100740
crossref_primary_10_1016_j_jeurceramsoc_2022_11_052
crossref_primary_10_1016_j_corsci_2019_03_051
crossref_primary_10_1080_27660400_2022_2161807
crossref_primary_10_1016_j_jallcom_2023_172732
crossref_primary_10_1016_j_jallcom_2022_164937
crossref_primary_10_1016_j_msea_2023_146055
crossref_primary_10_1557_jmr_2017_341
crossref_primary_10_1016_j_jallcom_2020_154142
crossref_primary_10_1016_j_msea_2021_142175
crossref_primary_10_1007_s40195_020_01150_9
crossref_primary_10_1016_j_jallcom_2020_154159
crossref_primary_10_1007_s40843_019_1195_7
crossref_primary_10_1016_j_jallcom_2023_171411
crossref_primary_10_1016_j_jallcom_2018_02_170
crossref_primary_10_1016_j_matchar_2025_114852
crossref_primary_10_1016_j_matchar_2024_114330
crossref_primary_10_1016_j_ijplas_2020_102839
crossref_primary_10_1016_j_jallcom_2024_176192
crossref_primary_10_1016_j_jallcom_2018_09_204
crossref_primary_10_1016_j_matchar_2017_04_011
crossref_primary_10_1016_j_ijrmhm_2024_106733
crossref_primary_10_1016_j_scriptamat_2018_09_008
crossref_primary_10_1016_j_msea_2024_147005
crossref_primary_10_1016_j_msea_2021_141368
crossref_primary_10_1016_j_intermet_2018_07_016
crossref_primary_10_1016_j_matchemphys_2017_11_037
crossref_primary_10_1016_j_intermet_2020_106741
crossref_primary_10_1007_s11665_021_05700_9
crossref_primary_10_1088_1757_899X_346_1_012047
crossref_primary_10_1016_j_matlet_2017_10_131
crossref_primary_10_1007_s12598_018_1194_8
crossref_primary_10_1016_j_apt_2022_103520
crossref_primary_10_1016_j_jallcom_2023_169246
crossref_primary_10_1111_jace_14814
crossref_primary_10_1016_j_scriptamat_2023_115718
crossref_primary_10_1016_j_jallcom_2020_154457
crossref_primary_10_1016_j_msea_2019_138071
crossref_primary_10_1016_j_jallcom_2020_155424
crossref_primary_10_1016_j_jallcom_2020_155308
crossref_primary_10_3390_met14121325
crossref_primary_10_1007_s11837_019_03531_7
crossref_primary_10_1016_j_jallcom_2023_170029
crossref_primary_10_1016_j_triboint_2024_110208
crossref_primary_10_1016_j_matchar_2024_114237
crossref_primary_10_1515_jmbm_2017_0021
crossref_primary_10_1007_s11663_018_1477_3
crossref_primary_10_1016_j_scriptamat_2021_113724
crossref_primary_10_1126_sciadv_aat8712
crossref_primary_10_3390_ma16227244
crossref_primary_10_1016_j_jallcom_2020_157851
crossref_primary_10_1557_jmr_2017_10
crossref_primary_10_3390_e20110810
crossref_primary_10_1016_j_ijrmhm_2019_02_009
crossref_primary_10_1177_0954406220943245
crossref_primary_10_1016_j_matchemphys_2019_121749
crossref_primary_10_1016_j_apsusc_2024_160720
crossref_primary_10_1016_j_physb_2024_416611
crossref_primary_10_2320_materia_57_333
crossref_primary_10_1515_mt_2023_0066
crossref_primary_10_1039_D1TA02718B
crossref_primary_10_1016_j_matchar_2024_114458
crossref_primary_10_1016_j_pmatsci_2020_100709
crossref_primary_10_1016_j_actamat_2019_08_047
crossref_primary_10_1021_acsnano_0c05250
crossref_primary_10_1016_j_jmst_2020_10_023
crossref_primary_10_1016_j_jmst_2020_06_042
crossref_primary_10_1016_j_msea_2017_12_021
crossref_primary_10_1016_j_jmrt_2021_07_116
crossref_primary_10_1016_j_msea_2025_148099
crossref_primary_10_1002_adem_202000466
crossref_primary_10_1016_j_pmatsci_2018_12_003
crossref_primary_10_3390_met9030351
crossref_primary_10_1016_j_actamat_2019_12_015
crossref_primary_10_1016_j_pmatsci_2021_100854
crossref_primary_10_1016_j_msea_2017_07_008
crossref_primary_10_1080_00325899_2018_1427662
crossref_primary_10_1016_j_msea_2024_146991
crossref_primary_10_1007_s11661_021_06205_9
crossref_primary_10_3390_nano13172446
crossref_primary_10_1016_j_jallcom_2016_12_010
crossref_primary_10_1016_j_matdes_2018_01_045
crossref_primary_10_1016_j_mtnano_2021_100130
crossref_primary_10_1016_j_mattod_2024_10_009
crossref_primary_10_1016_j_intermet_2018_12_009
crossref_primary_10_1016_j_ijplas_2017_04_013
crossref_primary_10_1016_j_jallcom_2020_154656
crossref_primary_10_1016_j_jallcom_2022_163915
crossref_primary_10_1016_j_msea_2021_141215
crossref_primary_10_1007_s11837_024_06474_w
crossref_primary_10_1016_j_cossms_2022_101001
crossref_primary_10_1016_j_surfcoat_2020_125438
crossref_primary_10_1039_C7NR07281C
crossref_primary_10_1016_j_mtcomm_2020_101729
crossref_primary_10_3139_120_111533
crossref_primary_10_1016_j_jallcom_2018_07_331
crossref_primary_10_1016_j_intermet_2020_107057
crossref_primary_10_1016_j_cclet_2024_110535
crossref_primary_10_1002_advs_202100870
crossref_primary_10_1016_j_jallcom_2019_153423
crossref_primary_10_1016_j_apmt_2021_101162
crossref_primary_10_1016_j_scriptamat_2017_09_023
crossref_primary_10_1016_j_jmst_2021_07_019
crossref_primary_10_1016_j_jmrt_2023_01_057
crossref_primary_10_1016_j_actamat_2017_01_034
crossref_primary_10_1016_j_jmrt_2023_02_080
crossref_primary_10_1016_j_intermet_2023_107941
crossref_primary_10_1016_j_vacuum_2022_111278
crossref_primary_10_1016_j_jmst_2020_10_052
crossref_primary_10_1016_j_jallcom_2022_165082
crossref_primary_10_3390_ma17246061
crossref_primary_10_1016_j_msea_2016_06_040
crossref_primary_10_1016_j_jallcom_2021_160326
crossref_primary_10_1016_j_msea_2021_142569
crossref_primary_10_1016_j_scriptamat_2018_10_013
crossref_primary_10_1002_adem_202101713
crossref_primary_10_1016_j_matchemphys_2025_130756
crossref_primary_10_1016_j_actamat_2022_118011
crossref_primary_10_1016_j_jece_2022_109080
crossref_primary_10_1016_j_matchar_2024_114178
crossref_primary_10_2139_ssrn_4131139
crossref_primary_10_1007_s10853_022_07066_2
crossref_primary_10_1016_j_msea_2022_142901
crossref_primary_10_1016_j_msea_2020_139297
crossref_primary_10_1016_j_mser_2024_100833
crossref_primary_10_1007_s41230_022_2042_x
crossref_primary_10_1016_j_intermet_2023_107836
crossref_primary_10_2320_matertrans_MT_M2020387
crossref_primary_10_1016_j_fusengdes_2024_114745
crossref_primary_10_1007_s00894_023_05502_x
crossref_primary_10_1016_j_matchar_2024_114167
crossref_primary_10_1088_1361_651X_ac8171
crossref_primary_10_1557_jmr_2020_33
crossref_primary_10_3989_revmetalm_215
crossref_primary_10_1016_j_msea_2018_06_102
crossref_primary_10_1016_j_msea_2017_06_001
crossref_primary_10_1016_j_mtnano_2023_100331
crossref_primary_10_1016_j_matchar_2019_04_005
crossref_primary_10_2139_ssrn_3949513
crossref_primary_10_1016_j_jallcom_2019_152111
crossref_primary_10_1557_jmr_2018_477
crossref_primary_10_1007_s11661_020_05771_8
crossref_primary_10_1016_j_mtcomm_2025_111695
crossref_primary_10_1149_2162_8777_adbebd
crossref_primary_10_1007_s11661_024_07316_9
crossref_primary_10_1016_j_matdes_2021_109710
crossref_primary_10_1016_j_jallcom_2022_168145
crossref_primary_10_1016_j_intermet_2021_107371
crossref_primary_10_1557_jmr_2019_37
crossref_primary_10_1016_j_msea_2020_140056
crossref_primary_10_1016_j_vacuum_2020_109802
crossref_primary_10_3390_ma17174297
crossref_primary_10_1007_s11666_024_01809_0
crossref_primary_10_3390_met11020322
crossref_primary_10_1016_j_jmst_2022_08_040
crossref_primary_10_1016_j_matchar_2017_01_009
crossref_primary_10_1016_j_intermet_2021_107388
crossref_primary_10_1016_j_vacuum_2019_04_043
crossref_primary_10_1016_j_scriptamat_2019_04_008
crossref_primary_10_1016_j_matlet_2022_133322
crossref_primary_10_1016_j_pnsc_2022_06_005
crossref_primary_10_1007_s12598_022_02249_x
crossref_primary_10_1007_s10853_024_09952_3
crossref_primary_10_1016_j_jallcom_2021_162309
crossref_primary_10_1080_09507116_2021_1976957
Cites_doi 10.1016/j.jallcom.2008.11.059
10.1007/s11661-014-2569-6
10.1016/j.jallcom.2007.05.104
10.1016/j.scriptamat.2010.10.027
10.1142/S0217979209060774
10.1007/s11661-014-2258-5
10.1016/j.scriptamat.2012.09.025
10.1016/j.scriptamat.2005.01.033
10.1016/j.intermet.2012.03.005
10.1016/j.actamat.2014.10.033
10.1002/adem.201100080
10.1016/j.actamat.2012.02.036
10.1002/adem.201300409
10.1016/j.jallcom.2014.01.135
10.1016/j.actamat.2013.04.058
10.1016/j.actamat.2013.01.059
10.1016/j.matchemphys.2011.11.021
10.1002/adem.200300567
10.1016/j.matlet.2006.03.140
10.1063/1.2938690
10.1016/j.jallcom.2008.07.124
10.1080/09500839.2013.805268
10.1016/j.intermet.2006.08.005
10.2320/matertrans.46.2817
10.1007/s10853-010-5178-9
10.1080/21663831.2014.951493
10.1016/j.jallcom.2015.01.160
10.1038/nature08929
10.1016/S1359-6454(96)00336-9
10.1016/j.scriptamat.2012.12.002
10.1016/0001-6160(53)90006-6
10.1016/j.actamat.2015.01.068
10.1016/j.matchar.2006.09.009
10.1038/ncomms1062
10.1016/S1002-0071(12)60080-X
10.1016/j.actamat.2015.04.014
10.1016/j.msea.2009.09.019
10.1016/j.matchar.2012.05.005
10.1016/j.pmatsci.2011.05.001
10.1016/j.scriptamat.2010.10.015
10.1007/s11837-014-1085-x
10.1016/j.scriptamat.2013.09.030
10.1038/nature01133
10.1016/j.actamat.2012.09.036
10.1002/adem.200900335
10.1016/j.msea.2012.06.075
10.1016/S0079-6425(99)00010-9
10.1016/j.matlet.2015.03.066
10.1016/j.jallcom.2009.03.087
10.1016/j.actamat.2013.06.018
10.1016/j.actamat.2015.01.062
10.1016/j.intermet.2013.10.024
10.1016/j.pmatsci.2013.10.001
10.1016/j.actamat.2013.09.042
10.1080/21663831.2014.912690
10.1063/1.3095852
10.1016/j.actamat.2015.06.025
10.1063/1.3587228
10.1016/j.jallcom.2013.08.176
10.1080/21663831.2014.985855
10.1016/j.scriptamat.2012.04.024
10.1016/j.actamat.2008.01.030
10.1007/s12613-013-0764-x
10.1016/j.msea.2014.09.077
10.1016/j.actamat.2013.09.037
10.1038/srep01455
10.1080/14786435608238074
ContentType Journal Article
Copyright 2016 Acta Materialia Inc.
Copyright_xml – notice: 2016 Acta Materialia Inc.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.actamat.2016.01.050
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2453
EndPage 71
ExternalDocumentID 10_1016_j_actamat_2016_01_050
S1359645416300477
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
R2-
SEW
SSH
T9H
ZY4
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c408t-c98811427cf03c54241bd8f9366013a39f2182dc7554d322451eb7ca9c84aa803
IEDL.DBID .~1
ISSN 1359-6454
IngestDate Fri Jul 11 02:24:32 EDT 2025
Thu Apr 24 23:00:32 EDT 2025
Tue Jul 01 01:20:34 EDT 2025
Fri Feb 23 02:41:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Single-phase
High-entropy alloys
Microstructure
Nanocrystalline
Strengthening mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c98811427cf03c54241bd8f9366013a39f2182dc7554d322451eb7ca9c84aa803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1808058996
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1808058996
crossref_citationtrail_10_1016_j_actamat_2016_01_050
crossref_primary_10_1016_j_actamat_2016_01_050
elsevier_sciencedirect_doi_10_1016_j_actamat_2016_01_050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
2016-04-00
20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Acta materialia
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ni, Wang, Liao, Alhajeri, Li, Zhao (bib52) 2011; 64
Yang, Zhang (bib42) 2012; 132
Bahmanpour, Youssef, Horky, Setman, Atwater, Zehetbauer (bib55) 2012; 60
Harrell, Topping, Wen, Hu, Schoenung, Lavernia (bib33) 2014; 45
Chen, Hu, Hsieh, Yeh, Chen (bib40) 2009; 481
Deng, Tasan, Pradeep, Springer, Kostka, Raabe (bib27) 2015; 94
He, Liu, Wang, Wu, Liu, Nieh (bib63) 2014; 62
Tang, Huang, Huang, Liao, Langdon, Dai (bib36) 2015; 151
Otto, Dlouhý, Somsen, Bei, Eggeler, George (bib21) 2013; 61
Sriharitha, Murty, Kottada (bib70) 2014; 583
Liddicoat, Liao, Zhao, Zhu, Murashkin, Lavernia (bib54) 2010; 1
Wu, Bei, Otto, Pharr, George (bib5) 2014; 46
Tung, Yeh, Shun, Chen, Huang, Chen (bib11) 2007; 61
Guillon, Gonzalez-Julian, Dargatz, Kessel, Schierning, Räthel (bib39) 2014; 16
Guo, Liu (bib23) 2011; 21
Takeuchi, Amiya, Wada, Yubuta, Zhang (bib8) 2014; 66
Shen, Lu, Lu, Jin, Lu (bib71) 2005; 52
Li, Li, Zhao, Jiang (bib13) 2009; 475
Varalakshmi, Kamaraj, Murty (bib38) 2010; 527
Youssef, Zaddach, Niu, Irving, Koch (bib9) 2015; 3
Laurent-Brocq, Akhatova, Perrière, Chebini, Sauvage, Leroy, Champion (bib24) 2015; 88
Shun, Chang, Shiu (bib18) 2012; 556
Guo, Ng, Lu, Liu (bib22) 2011; 109
Middleburgh, King, Lumpkin, Cortie, Edwards (bib4) 2014; 599
Xu, Liu, Guo, Hirata, Fujita, Nieh (bib20) 2015; 84
Zhang, Zuo, Liaw, Cheng (bib44) 2013; 3
Wen, Zhao, Zhang, Ertorer, Dong, Lavernia (bib45) 2011; 46
Li, Wei, Lu, Lu, Gao (bib72) 2010; 464
Baudin, Etter, Penelle (bib60) 2007; 58
Zhang, Tao, Lu (bib53) 2008; 56
Mahajan, Pande, Imam, Rath (bib59) 1997; 45
Wen, Topping, Isheim, Seidman, Lavernia (bib28) 2013; 61
Tsai, Tsai, Yeh (bib47) 2013; 61
Williamson, Hall (bib50) 1953; 1
Wu, Zhang, Huang, Bei, Nieh (bib65) 2013; 68
Williamson, Smallman (bib49) 1956; 1
Varalakshmi, Kamaraj, Murty (bib37) 2008; 460
Jiang, Wen, Yang, Hu, Topping, Zhang (bib35) 2015; 89
Liu, Wu, He, Nieh, Lu (bib64) 2013; 68
Zhang, Zuo, Tang, Gao, Dahmen, Liaw (bib2) 2014; 61
Kurmanaeva, Topping, Wen, Sugahara, Yang, Zhang, Schoenung, Lavernia (bib34) 2015; 632
Wen, Zhao, Topping, Ashford, Figueiredo, Xu (bib29) 2012; 14
Suryanarayana (bib48) 2001; 46
Wen, Lavernia (bib57) 2012; 67
Wen, Islamgaliev, Nesterov, Valiev, Lavernia (bib51) 2013; 93
Shun, Chang, Shiu (bib17) 2012; 70
Wang, Wang, Wang, Tsai, Lai, Yeh (bib16) 2012; 26
Zhao, Zhu, Lavernia (bib61) 2010; 12
Wang, Ho, Cao, Liao, Li, Zhao (bib56) 2009; 94
Ma, Wen, Hu, Topping, Isheim, Seidman (bib30) 2014; 62
Chen, Lu, Lu (bib73) 2011; 64
Zhu, Liao, Wu (bib58) 2012; 57
Wang, Chen, Zhou, Ma (bib31) 2002; 419
Porter, Easterling (bib41) 1992
Wang, Zhang, Qiao, Chen (bib10) 2007; 15
Wang, Zhang, Chen (bib14) 2009; 478
Fu, Chen, Chen, Wen, Lavernia (bib6) 2014; 619
Murty, Yeh, Ranganathan (bib46) 2014
Whang (bib62) 2011
Courtney (bib66) 2005
Feuerbacher, Heidelmann, Thomas (bib7) 2015; 3
Ramesh (bib69) 2009
Wang, Zhang, Chen (bib15) 2009; 23
Tsai, Yeh (bib3) 2014; 2
Schuh, Mendez-Martin, Völker, George, Clemens, Pippan, Hohenwarter (bib25) 2015; 96
Kozlov, Zhdanov, Koneva (bib68) 2006; 9
Zuo, Ren, Liaw, Zhang (bib19) 2013; 20
Takeuchi, Inoue (bib43) 2005; 46
Zhu, Lu, Nieh (bib67) 2013; 61
Yeh, Chen, Lin, Gan, Chin, Shun (bib1) 2004; 6
Lin, Wen, Li, Wen, Liu, Lavernia (bib32) 2014; 45
Yao, Pradeep, Tasan, Raabe (bib26) 2014; 72–73
Zhou, Zhang, Wang, Chen (bib12) 2008; 92
Wang (10.1016/j.actamat.2016.01.050_bib10) 2007; 15
Kurmanaeva (10.1016/j.actamat.2016.01.050_bib34) 2015; 632
Tung (10.1016/j.actamat.2016.01.050_bib11) 2007; 61
Deng (10.1016/j.actamat.2016.01.050_bib27) 2015; 94
Chen (10.1016/j.actamat.2016.01.050_bib40) 2009; 481
Wu (10.1016/j.actamat.2016.01.050_bib65) 2013; 68
Tsai (10.1016/j.actamat.2016.01.050_bib47) 2013; 61
Wang (10.1016/j.actamat.2016.01.050_bib16) 2012; 26
Murty (10.1016/j.actamat.2016.01.050_bib46) 2014
Yao (10.1016/j.actamat.2016.01.050_bib26) 2014; 72–73
Tang (10.1016/j.actamat.2016.01.050_bib36) 2015; 151
Liddicoat (10.1016/j.actamat.2016.01.050_bib54) 2010; 1
Middleburgh (10.1016/j.actamat.2016.01.050_bib4) 2014; 599
Zhu (10.1016/j.actamat.2016.01.050_bib58) 2012; 57
Wang (10.1016/j.actamat.2016.01.050_bib14) 2009; 478
Liu (10.1016/j.actamat.2016.01.050_bib64) 2013; 68
Sriharitha (10.1016/j.actamat.2016.01.050_bib70) 2014; 583
Guo (10.1016/j.actamat.2016.01.050_bib22) 2011; 109
Zhang (10.1016/j.actamat.2016.01.050_bib53) 2008; 56
Wen (10.1016/j.actamat.2016.01.050_bib45) 2011; 46
Bahmanpour (10.1016/j.actamat.2016.01.050_bib55) 2012; 60
Zhang (10.1016/j.actamat.2016.01.050_bib44) 2013; 3
Tsai (10.1016/j.actamat.2016.01.050_bib3) 2014; 2
Ma (10.1016/j.actamat.2016.01.050_bib30) 2014; 62
Li (10.1016/j.actamat.2016.01.050_bib72) 2010; 464
Courtney (10.1016/j.actamat.2016.01.050_bib66) 2005
Varalakshmi (10.1016/j.actamat.2016.01.050_bib38) 2010; 527
Chen (10.1016/j.actamat.2016.01.050_bib73) 2011; 64
Shun (10.1016/j.actamat.2016.01.050_bib18) 2012; 556
Zhu (10.1016/j.actamat.2016.01.050_bib67) 2013; 61
Zuo (10.1016/j.actamat.2016.01.050_bib19) 2013; 20
Li (10.1016/j.actamat.2016.01.050_bib13) 2009; 475
He (10.1016/j.actamat.2016.01.050_bib63) 2014; 62
Ni (10.1016/j.actamat.2016.01.050_bib52) 2011; 64
Wang (10.1016/j.actamat.2016.01.050_bib56) 2009; 94
Suryanarayana (10.1016/j.actamat.2016.01.050_bib48) 2001; 46
Guo (10.1016/j.actamat.2016.01.050_bib23) 2011; 21
Fu (10.1016/j.actamat.2016.01.050_bib6) 2014; 619
Kozlov (10.1016/j.actamat.2016.01.050_bib68) 2006; 9
Mahajan (10.1016/j.actamat.2016.01.050_bib59) 1997; 45
Zhang (10.1016/j.actamat.2016.01.050_bib2) 2014; 61
Lin (10.1016/j.actamat.2016.01.050_bib32) 2014; 45
Laurent-Brocq (10.1016/j.actamat.2016.01.050_bib24) 2015; 88
Harrell (10.1016/j.actamat.2016.01.050_bib33) 2014; 45
Takeuchi (10.1016/j.actamat.2016.01.050_bib8) 2014; 66
Youssef (10.1016/j.actamat.2016.01.050_bib9) 2015; 3
Yeh (10.1016/j.actamat.2016.01.050_bib1) 2004; 6
Wu (10.1016/j.actamat.2016.01.050_bib5) 2014; 46
Feuerbacher (10.1016/j.actamat.2016.01.050_bib7) 2015; 3
Varalakshmi (10.1016/j.actamat.2016.01.050_bib37) 2008; 460
Jiang (10.1016/j.actamat.2016.01.050_bib35) 2015; 89
Guillon (10.1016/j.actamat.2016.01.050_bib39) 2014; 16
Williamson (10.1016/j.actamat.2016.01.050_bib50) 1953; 1
Xu (10.1016/j.actamat.2016.01.050_bib20) 2015; 84
Williamson (10.1016/j.actamat.2016.01.050_bib49) 1956; 1
Wen (10.1016/j.actamat.2016.01.050_bib51) 2013; 93
Schuh (10.1016/j.actamat.2016.01.050_bib25) 2015; 96
Ramesh (10.1016/j.actamat.2016.01.050_bib69) 2009
Wang (10.1016/j.actamat.2016.01.050_bib31) 2002; 419
Yang (10.1016/j.actamat.2016.01.050_bib42) 2012; 132
Takeuchi (10.1016/j.actamat.2016.01.050_bib43) 2005; 46
Wang (10.1016/j.actamat.2016.01.050_bib15) 2009; 23
Otto (10.1016/j.actamat.2016.01.050_bib21) 2013; 61
Zhou (10.1016/j.actamat.2016.01.050_bib12) 2008; 92
Zhao (10.1016/j.actamat.2016.01.050_bib61) 2010; 12
Porter (10.1016/j.actamat.2016.01.050_bib41) 1992
Shen (10.1016/j.actamat.2016.01.050_bib71) 2005; 52
Shun (10.1016/j.actamat.2016.01.050_bib17) 2012; 70
Wen (10.1016/j.actamat.2016.01.050_bib57) 2012; 67
Whang (10.1016/j.actamat.2016.01.050_bib62) 2011
Wen (10.1016/j.actamat.2016.01.050_bib29) 2012; 14
Wen (10.1016/j.actamat.2016.01.050_bib28) 2013; 61
Baudin (10.1016/j.actamat.2016.01.050_bib60) 2007; 58
References_xml – volume: 58
  start-page: 947
  year: 2007
  end-page: 952
  ident: bib60
  article-title: Annealing twin formation and recrystallization study of cold-drawn copper wires from EBSD measurements
  publication-title: Mater. Charact.
– volume: 70
  start-page: 63
  year: 2012
  end-page: 67
  ident: bib17
  article-title: Microstructure and mechanical properties of multiprincipal component CoCrFeNiMo
  publication-title: Mater. Charact.
– volume: 64
  start-page: 327
  year: 2011
  end-page: 330
  ident: bib52
  article-title: Grain growth and dislocation density evolution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion
  publication-title: Scr. Mater.
– volume: 2
  start-page: 107
  year: 2014
  end-page: 123
  ident: bib3
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
– volume: 527
  start-page: 1027
  year: 2010
  end-page: 1030
  ident: bib38
  article-title: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying
  publication-title: Mater. Sci. Eng. A
– volume: 68
  start-page: 526
  year: 2013
  end-page: 529
  ident: bib64
  article-title: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy
  publication-title: Scr. Mater.
– volume: 45
  start-page: 6329
  year: 2014
  end-page: 6343
  ident: bib33
  article-title: Microstructure and strengthening mechanisms in an ultrafine grained Al-Mg-Sc alloy produced by powder metallurgy
  publication-title: Metall. Mater. Trans. A
– volume: 61
  start-page: 2769
  year: 2013
  end-page: 2782
  ident: bib28
  article-title: Strenthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering
  publication-title: Acta Mater.
– volume: 61
  start-page: 4887
  year: 2013
  end-page: 4897
  ident: bib47
  article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys
  publication-title: Acta Mater.
– year: 2011
  ident: bib62
  article-title: Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications
– volume: 23
  start-page: 1254
  year: 2009
  end-page: 1259
  ident: bib15
  article-title: Tensile and compressive mechanical behavior of a CoCrCuFeNiAl
  publication-title: Int. J. Mod. Phys. B
– volume: 92
  start-page: 241917
  year: 2008
  ident: bib12
  article-title: Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCu
  publication-title: Appl. Phys. Lett.
– volume: 56
  start-page: 2429
  year: 2008
  end-page: 2440
  ident: bib53
  article-title: Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles
  publication-title: Acta Mater.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib1
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concept and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 88
  start-page: 355
  year: 2015
  end-page: 365
  ident: bib24
  article-title: Insights into the phase diagram of the CrMnFeCoNi high entropy alloy
  publication-title: Acta Mater.
– volume: 132
  start-page: 233
  year: 2012
  end-page: 238
  ident: bib42
  article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys
  publication-title: Mater. Chem. Phys.
– year: 1992
  ident: bib41
  article-title: Phase transformations
  publication-title: Metals and Alloys
– volume: 93
  start-page: 481
  year: 2013
  end-page: 489
  ident: bib51
  article-title: Dynamic balance between grain refinement and grain growth during high-pressure torsion of Cu powders
  publication-title: Philos. Mag. Lett.
– volume: 21
  start-page: 433
  year: 2011
  end-page: 446
  ident: bib23
  article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase
  publication-title: Prog. Nat. Sci. Mater. Int.
– volume: 94
  start-page: 091911
  year: 2009
  ident: bib56
  article-title: Dislocation density evolution during high pressure torsion of a nanocrystalline Ni–Fe alloy
  publication-title: Appl. Phys. Lett.
– volume: 62
  start-page: 105
  year: 2014
  end-page: 113
  ident: bib63
  article-title: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system
  publication-title: Acta Mater.
– volume: 556
  start-page: 170
  year: 2012
  end-page: 174
  ident: bib18
  article-title: Microstructures and mechanical properties of multiprincipal component CoCrFeNiTi
  publication-title: Mater. Sci. Eng. A
– volume: 1
  start-page: 22
  year: 1953
  end-page: 31
  ident: bib50
  article-title: X-ray line broadening from filed Al and W
  publication-title: Acta Metall.
– volume: 96
  start-page: 258
  year: 2015
  end-page: 268
  ident: bib25
  article-title: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation
  publication-title: Acta Mater.
– volume: 67
  start-page: 245
  year: 2012
  end-page: 248
  ident: bib57
  article-title: Twins in cryomilled and spark plasma sintered Cu–Zn–Al
  publication-title: Scr. Mater.
– volume: 46
  start-page: 1
  year: 2001
  end-page: 184
  ident: bib48
  article-title: Mechanical alloying and milling
  publication-title: Prog. Mater. Sci.
– volume: 3
  start-page: 95
  year: 2015
  end-page: 99
  ident: bib9
  article-title: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures
  publication-title: Mater. Res. Lett.
– volume: 26
  start-page: 44
  year: 2012
  end-page: 51
  ident: bib16
  article-title: Effects of Al addition on the microstructure and mechanical property of Al
  publication-title: Intermetallics
– volume: 599
  start-page: 179
  year: 2014
  end-page: 182
  ident: bib4
  article-title: Segregation and migration of species in the CrCoFeNi high entropy alloy
  publication-title: J. Alloys Compd.
– volume: 45
  start-page: 2633
  year: 1997
  end-page: 2638
  ident: bib59
  article-title: Formation of annealing twins in f.c.c. crystals
  publication-title: Acta Mater.
– volume: 12
  start-page: 769
  year: 2010
  end-page: 778
  ident: bib61
  article-title: Strategies for improving tensile ductility of bulk nanostructured materials
  publication-title: Adv. Eng. Mater.
– volume: 419
  start-page: 912
  year: 2002
  end-page: 914
  ident: bib31
  article-title: High tensile ductility in a nanostructured metal
  publication-title: Nature
– volume: 89
  start-page: 327
  year: 2015
  end-page: 343
  ident: bib35
  article-title: Influence of length-scales on spatial distribution and interfacial characteristics of B
  publication-title: Acta Mater.
– volume: 3
  start-page: 1455
  year: 2013
  ident: bib44
  article-title: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability
  publication-title: Sci. Rep.
– year: 2014
  ident: bib46
  article-title: High-entropy Alloys
– volume: 64
  start-page: 311
  year: 2011
  end-page: 314
  ident: bib73
  article-title: Grain size dependence of tensile properties in ultrafine-grained Cu with nanoscale twins
  publication-title: Scr. Mater.
– volume: 3
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib7
  article-title: Hexagonal high-entropy alloys
  publication-title: Mater. Res. Lett.
– volume: 46
  start-page: 2817
  year: 2005
  end-page: 2829
  ident: bib43
  article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element
  publication-title: Mater. Trans.
– volume: 16
  start-page: 830
  year: 2014
  end-page: 849
  ident: bib39
  article-title: Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology development
  publication-title: Adv. Eng. Mater.
– volume: 1
  start-page: 34
  year: 1956
  end-page: 46
  ident: bib49
  article-title: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum
  publication-title: Philos. Mag.
– year: 2009
  ident: bib69
  article-title: Nanomaterials Mechanics and Mechanisms
– volume: 61
  start-page: 1
  year: 2007
  end-page: 5
  ident: bib11
  article-title: On the elemental effect of AlCoCrCuFeNi high-entropy alloy system
  publication-title: Mater. Lett.
– volume: 94
  start-page: 124
  year: 2015
  end-page: 133
  ident: bib27
  article-title: Design of a twinning-induced plasticity high entropy alloy
  publication-title: Acta Mater.
– volume: 460
  start-page: 253
  year: 2008
  end-page: 257
  ident: bib37
  article-title: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying
  publication-title: J. Alloys Compd.
– volume: 14
  start-page: 185
  year: 2012
  end-page: 194
  ident: bib29
  article-title: Influence of pressing temperature on microstructure evolution and mechanical behavior of ultrafine-grained Cu processed by equal-channel angular pressing
  publication-title: Adv. Eng. Mater.
– volume: 632
  start-page: 591
  year: 2015
  end-page: 603
  ident: bib34
  article-title: Strengthening mechanisms and deformation behavior of cryomilled Al–Cu–Mg–Ag alloy
  publication-title: J. Alloys Compd.
– volume: 61
  start-page: 5743
  year: 2013
  end-page: 5755
  ident: bib21
  article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
  publication-title: Acta Mater.
– volume: 15
  start-page: 357
  year: 2007
  end-page: 362
  ident: bib10
  article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTi
  publication-title: Intermetallics
– volume: 1
  start-page: 63
  year: 2010
  ident: bib54
  article-title: Nanostructural hierarchy increases the strength of aluminium alloys
  publication-title: Nat. Commun.
– volume: 52
  start-page: 989
  year: 2005
  end-page: 994
  ident: bib71
  article-title: Tensile properties of copper with nano-scale twins
  publication-title: Scr. Mater.
– volume: 62
  start-page: 141
  year: 2014
  end-page: 155
  ident: bib30
  article-title: Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy
  publication-title: Acta Mater.
– volume: 45
  start-page: 2673
  year: 2014
  end-page: 2688
  ident: bib32
  article-title: Stress-induced grain growth in an ultra-fine grained Al alloy
  publication-title: Metall. Mater. Trans. A
– volume: 66
  start-page: 1984
  year: 2014
  end-page: 1992
  ident: bib8
  article-title: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams
  publication-title: JOM
– volume: 68
  start-page: 118
  year: 2013
  end-page: 121
  ident: bib65
  article-title: Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals
  publication-title: Scr. Mater.
– volume: 46
  start-page: 3006
  year: 2011
  end-page: 3012
  ident: bib45
  article-title: The influence of oxygen and nitrogen contamination on the densification behavior during SPS
  publication-title: J. Mater. Sci.
– volume: 583
  start-page: 419
  year: 2014
  end-page: 426
  ident: bib70
  article-title: Thermal stability and strengthening in spark plasma sintered Al
  publication-title: J. Alloys Compd.
– volume: 481
  start-page: 768
  year: 2009
  end-page: 775
  ident: bib40
  article-title: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system
  publication-title: J. Alloys Compd.
– volume: 72–73
  start-page: 5
  year: 2014
  end-page: 8
  ident: bib26
  article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility
  publication-title: Scr. Mater.
– volume: 464
  start-page: 877
  year: 2010
  end-page: 880
  ident: bib72
  article-title: Dislocation nucleation governed softening and maximum strength in nano-twinned metals
  publication-title: Nature
– volume: 619
  start-page: 137
  year: 2014
  end-page: 145
  ident: bib6
  article-title: Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al
  publication-title: Mater. Sci. Eng. A
– volume: 478
  start-page: 321
  year: 2009
  end-page: 324
  ident: bib14
  article-title: Atomic packing efficiency and phase transition in a high entropy alloy
  publication-title: J. Alloys Compd.
– volume: 20
  start-page: 549
  year: 2013
  end-page: 555
  ident: bib19
  article-title: Processing effects on the magnetic and mechanical properties of FeCoNiAl
  publication-title: Int. J. Min. Met. Mater.
– volume: 61
  start-page: 2993
  year: 2013
  end-page: 3001
  ident: bib67
  article-title: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy
  publication-title: Acta Mater.
– volume: 61
  start-page: 1
  year: 2014
  end-page: 93
  ident: bib2
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
– volume: 60
  start-page: 3340
  year: 2012
  end-page: 3349
  ident: bib55
  article-title: Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy
  publication-title: Acta Mater.
– volume: 84
  start-page: 145
  year: 2015
  end-page: 152
  ident: bib20
  article-title: Nanoscale phase separation in a FCC-based CoCrCuFeNiAl
  publication-title: Acta Mater.
– volume: 57
  start-page: 1
  year: 2012
  end-page: 62
  ident: bib58
  article-title: Deformation twinning in nanocrystalline materials
  publication-title: Prog. Mater. Sci.
– volume: 9
  start-page: 75
  year: 2006
  end-page: 85
  ident: bib68
  article-title: Barrier retardation of dislocations. Hall-Petch problem
  publication-title: Phys. Mesomech.
– year: 2005
  ident: bib66
  article-title: Mechanical Behavior of Materials
– volume: 475
  start-page: 752
  year: 2009
  end-page: 757
  ident: bib13
  article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys
  publication-title: J. Alloys Compd.
– volume: 46
  start-page: 131
  year: 2014
  end-page: 140
  ident: bib5
  article-title: Recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys
  publication-title: Intermetallics
– volume: 109
  start-page: 103505
  year: 2011
  ident: bib22
  article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys
  publication-title: J. Appl. Phys.
– volume: 151
  start-page: 126
  year: 2015
  end-page: 129
  ident: bib36
  article-title: Hardening of an Al
  publication-title: Mater. Lett.
– volume: 478
  start-page: 321
  year: 2009
  ident: 10.1016/j.actamat.2016.01.050_bib14
  article-title: Atomic packing efficiency and phase transition in a high entropy alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.11.059
– volume: 45
  start-page: 6329
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib33
  article-title: Microstructure and strengthening mechanisms in an ultrafine grained Al-Mg-Sc alloy produced by powder metallurgy
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-014-2569-6
– volume: 460
  start-page: 253
  year: 2008
  ident: 10.1016/j.actamat.2016.01.050_bib37
  article-title: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.05.104
– volume: 64
  start-page: 327
  year: 2011
  ident: 10.1016/j.actamat.2016.01.050_bib52
  article-title: Grain growth and dislocation density evolution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2010.10.027
– volume: 23
  start-page: 1254
  year: 2009
  ident: 10.1016/j.actamat.2016.01.050_bib15
  article-title: Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979209060774
– volume: 45
  start-page: 2673
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib32
  article-title: Stress-induced grain growth in an ultra-fine grained Al alloy
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-014-2258-5
– year: 1992
  ident: 10.1016/j.actamat.2016.01.050_bib41
  article-title: Phase transformations
– volume: 68
  start-page: 118
  year: 2013
  ident: 10.1016/j.actamat.2016.01.050_bib65
  article-title: Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2012.09.025
– volume: 52
  start-page: 989
  year: 2005
  ident: 10.1016/j.actamat.2016.01.050_bib71
  article-title: Tensile properties of copper with nano-scale twins
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2005.01.033
– volume: 26
  start-page: 44
  year: 2012
  ident: 10.1016/j.actamat.2016.01.050_bib16
  article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2012.03.005
– volume: 84
  start-page: 145
  year: 2015
  ident: 10.1016/j.actamat.2016.01.050_bib20
  article-title: Nanoscale phase separation in a FCC-based CoCrCuFeNiAl0.5 high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.10.033
– volume: 14
  start-page: 185
  year: 2012
  ident: 10.1016/j.actamat.2016.01.050_bib29
  article-title: Influence of pressing temperature on microstructure evolution and mechanical behavior of ultrafine-grained Cu processed by equal-channel angular pressing
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201100080
– volume: 60
  start-page: 3340
  year: 2012
  ident: 10.1016/j.actamat.2016.01.050_bib55
  article-title: Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.02.036
– volume: 16
  start-page: 830
  issue: 7
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib39
  article-title: Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology development
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201300409
– volume: 599
  start-page: 179
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib4
  article-title: Segregation and migration of species in the CrCoFeNi high entropy alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.01.135
– volume: 61
  start-page: 4887
  year: 2013
  ident: 10.1016/j.actamat.2016.01.050_bib47
  article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.04.058
– volume: 61
  start-page: 2993
  year: 2013
  ident: 10.1016/j.actamat.2016.01.050_bib67
  article-title: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.01.059
– year: 2005
  ident: 10.1016/j.actamat.2016.01.050_bib66
– volume: 132
  start-page: 233
  year: 2012
  ident: 10.1016/j.actamat.2016.01.050_bib42
  article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.11.021
– volume: 6
  start-page: 299
  issue: 5
  year: 2004
  ident: 10.1016/j.actamat.2016.01.050_bib1
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concept and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 61
  start-page: 1
  year: 2007
  ident: 10.1016/j.actamat.2016.01.050_bib11
  article-title: On the elemental effect of AlCoCrCuFeNi high-entropy alloy system
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2006.03.140
– volume: 92
  start-page: 241917
  year: 2008
  ident: 10.1016/j.actamat.2016.01.050_bib12
  article-title: Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1−x solid-solution alloys
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2938690
– volume: 475
  start-page: 752
  year: 2009
  ident: 10.1016/j.actamat.2016.01.050_bib13
  article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.07.124
– volume: 93
  start-page: 481
  year: 2013
  ident: 10.1016/j.actamat.2016.01.050_bib51
  article-title: Dynamic balance between grain refinement and grain growth during high-pressure torsion of Cu powders
  publication-title: Philos. Mag. Lett.
  doi: 10.1080/09500839.2013.805268
– volume: 15
  start-page: 357
  year: 2007
  ident: 10.1016/j.actamat.2016.01.050_bib10
  article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2006.08.005
– volume: 46
  start-page: 2817
  issue: 12
  year: 2005
  ident: 10.1016/j.actamat.2016.01.050_bib43
  article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.46.2817
– volume: 46
  start-page: 3006
  year: 2011
  ident: 10.1016/j.actamat.2016.01.050_bib45
  article-title: The influence of oxygen and nitrogen contamination on the densification behavior during SPS
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-010-5178-9
– volume: 3
  start-page: 1
  year: 2015
  ident: 10.1016/j.actamat.2016.01.050_bib7
  article-title: Hexagonal high-entropy alloys
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.951493
– volume: 632
  start-page: 591
  year: 2015
  ident: 10.1016/j.actamat.2016.01.050_bib34
  article-title: Strengthening mechanisms and deformation behavior of cryomilled Al–Cu–Mg–Ag alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.01.160
– year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib46
– year: 2011
  ident: 10.1016/j.actamat.2016.01.050_bib62
– volume: 464
  start-page: 877
  year: 2010
  ident: 10.1016/j.actamat.2016.01.050_bib72
  article-title: Dislocation nucleation governed softening and maximum strength in nano-twinned metals
  publication-title: Nature
  doi: 10.1038/nature08929
– volume: 45
  start-page: 2633
  year: 1997
  ident: 10.1016/j.actamat.2016.01.050_bib59
  article-title: Formation of annealing twins in f.c.c. crystals
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(96)00336-9
– volume: 68
  start-page: 526
  year: 2013
  ident: 10.1016/j.actamat.2016.01.050_bib64
  article-title: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2012.12.002
– volume: 1
  start-page: 22
  year: 1953
  ident: 10.1016/j.actamat.2016.01.050_bib50
  article-title: X-ray line broadening from filed Al and W
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(53)90006-6
– volume: 88
  start-page: 355
  year: 2015
  ident: 10.1016/j.actamat.2016.01.050_bib24
  article-title: Insights into the phase diagram of the CrMnFeCoNi high entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.01.068
– volume: 58
  start-page: 947
  year: 2007
  ident: 10.1016/j.actamat.2016.01.050_bib60
  article-title: Annealing twin formation and recrystallization study of cold-drawn copper wires from EBSD measurements
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2006.09.009
– volume: 1
  start-page: 63
  year: 2010
  ident: 10.1016/j.actamat.2016.01.050_bib54
  article-title: Nanostructural hierarchy increases the strength of aluminium alloys
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1062
– volume: 21
  start-page: 433
  year: 2011
  ident: 10.1016/j.actamat.2016.01.050_bib23
  article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase
  publication-title: Prog. Nat. Sci. Mater. Int.
  doi: 10.1016/S1002-0071(12)60080-X
– volume: 94
  start-page: 124
  year: 2015
  ident: 10.1016/j.actamat.2016.01.050_bib27
  article-title: Design of a twinning-induced plasticity high entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.04.014
– volume: 527
  start-page: 1027
  year: 2010
  ident: 10.1016/j.actamat.2016.01.050_bib38
  article-title: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2009.09.019
– volume: 70
  start-page: 63
  year: 2012
  ident: 10.1016/j.actamat.2016.01.050_bib17
  article-title: Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2012.05.005
– volume: 57
  start-page: 1
  year: 2012
  ident: 10.1016/j.actamat.2016.01.050_bib58
  article-title: Deformation twinning in nanocrystalline materials
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2011.05.001
– volume: 64
  start-page: 311
  year: 2011
  ident: 10.1016/j.actamat.2016.01.050_bib73
  article-title: Grain size dependence of tensile properties in ultrafine-grained Cu with nanoscale twins
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2010.10.015
– volume: 66
  start-page: 1984
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib8
  article-title: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams
  publication-title: JOM
  doi: 10.1007/s11837-014-1085-x
– volume: 72–73
  start-page: 5
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib26
  article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2013.09.030
– volume: 419
  start-page: 912
  year: 2002
  ident: 10.1016/j.actamat.2016.01.050_bib31
  article-title: High tensile ductility in a nanostructured metal
  publication-title: Nature
  doi: 10.1038/nature01133
– volume: 61
  start-page: 2769
  year: 2013
  ident: 10.1016/j.actamat.2016.01.050_bib28
  article-title: Strenthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.09.036
– volume: 12
  start-page: 769
  year: 2010
  ident: 10.1016/j.actamat.2016.01.050_bib61
  article-title: Strategies for improving tensile ductility of bulk nanostructured materials
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200900335
– volume: 556
  start-page: 170
  year: 2012
  ident: 10.1016/j.actamat.2016.01.050_bib18
  article-title: Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2012.06.075
– volume: 46
  start-page: 1
  year: 2001
  ident: 10.1016/j.actamat.2016.01.050_bib48
  article-title: Mechanical alloying and milling
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/S0079-6425(99)00010-9
– volume: 151
  start-page: 126
  year: 2015
  ident: 10.1016/j.actamat.2016.01.050_bib36
  article-title: Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.03.066
– volume: 481
  start-page: 768
  year: 2009
  ident: 10.1016/j.actamat.2016.01.050_bib40
  article-title: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.03.087
– volume: 61
  start-page: 5743
  year: 2013
  ident: 10.1016/j.actamat.2016.01.050_bib21
  article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.06.018
– volume: 89
  start-page: 327
  year: 2015
  ident: 10.1016/j.actamat.2016.01.050_bib35
  article-title: Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.01.062
– volume: 46
  start-page: 131
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib5
  article-title: Recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.10.024
– volume: 61
  start-page: 1
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib2
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 62
  start-page: 141
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib30
  article-title: Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.09.042
– volume: 2
  start-page: 107
  issue: 3
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib3
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.912690
– volume: 94
  start-page: 091911
  year: 2009
  ident: 10.1016/j.actamat.2016.01.050_bib56
  article-title: Dislocation density evolution during high pressure torsion of a nanocrystalline Ni–Fe alloy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3095852
– volume: 96
  start-page: 258
  year: 2015
  ident: 10.1016/j.actamat.2016.01.050_bib25
  article-title: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.06.025
– year: 2009
  ident: 10.1016/j.actamat.2016.01.050_bib69
– volume: 109
  start-page: 103505
  year: 2011
  ident: 10.1016/j.actamat.2016.01.050_bib22
  article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3587228
– volume: 583
  start-page: 419
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib70
  article-title: Thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.08.176
– volume: 3
  start-page: 95
  year: 2015
  ident: 10.1016/j.actamat.2016.01.050_bib9
  article-title: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.985855
– volume: 67
  start-page: 245
  year: 2012
  ident: 10.1016/j.actamat.2016.01.050_bib57
  article-title: Twins in cryomilled and spark plasma sintered Cu–Zn–Al
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2012.04.024
– volume: 56
  start-page: 2429
  year: 2008
  ident: 10.1016/j.actamat.2016.01.050_bib53
  article-title: Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2008.01.030
– volume: 20
  start-page: 549
  year: 2013
  ident: 10.1016/j.actamat.2016.01.050_bib19
  article-title: Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy
  publication-title: Int. J. Min. Met. Mater.
  doi: 10.1007/s12613-013-0764-x
– volume: 619
  start-page: 137
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib6
  article-title: Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.09.077
– volume: 62
  start-page: 105
  year: 2014
  ident: 10.1016/j.actamat.2016.01.050_bib63
  article-title: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.09.037
– volume: 3
  start-page: 1455
  year: 2013
  ident: 10.1016/j.actamat.2016.01.050_bib44
  article-title: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability
  publication-title: Sci. Rep.
  doi: 10.1038/srep01455
– volume: 1
  start-page: 34
  year: 1956
  ident: 10.1016/j.actamat.2016.01.050_bib49
  article-title: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum
  publication-title: Philos. Mag.
  doi: 10.1080/14786435608238074
– volume: 9
  start-page: 75
  issue: 3–4
  year: 2006
  ident: 10.1016/j.actamat.2016.01.050_bib68
  article-title: Barrier retardation of dislocations. Hall-Petch problem
  publication-title: Phys. Mesomech.
SSID ssj0012740
Score 2.6355903
Snippet We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms Bulk sampling
Face centered cubic lattice
Grains
High-entropy alloys
Microstructure
Nanocrystalline
Nanostructure
Single-phase
Spark plasma sintering
Strengthening
Strengthening mechanism
Transmission electron microscopy
Title Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy
URI https://dx.doi.org/10.1016/j.actamat.2016.01.050
https://www.proquest.com/docview/1808058996
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLem7QIHxBgTAzYZaVe3cWMn9rGKqApovcCk3SzbcSBT51Rre-iFM3827-WjgwlpEpdISd6LLD_nfcTv9wshl25SVQICD9QmiWRChsC0cglzKmS6dFpVCtHIV4tsfi0-38ibA1IMWBhsq-x9f-fTW2_dXxn3szle1fX4K0-lRj4q3rJG5YgoFyLHVT76uW_z4FB1dUhhqRlKP6B4xrcw5I2FxBA7vLKWvRPh9_-OT488dRt-Zi_Jiz5vpNNuaMfkIMRX5PkfbIIn5NcVNtd1hLDb-0BtLClCQeJ3ZDgAEXoXEOdbr-_WtI5wn86Kgu4VQBqEloGtfkBoo9HGxt_vIHtE2u5Ai2YiF_VEzsJETpf5SBZbDkeKhMcMvxE3qx3Fbfzda3I9-_itmLP-RwvMi0RtmNdKIaY291WSeikgqrtSVTrNoFxLbaor5HkvfQ65RwkeQEgeXO6t9kpYq5L0lBzGJoY3hKbWJp47pYNFbkFsUs2qwLXTIshcV2dEDNNrfM9Cjj_DWJqh3ezW9FYxaBWTcANWOSOjvdqqo-F4SkENtjN_rScDoeIp1Q-DrQ28a7iBYmNotmvDkYRTQoWavf3_x78jz_Cs6_55Tw7ByOEcEpuNu2hX7gU5mn76Ml_8Bj9M-DY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHVF6iQMFIcMxunNiJfeBQpay2tLsXWqk34zhOSbV1Vt1dob1w5v_wBzuTx_IQUiWkXnJIPFY0Y88j-eYzIe_yqCw5BB6oTUIRcOFcoGQeBrl0iSpyJUuJ3ciTaTI-5Z_OxNkW-dn3wiCssvP9rU9vvHV3Z9hpczivquFnFguFfFSsYY1K0w5ZeeTW36BuW3w4PAAjv4-i0ceTbBx0RwsElodyGVglJXaRprYMYys4xLG8kKWKEyhQYhOrEpnNC5tCtC1gzXPBXJ5ao6zkxsgwhnnvkLsc3AUemzD4vsGVMCjz2tZkoQJ8vV9tQ8ML0NHSQCaKkLKkoQvFfv9_B8S_QkMT70Y75GGXqNL9VhePyJbzj8mD3-gLn5AfE0TztQy0qytHjS8o9p74c6RUgCH00mFjcbW4XNDKw3M6yjK6EYDRMGjmgvlXiKXUG1_bqzWkq8gT7mhWR2JaRWLkIrE_SwciWzG4UmRYDvCjdD1fU8QNrJ-S01tR_zOy7WvvnhMaGxNalkvlDJIZIio2KR1TueJOpKrcJbxXr7Yd7TmevjHTPb7tQndW0WgVHTINVtklg43YvOX9uElA9rbTfyxgDbHpJtG3va01bG78Y2O8q1cLzZD1U0BJnLz4_-nfkHvjk8mxPj6cHr0k9_FJCz16RbbB4G4Psqpl_rpZxZR8ue1tcw0UuTG_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+strengthening+mechanisms+in+an+FCC+structured+single-phase+nanocrystalline+Co25Ni25Fe25Al7.5Cu17.5+high-entropy+alloy&rft.jtitle=Acta+materialia&rft.au=Fu%2C+Zhiqiang&rft.au=Chen%2C+Weiping&rft.au=Wen%2C+Haiming&rft.au=Zhang%2C+Dalong&rft.date=2016-04-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=107&rft.spage=59&rft.epage=71&rft_id=info:doi/10.1016%2Fj.actamat.2016.01.050&rft.externalDocID=S1359645416300477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon