Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy
We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co25Ni25Fe25Al7.5Cu17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co25Ni25Fe25Al7.5Cu17.5 HEA with the face-centered...
Saved in:
Published in | Acta materialia Vol. 107; pp. 59 - 71 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co25Ni25Fe25Al7.5Cu17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co25Ni25Fe25Al7.5Cu17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co25Ni25Fe25Al7.5Cu17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (∼130–700 MPa). Compared to those of the bulk coarse-grained (CG) Co25Ni25Fe25Al7.5Cu17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA.
[Display omitted] |
---|---|
AbstractList | We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co25Ni25Fe25Al7.5Cu17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co25Ni25Fe25Al7.5Cu17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co25Ni25Fe25Al7.5Cu17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (130-700 MPa). Compared to those of the bulk coarse-grained (CG) Co25Ni25Fe25Al7.5Cu17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA. We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co25Ni25Fe25Al7.5Cu17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co25Ni25Fe25Al7.5Cu17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co25Ni25Fe25Al7.5Cu17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (∼130–700 MPa). Compared to those of the bulk coarse-grained (CG) Co25Ni25Fe25Al7.5Cu17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA. [Display omitted] |
Author | Chen, Weiping Zhang, Dalong Wen, Haiming Fu, Zhiqiang Chen, Zhen Zhou, Yizhang Zheng, Baolong Lavernia, Enrique J. |
Author_xml | – sequence: 1 givenname: Zhiqiang surname: Fu fullname: Fu, Zhiqiang email: fzqfu@ucdavis.edu organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China – sequence: 2 givenname: Weiping surname: Chen fullname: Chen, Weiping organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China – sequence: 3 givenname: Haiming surname: Wen fullname: Wen, Haiming email: wenhaim@isu.edu organization: Department of Nuclear Engineering and Health Physics, Idaho State University, Idaho Falls, ID, 83402, USA – sequence: 4 givenname: Dalong surname: Zhang fullname: Zhang, Dalong organization: Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA, 95616, USA – sequence: 5 givenname: Zhen surname: Chen fullname: Chen, Zhen organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China – sequence: 6 givenname: Baolong surname: Zheng fullname: Zheng, Baolong organization: Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA, 95616, USA – sequence: 7 givenname: Yizhang surname: Zhou fullname: Zhou, Yizhang organization: Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA, 95616, USA – sequence: 8 givenname: Enrique J. surname: Lavernia fullname: Lavernia, Enrique J. email: lavernia@uci.edu organization: Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA, 95616, USA |
BookMark | eNqFkM9q3DAQh0VJoUmaRwjomItd_bVlcijBdNtAkl7as1Dk8VqLLW0lubBvkMeulg095JKLpEHfb5j5LtCZDx4QuqakpoQ2X3a1sdksJteslDWhNZHkAzqnquUVE5KflTeXXdUIKT6hi5R2hFDWCnKOXh6djSHluNq8RsDGD7hU4Ld5Au_8Fi9gJ-NdWhJ2vvzjTd_j_4FCF2iGaj-ZBNgbH2w8pGzm2XnAfWDyyTG5ASbv5raW_UrLiSe3nSrwOYb9ARc2HD6jj6OZE1y93pfo9-bbr_5H9fDz-31_91BZQVSubKcUpYK1diTcSsEEfR7U2PGmIZQb3o2MKjbYVkoxcFa2p_DcWtNZJYxRhF-im1PffQx_VkhZLy5ZmGfjIaxJU0UUkarrmoLentCjoRRh1NZlk10ocxs3a0r00b_e6Vf_-uhfE6qL_5KWb9L76BYTD-_mvp5yUCz8dRB1sg68hcFFsFkPwb3T4R8UMqUT |
CitedBy_id | crossref_primary_10_1007_s10854_021_07562_2 crossref_primary_10_1016_j_msea_2023_145656 crossref_primary_10_1016_j_jmrt_2021_06_021 crossref_primary_10_3989_revmetalm_147 crossref_primary_10_1016_j_matdes_2017_01_036 crossref_primary_10_1016_j_matchar_2020_110323 crossref_primary_10_1007_s11661_022_06701_6 crossref_primary_10_1016_j_corsci_2019_108145 crossref_primary_10_1007_s44210_024_00038_y crossref_primary_10_3390_ma14195835 crossref_primary_10_1016_j_jallcom_2021_161963 crossref_primary_10_1007_s12540_019_00565_z crossref_primary_10_1007_s11666_021_01317_5 crossref_primary_10_1016_j_matdes_2022_111167 crossref_primary_10_1016_j_matdes_2022_111165 crossref_primary_10_1126_sciadv_adi5817 crossref_primary_10_1016_j_msea_2017_11_089 crossref_primary_10_1016_j_jallcom_2022_167659 crossref_primary_10_1016_j_jmrt_2022_01_141 crossref_primary_10_3390_ma14205994 crossref_primary_10_1016_j_matdes_2020_108662 crossref_primary_10_1016_j_intermet_2018_02_014 crossref_primary_10_1016_j_msea_2017_09_119 crossref_primary_10_1016_j_msea_2020_140018 crossref_primary_10_1016_j_intermet_2018_09_005 crossref_primary_10_1016_j_msea_2022_144190 crossref_primary_10_1016_j_msea_2018_12_005 crossref_primary_10_1016_j_msea_2022_144192 crossref_primary_10_1177_14644207211051038 crossref_primary_10_1016_j_jallcom_2024_177700 crossref_primary_10_1016_j_jallcom_2024_175401 crossref_primary_10_1016_j_intermet_2023_108071 crossref_primary_10_1016_j_ijlmm_2019_10_002 crossref_primary_10_1016_j_msea_2020_139028 crossref_primary_10_1088_2053_1591_ad31dd crossref_primary_10_1007_s12540_023_01584_7 crossref_primary_10_1016_j_wear_2021_203755 crossref_primary_10_1007_s12540_022_01314_5 crossref_primary_10_1016_j_actamat_2022_118654 crossref_primary_10_1016_j_mtcomm_2025_111789 crossref_primary_10_1007_s13204_021_01856_x crossref_primary_10_1016_j_jallcom_2023_172185 crossref_primary_10_1016_j_jallcom_2019_153388 crossref_primary_10_3390_ma14174945 crossref_primary_10_1039_D2TA08126A crossref_primary_10_1016_j_matlet_2024_136940 crossref_primary_10_1016_j_msea_2024_146822 crossref_primary_10_1016_j_jmrt_2023_08_233 crossref_primary_10_2139_ssrn_4147567 crossref_primary_10_1016_j_mser_2018_04_003 crossref_primary_10_1016_j_actamat_2018_01_002 crossref_primary_10_3390_cryst10121102 crossref_primary_10_1016_j_ijrmhm_2021_105636 crossref_primary_10_1016_j_intermet_2021_107310 crossref_primary_10_1016_j_msea_2025_148178 crossref_primary_10_1007_s10853_017_0808_0 crossref_primary_10_1016_j_jallcom_2021_161526 crossref_primary_10_1016_j_jallcom_2024_174331 crossref_primary_10_3389_fmats_2021_804918 crossref_primary_10_1016_j_pmatsci_2021_100777 crossref_primary_10_1016_j_tsf_2021_138866 crossref_primary_10_1016_j_jallcom_2016_10_288 crossref_primary_10_1016_j_msea_2023_145582 crossref_primary_10_1007_s10853_020_05570_x crossref_primary_10_1016_j_intermet_2021_107314 crossref_primary_10_3390_met8020123 crossref_primary_10_3390_met11060922 crossref_primary_10_1016_j_msea_2019_138873 crossref_primary_10_3390_ma16155388 crossref_primary_10_1016_j_matlet_2022_132728 crossref_primary_10_1016_j_intermet_2022_107820 crossref_primary_10_1016_j_msea_2021_140842 crossref_primary_10_1039_C9NR08338C crossref_primary_10_1016_j_msea_2018_05_022 crossref_primary_10_1016_j_matdes_2018_02_036 crossref_primary_10_1016_j_msea_2023_145695 crossref_primary_10_2139_ssrn_3973912 crossref_primary_10_1016_j_jallcom_2016_09_186 crossref_primary_10_1016_j_jallcom_2025_179086 crossref_primary_10_1016_j_jmmm_2017_06_124 crossref_primary_10_1016_j_jallcom_2017_11_233 crossref_primary_10_1016_j_jallcom_2023_168861 crossref_primary_10_1016_j_ceramint_2021_06_042 crossref_primary_10_1039_D0RA08322D crossref_primary_10_1016_j_jmst_2024_10_001 crossref_primary_10_1016_j_matlet_2016_06_014 crossref_primary_10_1016_j_jmrt_2022_01_118 crossref_primary_10_1016_j_msea_2019_138616 crossref_primary_10_1016_j_jallcom_2018_07_145 crossref_primary_10_1007_s41230_022_1007_4 crossref_primary_10_1016_j_msea_2022_143071 crossref_primary_10_1038_s41598_019_52809_y crossref_primary_10_1038_s41467_021_25264_5 crossref_primary_10_1016_j_matchemphys_2023_127556 crossref_primary_10_1016_j_matdes_2017_04_086 crossref_primary_10_1016_j_msea_2023_144606 crossref_primary_10_1016_j_msea_2023_144848 crossref_primary_10_1016_j_actamat_2019_01_048 crossref_primary_10_1016_j_promfg_2019_05_022 crossref_primary_10_3390_nano13060968 crossref_primary_10_1016_j_matchemphys_2023_128768 crossref_primary_10_1557_jmr_2020_272 crossref_primary_10_1016_j_jallcom_2023_171267 crossref_primary_10_1016_j_surfcoat_2024_131545 crossref_primary_10_1016_j_actamat_2016_11_046 crossref_primary_10_1016_j_jmst_2021_01_060 crossref_primary_10_1016_j_msea_2022_143360 crossref_primary_10_1016_j_matchar_2019_110046 crossref_primary_10_1016_j_intermet_2019_02_006 crossref_primary_10_1016_j_vacuum_2022_110930 crossref_primary_10_1016_j_jmst_2024_06_033 crossref_primary_10_1557_s43579_023_00405_7 crossref_primary_10_1016_j_jmrt_2022_07_067 crossref_primary_10_1016_j_jallcom_2017_11_075 crossref_primary_10_1016_j_jallcom_2019_06_157 crossref_primary_10_1016_j_ijplas_2023_103730 crossref_primary_10_1016_j_msea_2018_12_097 crossref_primary_10_1016_j_msea_2016_09_007 crossref_primary_10_1007_s11661_022_06802_2 crossref_primary_10_1063_5_0187760 crossref_primary_10_1016_j_actamat_2024_120366 crossref_primary_10_1039_D0NR02483J crossref_primary_10_1016_j_ijplas_2020_102819 crossref_primary_10_1016_j_msea_2019_138881 crossref_primary_10_1016_j_intermet_2025_108669 crossref_primary_10_1016_j_jallcom_2025_179447 crossref_primary_10_1016_j_jallcom_2022_166719 crossref_primary_10_1016_j_jallcom_2024_178199 crossref_primary_10_3390_met10060761 crossref_primary_10_1016_j_actamat_2017_08_045 crossref_primary_10_1016_j_ijlmm_2023_08_001 crossref_primary_10_1016_j_intermet_2024_108494 crossref_primary_10_1038_s41467_021_24228_z crossref_primary_10_1088_2053_1591_ac69b3 crossref_primary_10_1016_j_scriptamat_2016_11_019 crossref_primary_10_1016_j_ijplas_2021_103073 crossref_primary_10_1063_1_5004241 crossref_primary_10_1016_j_scriptamat_2019_01_012 crossref_primary_10_1016_j_matdes_2019_107893 crossref_primary_10_1007_s40843_023_2623_x crossref_primary_10_1038_srep46720 crossref_primary_10_1016_j_matchar_2023_113122 crossref_primary_10_1016_j_jmrt_2024_12_219 crossref_primary_10_1016_j_jmst_2020_08_015 crossref_primary_10_1016_j_msea_2019_138107 crossref_primary_10_1007_s11661_023_07235_1 crossref_primary_10_1016_j_jmrt_2023_07_156 crossref_primary_10_3390_ma16196407 crossref_primary_10_1016_j_actamat_2016_06_063 crossref_primary_10_1007_s11837_017_2484_6 crossref_primary_10_1016_j_triboint_2022_107617 crossref_primary_10_3389_fmats_2020_537812 crossref_primary_10_1016_j_msea_2023_145741 crossref_primary_10_1016_j_ijmecsci_2022_107881 crossref_primary_10_1016_j_intermet_2019_106569 crossref_primary_10_1016_j_intermet_2019_106570 crossref_primary_10_1016_j_msea_2023_145600 crossref_primary_10_1051_matecconf_202440606003 crossref_primary_10_1016_j_msea_2018_04_062 crossref_primary_10_1080_09593330_2020_1795932 crossref_primary_10_1016_j_actamat_2024_120399 crossref_primary_10_1016_j_msea_2019_138116 crossref_primary_10_3390_met11091484 crossref_primary_10_1016_j_corsci_2022_110666 crossref_primary_10_1016_j_actamat_2016_11_016 crossref_primary_10_1016_j_intermet_2017_09_013 crossref_primary_10_1002_adfm_202308229 crossref_primary_10_1016_j_intermet_2025_108655 crossref_primary_10_1016_j_msea_2017_09_101 crossref_primary_10_1080_00084433_2021_1969497 crossref_primary_10_1016_j_apsusc_2024_162093 crossref_primary_10_1016_j_jmatprotec_2020_116945 crossref_primary_10_1016_j_actamat_2016_12_074 crossref_primary_10_1002_adem_202000848 crossref_primary_10_1007_s10853_023_08758_z crossref_primary_10_1080_00325899_2019_1584454 crossref_primary_10_1016_j_jmst_2021_02_059 crossref_primary_10_1016_j_msea_2020_140611 crossref_primary_10_1016_j_ijrmhm_2023_106289 crossref_primary_10_3390_ma14113065 crossref_primary_10_1063_5_0070470 crossref_primary_10_1016_j_matchar_2023_113354 crossref_primary_10_1016_j_corsci_2021_110020 crossref_primary_10_1016_j_jallcom_2022_165562 crossref_primary_10_1016_j_msea_2019_04_104 crossref_primary_10_1016_j_commatsci_2020_110213 crossref_primary_10_1016_j_msea_2020_140600 crossref_primary_10_1016_j_msea_2024_147073 crossref_primary_10_1016_j_intermet_2025_108753 crossref_primary_10_1016_j_matchar_2024_113889 crossref_primary_10_1016_j_intermet_2019_106599 crossref_primary_10_3390_e21090880 crossref_primary_10_1007_s11665_023_08351_0 crossref_primary_10_3390_cryst10100929 crossref_primary_10_1016_j_msea_2022_143111 crossref_primary_10_1016_j_ijrmhm_2023_106535 crossref_primary_10_1038_s41598_018_32552_6 crossref_primary_10_1016_j_actamat_2021_116638 crossref_primary_10_1016_j_jmrt_2025_03_057 crossref_primary_10_1016_S1006_706X_17_30068_7 crossref_primary_10_1016_j_apsusc_2024_160535 crossref_primary_10_1016_j_jmst_2020_07_012 crossref_primary_10_1016_j_mprp_2019_08_001 crossref_primary_10_1021_acs_nanolett_0c04572 crossref_primary_10_1016_j_matchar_2021_111254 crossref_primary_10_1016_j_scriptamat_2017_06_009 crossref_primary_10_1016_j_jallcom_2025_179944 crossref_primary_10_1016_j_msea_2024_146236 crossref_primary_10_1016_j_jallcom_2024_175066 crossref_primary_10_1016_j_msea_2018_10_094 crossref_primary_10_1016_j_mtcomm_2023_106150 crossref_primary_10_1515_ntrev_2021_0071 crossref_primary_10_1016_j_jallcom_2018_02_029 crossref_primary_10_1557_jmr_2019_5 crossref_primary_10_1016_j_matdes_2022_110637 crossref_primary_10_1016_j_jmst_2018_02_026 crossref_primary_10_1016_j_msea_2018_08_058 crossref_primary_10_1007_s40195_019_00977_1 crossref_primary_10_1016_j_matlet_2020_128200 crossref_primary_10_1016_j_msea_2019_138039 crossref_primary_10_1557_jmr_2018_161 crossref_primary_10_1016_j_intermet_2022_107588 crossref_primary_10_1007_s12540_021_01125_0 crossref_primary_10_1016_j_jallcom_2023_170225 crossref_primary_10_1016_j_msea_2019_138394 crossref_primary_10_3389_fmats_2021_792359 crossref_primary_10_1016_j_msea_2018_09_089 crossref_primary_10_1002_cctc_202001163 crossref_primary_10_1016_j_jallcom_2020_156796 crossref_primary_10_1016_j_msea_2024_147337 crossref_primary_10_1016_j_jallcom_2024_176384 crossref_primary_10_1016_j_matt_2019_12_023 crossref_primary_10_1016_j_matdes_2022_110667 crossref_primary_10_1016_j_pmatsci_2020_100740 crossref_primary_10_1016_j_jeurceramsoc_2022_11_052 crossref_primary_10_1016_j_corsci_2019_03_051 crossref_primary_10_1080_27660400_2022_2161807 crossref_primary_10_1016_j_jallcom_2023_172732 crossref_primary_10_1016_j_jallcom_2022_164937 crossref_primary_10_1016_j_msea_2023_146055 crossref_primary_10_1557_jmr_2017_341 crossref_primary_10_1016_j_jallcom_2020_154142 crossref_primary_10_1016_j_msea_2021_142175 crossref_primary_10_1007_s40195_020_01150_9 crossref_primary_10_1016_j_jallcom_2020_154159 crossref_primary_10_1007_s40843_019_1195_7 crossref_primary_10_1016_j_jallcom_2023_171411 crossref_primary_10_1016_j_jallcom_2018_02_170 crossref_primary_10_1016_j_matchar_2025_114852 crossref_primary_10_1016_j_matchar_2024_114330 crossref_primary_10_1016_j_ijplas_2020_102839 crossref_primary_10_1016_j_jallcom_2024_176192 crossref_primary_10_1016_j_jallcom_2018_09_204 crossref_primary_10_1016_j_matchar_2017_04_011 crossref_primary_10_1016_j_ijrmhm_2024_106733 crossref_primary_10_1016_j_scriptamat_2018_09_008 crossref_primary_10_1016_j_msea_2024_147005 crossref_primary_10_1016_j_msea_2021_141368 crossref_primary_10_1016_j_intermet_2018_07_016 crossref_primary_10_1016_j_matchemphys_2017_11_037 crossref_primary_10_1016_j_intermet_2020_106741 crossref_primary_10_1007_s11665_021_05700_9 crossref_primary_10_1088_1757_899X_346_1_012047 crossref_primary_10_1016_j_matlet_2017_10_131 crossref_primary_10_1007_s12598_018_1194_8 crossref_primary_10_1016_j_apt_2022_103520 crossref_primary_10_1016_j_jallcom_2023_169246 crossref_primary_10_1111_jace_14814 crossref_primary_10_1016_j_scriptamat_2023_115718 crossref_primary_10_1016_j_jallcom_2020_154457 crossref_primary_10_1016_j_msea_2019_138071 crossref_primary_10_1016_j_jallcom_2020_155424 crossref_primary_10_1016_j_jallcom_2020_155308 crossref_primary_10_3390_met14121325 crossref_primary_10_1007_s11837_019_03531_7 crossref_primary_10_1016_j_jallcom_2023_170029 crossref_primary_10_1016_j_triboint_2024_110208 crossref_primary_10_1016_j_matchar_2024_114237 crossref_primary_10_1515_jmbm_2017_0021 crossref_primary_10_1007_s11663_018_1477_3 crossref_primary_10_1016_j_scriptamat_2021_113724 crossref_primary_10_1126_sciadv_aat8712 crossref_primary_10_3390_ma16227244 crossref_primary_10_1016_j_jallcom_2020_157851 crossref_primary_10_1557_jmr_2017_10 crossref_primary_10_3390_e20110810 crossref_primary_10_1016_j_ijrmhm_2019_02_009 crossref_primary_10_1177_0954406220943245 crossref_primary_10_1016_j_matchemphys_2019_121749 crossref_primary_10_1016_j_apsusc_2024_160720 crossref_primary_10_1016_j_physb_2024_416611 crossref_primary_10_2320_materia_57_333 crossref_primary_10_1515_mt_2023_0066 crossref_primary_10_1039_D1TA02718B crossref_primary_10_1016_j_matchar_2024_114458 crossref_primary_10_1016_j_pmatsci_2020_100709 crossref_primary_10_1016_j_actamat_2019_08_047 crossref_primary_10_1021_acsnano_0c05250 crossref_primary_10_1016_j_jmst_2020_10_023 crossref_primary_10_1016_j_jmst_2020_06_042 crossref_primary_10_1016_j_msea_2017_12_021 crossref_primary_10_1016_j_jmrt_2021_07_116 crossref_primary_10_1016_j_msea_2025_148099 crossref_primary_10_1002_adem_202000466 crossref_primary_10_1016_j_pmatsci_2018_12_003 crossref_primary_10_3390_met9030351 crossref_primary_10_1016_j_actamat_2019_12_015 crossref_primary_10_1016_j_pmatsci_2021_100854 crossref_primary_10_1016_j_msea_2017_07_008 crossref_primary_10_1080_00325899_2018_1427662 crossref_primary_10_1016_j_msea_2024_146991 crossref_primary_10_1007_s11661_021_06205_9 crossref_primary_10_3390_nano13172446 crossref_primary_10_1016_j_jallcom_2016_12_010 crossref_primary_10_1016_j_matdes_2018_01_045 crossref_primary_10_1016_j_mtnano_2021_100130 crossref_primary_10_1016_j_mattod_2024_10_009 crossref_primary_10_1016_j_intermet_2018_12_009 crossref_primary_10_1016_j_ijplas_2017_04_013 crossref_primary_10_1016_j_jallcom_2020_154656 crossref_primary_10_1016_j_jallcom_2022_163915 crossref_primary_10_1016_j_msea_2021_141215 crossref_primary_10_1007_s11837_024_06474_w crossref_primary_10_1016_j_cossms_2022_101001 crossref_primary_10_1016_j_surfcoat_2020_125438 crossref_primary_10_1039_C7NR07281C crossref_primary_10_1016_j_mtcomm_2020_101729 crossref_primary_10_3139_120_111533 crossref_primary_10_1016_j_jallcom_2018_07_331 crossref_primary_10_1016_j_intermet_2020_107057 crossref_primary_10_1016_j_cclet_2024_110535 crossref_primary_10_1002_advs_202100870 crossref_primary_10_1016_j_jallcom_2019_153423 crossref_primary_10_1016_j_apmt_2021_101162 crossref_primary_10_1016_j_scriptamat_2017_09_023 crossref_primary_10_1016_j_jmst_2021_07_019 crossref_primary_10_1016_j_jmrt_2023_01_057 crossref_primary_10_1016_j_actamat_2017_01_034 crossref_primary_10_1016_j_jmrt_2023_02_080 crossref_primary_10_1016_j_intermet_2023_107941 crossref_primary_10_1016_j_vacuum_2022_111278 crossref_primary_10_1016_j_jmst_2020_10_052 crossref_primary_10_1016_j_jallcom_2022_165082 crossref_primary_10_3390_ma17246061 crossref_primary_10_1016_j_msea_2016_06_040 crossref_primary_10_1016_j_jallcom_2021_160326 crossref_primary_10_1016_j_msea_2021_142569 crossref_primary_10_1016_j_scriptamat_2018_10_013 crossref_primary_10_1002_adem_202101713 crossref_primary_10_1016_j_matchemphys_2025_130756 crossref_primary_10_1016_j_actamat_2022_118011 crossref_primary_10_1016_j_jece_2022_109080 crossref_primary_10_1016_j_matchar_2024_114178 crossref_primary_10_2139_ssrn_4131139 crossref_primary_10_1007_s10853_022_07066_2 crossref_primary_10_1016_j_msea_2022_142901 crossref_primary_10_1016_j_msea_2020_139297 crossref_primary_10_1016_j_mser_2024_100833 crossref_primary_10_1007_s41230_022_2042_x crossref_primary_10_1016_j_intermet_2023_107836 crossref_primary_10_2320_matertrans_MT_M2020387 crossref_primary_10_1016_j_fusengdes_2024_114745 crossref_primary_10_1007_s00894_023_05502_x crossref_primary_10_1016_j_matchar_2024_114167 crossref_primary_10_1088_1361_651X_ac8171 crossref_primary_10_1557_jmr_2020_33 crossref_primary_10_3989_revmetalm_215 crossref_primary_10_1016_j_msea_2018_06_102 crossref_primary_10_1016_j_msea_2017_06_001 crossref_primary_10_1016_j_mtnano_2023_100331 crossref_primary_10_1016_j_matchar_2019_04_005 crossref_primary_10_2139_ssrn_3949513 crossref_primary_10_1016_j_jallcom_2019_152111 crossref_primary_10_1557_jmr_2018_477 crossref_primary_10_1007_s11661_020_05771_8 crossref_primary_10_1016_j_mtcomm_2025_111695 crossref_primary_10_1149_2162_8777_adbebd crossref_primary_10_1007_s11661_024_07316_9 crossref_primary_10_1016_j_matdes_2021_109710 crossref_primary_10_1016_j_jallcom_2022_168145 crossref_primary_10_1016_j_intermet_2021_107371 crossref_primary_10_1557_jmr_2019_37 crossref_primary_10_1016_j_msea_2020_140056 crossref_primary_10_1016_j_vacuum_2020_109802 crossref_primary_10_3390_ma17174297 crossref_primary_10_1007_s11666_024_01809_0 crossref_primary_10_3390_met11020322 crossref_primary_10_1016_j_jmst_2022_08_040 crossref_primary_10_1016_j_matchar_2017_01_009 crossref_primary_10_1016_j_intermet_2021_107388 crossref_primary_10_1016_j_vacuum_2019_04_043 crossref_primary_10_1016_j_scriptamat_2019_04_008 crossref_primary_10_1016_j_matlet_2022_133322 crossref_primary_10_1016_j_pnsc_2022_06_005 crossref_primary_10_1007_s12598_022_02249_x crossref_primary_10_1007_s10853_024_09952_3 crossref_primary_10_1016_j_jallcom_2021_162309 crossref_primary_10_1080_09507116_2021_1976957 |
Cites_doi | 10.1016/j.jallcom.2008.11.059 10.1007/s11661-014-2569-6 10.1016/j.jallcom.2007.05.104 10.1016/j.scriptamat.2010.10.027 10.1142/S0217979209060774 10.1007/s11661-014-2258-5 10.1016/j.scriptamat.2012.09.025 10.1016/j.scriptamat.2005.01.033 10.1016/j.intermet.2012.03.005 10.1016/j.actamat.2014.10.033 10.1002/adem.201100080 10.1016/j.actamat.2012.02.036 10.1002/adem.201300409 10.1016/j.jallcom.2014.01.135 10.1016/j.actamat.2013.04.058 10.1016/j.actamat.2013.01.059 10.1016/j.matchemphys.2011.11.021 10.1002/adem.200300567 10.1016/j.matlet.2006.03.140 10.1063/1.2938690 10.1016/j.jallcom.2008.07.124 10.1080/09500839.2013.805268 10.1016/j.intermet.2006.08.005 10.2320/matertrans.46.2817 10.1007/s10853-010-5178-9 10.1080/21663831.2014.951493 10.1016/j.jallcom.2015.01.160 10.1038/nature08929 10.1016/S1359-6454(96)00336-9 10.1016/j.scriptamat.2012.12.002 10.1016/0001-6160(53)90006-6 10.1016/j.actamat.2015.01.068 10.1016/j.matchar.2006.09.009 10.1038/ncomms1062 10.1016/S1002-0071(12)60080-X 10.1016/j.actamat.2015.04.014 10.1016/j.msea.2009.09.019 10.1016/j.matchar.2012.05.005 10.1016/j.pmatsci.2011.05.001 10.1016/j.scriptamat.2010.10.015 10.1007/s11837-014-1085-x 10.1016/j.scriptamat.2013.09.030 10.1038/nature01133 10.1016/j.actamat.2012.09.036 10.1002/adem.200900335 10.1016/j.msea.2012.06.075 10.1016/S0079-6425(99)00010-9 10.1016/j.matlet.2015.03.066 10.1016/j.jallcom.2009.03.087 10.1016/j.actamat.2013.06.018 10.1016/j.actamat.2015.01.062 10.1016/j.intermet.2013.10.024 10.1016/j.pmatsci.2013.10.001 10.1016/j.actamat.2013.09.042 10.1080/21663831.2014.912690 10.1063/1.3095852 10.1016/j.actamat.2015.06.025 10.1063/1.3587228 10.1016/j.jallcom.2013.08.176 10.1080/21663831.2014.985855 10.1016/j.scriptamat.2012.04.024 10.1016/j.actamat.2008.01.030 10.1007/s12613-013-0764-x 10.1016/j.msea.2014.09.077 10.1016/j.actamat.2013.09.037 10.1038/srep01455 10.1080/14786435608238074 |
ContentType | Journal Article |
Copyright | 2016 Acta Materialia Inc. |
Copyright_xml | – notice: 2016 Acta Materialia Inc. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.actamat.2016.01.050 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
EndPage | 71 |
ExternalDocumentID | 10_1016_j_actamat_2016_01_050 S1359645416300477 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB R2- SEW SSH T9H ZY4 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c408t-c98811427cf03c54241bd8f9366013a39f2182dc7554d322451eb7ca9c84aa803 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Fri Jul 11 02:24:32 EDT 2025 Thu Apr 24 23:00:32 EDT 2025 Tue Jul 01 01:20:34 EDT 2025 Fri Feb 23 02:41:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Single-phase High-entropy alloys Microstructure Nanocrystalline Strengthening mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-c98811427cf03c54241bd8f9366013a39f2182dc7554d322451eb7ca9c84aa803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1808058996 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1808058996 crossref_citationtrail_10_1016_j_actamat_2016_01_050 crossref_primary_10_1016_j_actamat_2016_01_050 elsevier_sciencedirect_doi_10_1016_j_actamat_2016_01_050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 2016-04-00 20160401 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Acta materialia |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ni, Wang, Liao, Alhajeri, Li, Zhao (bib52) 2011; 64 Yang, Zhang (bib42) 2012; 132 Bahmanpour, Youssef, Horky, Setman, Atwater, Zehetbauer (bib55) 2012; 60 Harrell, Topping, Wen, Hu, Schoenung, Lavernia (bib33) 2014; 45 Chen, Hu, Hsieh, Yeh, Chen (bib40) 2009; 481 Deng, Tasan, Pradeep, Springer, Kostka, Raabe (bib27) 2015; 94 He, Liu, Wang, Wu, Liu, Nieh (bib63) 2014; 62 Tang, Huang, Huang, Liao, Langdon, Dai (bib36) 2015; 151 Otto, Dlouhý, Somsen, Bei, Eggeler, George (bib21) 2013; 61 Sriharitha, Murty, Kottada (bib70) 2014; 583 Liddicoat, Liao, Zhao, Zhu, Murashkin, Lavernia (bib54) 2010; 1 Wu, Bei, Otto, Pharr, George (bib5) 2014; 46 Tung, Yeh, Shun, Chen, Huang, Chen (bib11) 2007; 61 Guillon, Gonzalez-Julian, Dargatz, Kessel, Schierning, Räthel (bib39) 2014; 16 Guo, Liu (bib23) 2011; 21 Takeuchi, Amiya, Wada, Yubuta, Zhang (bib8) 2014; 66 Shen, Lu, Lu, Jin, Lu (bib71) 2005; 52 Li, Li, Zhao, Jiang (bib13) 2009; 475 Varalakshmi, Kamaraj, Murty (bib38) 2010; 527 Youssef, Zaddach, Niu, Irving, Koch (bib9) 2015; 3 Laurent-Brocq, Akhatova, Perrière, Chebini, Sauvage, Leroy, Champion (bib24) 2015; 88 Shun, Chang, Shiu (bib18) 2012; 556 Guo, Ng, Lu, Liu (bib22) 2011; 109 Middleburgh, King, Lumpkin, Cortie, Edwards (bib4) 2014; 599 Xu, Liu, Guo, Hirata, Fujita, Nieh (bib20) 2015; 84 Zhang, Zuo, Liaw, Cheng (bib44) 2013; 3 Wen, Zhao, Zhang, Ertorer, Dong, Lavernia (bib45) 2011; 46 Li, Wei, Lu, Lu, Gao (bib72) 2010; 464 Baudin, Etter, Penelle (bib60) 2007; 58 Zhang, Tao, Lu (bib53) 2008; 56 Mahajan, Pande, Imam, Rath (bib59) 1997; 45 Wen, Topping, Isheim, Seidman, Lavernia (bib28) 2013; 61 Tsai, Tsai, Yeh (bib47) 2013; 61 Williamson, Hall (bib50) 1953; 1 Wu, Zhang, Huang, Bei, Nieh (bib65) 2013; 68 Williamson, Smallman (bib49) 1956; 1 Varalakshmi, Kamaraj, Murty (bib37) 2008; 460 Jiang, Wen, Yang, Hu, Topping, Zhang (bib35) 2015; 89 Liu, Wu, He, Nieh, Lu (bib64) 2013; 68 Zhang, Zuo, Tang, Gao, Dahmen, Liaw (bib2) 2014; 61 Kurmanaeva, Topping, Wen, Sugahara, Yang, Zhang, Schoenung, Lavernia (bib34) 2015; 632 Wen, Zhao, Topping, Ashford, Figueiredo, Xu (bib29) 2012; 14 Suryanarayana (bib48) 2001; 46 Wen, Lavernia (bib57) 2012; 67 Wen, Islamgaliev, Nesterov, Valiev, Lavernia (bib51) 2013; 93 Shun, Chang, Shiu (bib17) 2012; 70 Wang, Wang, Wang, Tsai, Lai, Yeh (bib16) 2012; 26 Zhao, Zhu, Lavernia (bib61) 2010; 12 Wang, Ho, Cao, Liao, Li, Zhao (bib56) 2009; 94 Ma, Wen, Hu, Topping, Isheim, Seidman (bib30) 2014; 62 Chen, Lu, Lu (bib73) 2011; 64 Zhu, Liao, Wu (bib58) 2012; 57 Wang, Chen, Zhou, Ma (bib31) 2002; 419 Porter, Easterling (bib41) 1992 Wang, Zhang, Qiao, Chen (bib10) 2007; 15 Wang, Zhang, Chen (bib14) 2009; 478 Fu, Chen, Chen, Wen, Lavernia (bib6) 2014; 619 Murty, Yeh, Ranganathan (bib46) 2014 Whang (bib62) 2011 Courtney (bib66) 2005 Feuerbacher, Heidelmann, Thomas (bib7) 2015; 3 Ramesh (bib69) 2009 Wang, Zhang, Chen (bib15) 2009; 23 Tsai, Yeh (bib3) 2014; 2 Schuh, Mendez-Martin, Völker, George, Clemens, Pippan, Hohenwarter (bib25) 2015; 96 Kozlov, Zhdanov, Koneva (bib68) 2006; 9 Zuo, Ren, Liaw, Zhang (bib19) 2013; 20 Takeuchi, Inoue (bib43) 2005; 46 Zhu, Lu, Nieh (bib67) 2013; 61 Yeh, Chen, Lin, Gan, Chin, Shun (bib1) 2004; 6 Lin, Wen, Li, Wen, Liu, Lavernia (bib32) 2014; 45 Yao, Pradeep, Tasan, Raabe (bib26) 2014; 72–73 Zhou, Zhang, Wang, Chen (bib12) 2008; 92 Wang (10.1016/j.actamat.2016.01.050_bib10) 2007; 15 Kurmanaeva (10.1016/j.actamat.2016.01.050_bib34) 2015; 632 Tung (10.1016/j.actamat.2016.01.050_bib11) 2007; 61 Deng (10.1016/j.actamat.2016.01.050_bib27) 2015; 94 Chen (10.1016/j.actamat.2016.01.050_bib40) 2009; 481 Wu (10.1016/j.actamat.2016.01.050_bib65) 2013; 68 Tsai (10.1016/j.actamat.2016.01.050_bib47) 2013; 61 Wang (10.1016/j.actamat.2016.01.050_bib16) 2012; 26 Murty (10.1016/j.actamat.2016.01.050_bib46) 2014 Yao (10.1016/j.actamat.2016.01.050_bib26) 2014; 72–73 Tang (10.1016/j.actamat.2016.01.050_bib36) 2015; 151 Liddicoat (10.1016/j.actamat.2016.01.050_bib54) 2010; 1 Middleburgh (10.1016/j.actamat.2016.01.050_bib4) 2014; 599 Zhu (10.1016/j.actamat.2016.01.050_bib58) 2012; 57 Wang (10.1016/j.actamat.2016.01.050_bib14) 2009; 478 Liu (10.1016/j.actamat.2016.01.050_bib64) 2013; 68 Sriharitha (10.1016/j.actamat.2016.01.050_bib70) 2014; 583 Guo (10.1016/j.actamat.2016.01.050_bib22) 2011; 109 Zhang (10.1016/j.actamat.2016.01.050_bib53) 2008; 56 Wen (10.1016/j.actamat.2016.01.050_bib45) 2011; 46 Bahmanpour (10.1016/j.actamat.2016.01.050_bib55) 2012; 60 Zhang (10.1016/j.actamat.2016.01.050_bib44) 2013; 3 Tsai (10.1016/j.actamat.2016.01.050_bib3) 2014; 2 Ma (10.1016/j.actamat.2016.01.050_bib30) 2014; 62 Li (10.1016/j.actamat.2016.01.050_bib72) 2010; 464 Courtney (10.1016/j.actamat.2016.01.050_bib66) 2005 Varalakshmi (10.1016/j.actamat.2016.01.050_bib38) 2010; 527 Chen (10.1016/j.actamat.2016.01.050_bib73) 2011; 64 Shun (10.1016/j.actamat.2016.01.050_bib18) 2012; 556 Zhu (10.1016/j.actamat.2016.01.050_bib67) 2013; 61 Zuo (10.1016/j.actamat.2016.01.050_bib19) 2013; 20 Li (10.1016/j.actamat.2016.01.050_bib13) 2009; 475 He (10.1016/j.actamat.2016.01.050_bib63) 2014; 62 Ni (10.1016/j.actamat.2016.01.050_bib52) 2011; 64 Wang (10.1016/j.actamat.2016.01.050_bib56) 2009; 94 Suryanarayana (10.1016/j.actamat.2016.01.050_bib48) 2001; 46 Guo (10.1016/j.actamat.2016.01.050_bib23) 2011; 21 Fu (10.1016/j.actamat.2016.01.050_bib6) 2014; 619 Kozlov (10.1016/j.actamat.2016.01.050_bib68) 2006; 9 Mahajan (10.1016/j.actamat.2016.01.050_bib59) 1997; 45 Zhang (10.1016/j.actamat.2016.01.050_bib2) 2014; 61 Lin (10.1016/j.actamat.2016.01.050_bib32) 2014; 45 Laurent-Brocq (10.1016/j.actamat.2016.01.050_bib24) 2015; 88 Harrell (10.1016/j.actamat.2016.01.050_bib33) 2014; 45 Takeuchi (10.1016/j.actamat.2016.01.050_bib8) 2014; 66 Youssef (10.1016/j.actamat.2016.01.050_bib9) 2015; 3 Yeh (10.1016/j.actamat.2016.01.050_bib1) 2004; 6 Wu (10.1016/j.actamat.2016.01.050_bib5) 2014; 46 Feuerbacher (10.1016/j.actamat.2016.01.050_bib7) 2015; 3 Varalakshmi (10.1016/j.actamat.2016.01.050_bib37) 2008; 460 Jiang (10.1016/j.actamat.2016.01.050_bib35) 2015; 89 Guillon (10.1016/j.actamat.2016.01.050_bib39) 2014; 16 Williamson (10.1016/j.actamat.2016.01.050_bib50) 1953; 1 Xu (10.1016/j.actamat.2016.01.050_bib20) 2015; 84 Williamson (10.1016/j.actamat.2016.01.050_bib49) 1956; 1 Wen (10.1016/j.actamat.2016.01.050_bib51) 2013; 93 Schuh (10.1016/j.actamat.2016.01.050_bib25) 2015; 96 Ramesh (10.1016/j.actamat.2016.01.050_bib69) 2009 Wang (10.1016/j.actamat.2016.01.050_bib31) 2002; 419 Yang (10.1016/j.actamat.2016.01.050_bib42) 2012; 132 Takeuchi (10.1016/j.actamat.2016.01.050_bib43) 2005; 46 Wang (10.1016/j.actamat.2016.01.050_bib15) 2009; 23 Otto (10.1016/j.actamat.2016.01.050_bib21) 2013; 61 Zhou (10.1016/j.actamat.2016.01.050_bib12) 2008; 92 Zhao (10.1016/j.actamat.2016.01.050_bib61) 2010; 12 Porter (10.1016/j.actamat.2016.01.050_bib41) 1992 Shen (10.1016/j.actamat.2016.01.050_bib71) 2005; 52 Shun (10.1016/j.actamat.2016.01.050_bib17) 2012; 70 Wen (10.1016/j.actamat.2016.01.050_bib57) 2012; 67 Whang (10.1016/j.actamat.2016.01.050_bib62) 2011 Wen (10.1016/j.actamat.2016.01.050_bib29) 2012; 14 Wen (10.1016/j.actamat.2016.01.050_bib28) 2013; 61 Baudin (10.1016/j.actamat.2016.01.050_bib60) 2007; 58 |
References_xml | – volume: 58 start-page: 947 year: 2007 end-page: 952 ident: bib60 article-title: Annealing twin formation and recrystallization study of cold-drawn copper wires from EBSD measurements publication-title: Mater. Charact. – volume: 70 start-page: 63 year: 2012 end-page: 67 ident: bib17 article-title: Microstructure and mechanical properties of multiprincipal component CoCrFeNiMo publication-title: Mater. Charact. – volume: 64 start-page: 327 year: 2011 end-page: 330 ident: bib52 article-title: Grain growth and dislocation density evolution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion publication-title: Scr. Mater. – volume: 2 start-page: 107 year: 2014 end-page: 123 ident: bib3 article-title: High-entropy alloys: a critical review publication-title: Mater. Res. Lett. – volume: 527 start-page: 1027 year: 2010 end-page: 1030 ident: bib38 article-title: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying publication-title: Mater. Sci. Eng. A – volume: 68 start-page: 526 year: 2013 end-page: 529 ident: bib64 article-title: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy publication-title: Scr. Mater. – volume: 45 start-page: 6329 year: 2014 end-page: 6343 ident: bib33 article-title: Microstructure and strengthening mechanisms in an ultrafine grained Al-Mg-Sc alloy produced by powder metallurgy publication-title: Metall. Mater. Trans. A – volume: 61 start-page: 2769 year: 2013 end-page: 2782 ident: bib28 article-title: Strenthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering publication-title: Acta Mater. – volume: 61 start-page: 4887 year: 2013 end-page: 4897 ident: bib47 article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys publication-title: Acta Mater. – year: 2011 ident: bib62 article-title: Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications – volume: 23 start-page: 1254 year: 2009 end-page: 1259 ident: bib15 article-title: Tensile and compressive mechanical behavior of a CoCrCuFeNiAl publication-title: Int. J. Mod. Phys. B – volume: 92 start-page: 241917 year: 2008 ident: bib12 article-title: Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCu publication-title: Appl. Phys. Lett. – volume: 56 start-page: 2429 year: 2008 end-page: 2440 ident: bib53 article-title: Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles publication-title: Acta Mater. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concept and outcomes publication-title: Adv. Eng. Mater. – volume: 88 start-page: 355 year: 2015 end-page: 365 ident: bib24 article-title: Insights into the phase diagram of the CrMnFeCoNi high entropy alloy publication-title: Acta Mater. – volume: 132 start-page: 233 year: 2012 end-page: 238 ident: bib42 article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys publication-title: Mater. Chem. Phys. – year: 1992 ident: bib41 article-title: Phase transformations publication-title: Metals and Alloys – volume: 93 start-page: 481 year: 2013 end-page: 489 ident: bib51 article-title: Dynamic balance between grain refinement and grain growth during high-pressure torsion of Cu powders publication-title: Philos. Mag. Lett. – volume: 21 start-page: 433 year: 2011 end-page: 446 ident: bib23 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog. Nat. Sci. Mater. Int. – volume: 94 start-page: 091911 year: 2009 ident: bib56 article-title: Dislocation density evolution during high pressure torsion of a nanocrystalline Ni–Fe alloy publication-title: Appl. Phys. Lett. – volume: 62 start-page: 105 year: 2014 end-page: 113 ident: bib63 article-title: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system publication-title: Acta Mater. – volume: 556 start-page: 170 year: 2012 end-page: 174 ident: bib18 article-title: Microstructures and mechanical properties of multiprincipal component CoCrFeNiTi publication-title: Mater. Sci. Eng. A – volume: 1 start-page: 22 year: 1953 end-page: 31 ident: bib50 article-title: X-ray line broadening from filed Al and W publication-title: Acta Metall. – volume: 96 start-page: 258 year: 2015 end-page: 268 ident: bib25 article-title: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation publication-title: Acta Mater. – volume: 67 start-page: 245 year: 2012 end-page: 248 ident: bib57 article-title: Twins in cryomilled and spark plasma sintered Cu–Zn–Al publication-title: Scr. Mater. – volume: 46 start-page: 1 year: 2001 end-page: 184 ident: bib48 article-title: Mechanical alloying and milling publication-title: Prog. Mater. Sci. – volume: 3 start-page: 95 year: 2015 end-page: 99 ident: bib9 article-title: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures publication-title: Mater. Res. Lett. – volume: 26 start-page: 44 year: 2012 end-page: 51 ident: bib16 article-title: Effects of Al addition on the microstructure and mechanical property of Al publication-title: Intermetallics – volume: 599 start-page: 179 year: 2014 end-page: 182 ident: bib4 article-title: Segregation and migration of species in the CrCoFeNi high entropy alloy publication-title: J. Alloys Compd. – volume: 45 start-page: 2633 year: 1997 end-page: 2638 ident: bib59 article-title: Formation of annealing twins in f.c.c. crystals publication-title: Acta Mater. – volume: 12 start-page: 769 year: 2010 end-page: 778 ident: bib61 article-title: Strategies for improving tensile ductility of bulk nanostructured materials publication-title: Adv. Eng. Mater. – volume: 419 start-page: 912 year: 2002 end-page: 914 ident: bib31 article-title: High tensile ductility in a nanostructured metal publication-title: Nature – volume: 89 start-page: 327 year: 2015 end-page: 343 ident: bib35 article-title: Influence of length-scales on spatial distribution and interfacial characteristics of B publication-title: Acta Mater. – volume: 3 start-page: 1455 year: 2013 ident: bib44 article-title: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability publication-title: Sci. Rep. – year: 2014 ident: bib46 article-title: High-entropy Alloys – volume: 64 start-page: 311 year: 2011 end-page: 314 ident: bib73 article-title: Grain size dependence of tensile properties in ultrafine-grained Cu with nanoscale twins publication-title: Scr. Mater. – volume: 3 start-page: 1 year: 2015 end-page: 6 ident: bib7 article-title: Hexagonal high-entropy alloys publication-title: Mater. Res. Lett. – volume: 46 start-page: 2817 year: 2005 end-page: 2829 ident: bib43 article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element publication-title: Mater. Trans. – volume: 16 start-page: 830 year: 2014 end-page: 849 ident: bib39 article-title: Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology development publication-title: Adv. Eng. Mater. – volume: 1 start-page: 34 year: 1956 end-page: 46 ident: bib49 article-title: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum publication-title: Philos. Mag. – year: 2009 ident: bib69 article-title: Nanomaterials Mechanics and Mechanisms – volume: 61 start-page: 1 year: 2007 end-page: 5 ident: bib11 article-title: On the elemental effect of AlCoCrCuFeNi high-entropy alloy system publication-title: Mater. Lett. – volume: 94 start-page: 124 year: 2015 end-page: 133 ident: bib27 article-title: Design of a twinning-induced plasticity high entropy alloy publication-title: Acta Mater. – volume: 460 start-page: 253 year: 2008 end-page: 257 ident: bib37 article-title: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying publication-title: J. Alloys Compd. – volume: 14 start-page: 185 year: 2012 end-page: 194 ident: bib29 article-title: Influence of pressing temperature on microstructure evolution and mechanical behavior of ultrafine-grained Cu processed by equal-channel angular pressing publication-title: Adv. Eng. Mater. – volume: 632 start-page: 591 year: 2015 end-page: 603 ident: bib34 article-title: Strengthening mechanisms and deformation behavior of cryomilled Al–Cu–Mg–Ag alloy publication-title: J. Alloys Compd. – volume: 61 start-page: 5743 year: 2013 end-page: 5755 ident: bib21 article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy publication-title: Acta Mater. – volume: 15 start-page: 357 year: 2007 end-page: 362 ident: bib10 article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTi publication-title: Intermetallics – volume: 1 start-page: 63 year: 2010 ident: bib54 article-title: Nanostructural hierarchy increases the strength of aluminium alloys publication-title: Nat. Commun. – volume: 52 start-page: 989 year: 2005 end-page: 994 ident: bib71 article-title: Tensile properties of copper with nano-scale twins publication-title: Scr. Mater. – volume: 62 start-page: 141 year: 2014 end-page: 155 ident: bib30 article-title: Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy publication-title: Acta Mater. – volume: 45 start-page: 2673 year: 2014 end-page: 2688 ident: bib32 article-title: Stress-induced grain growth in an ultra-fine grained Al alloy publication-title: Metall. Mater. Trans. A – volume: 66 start-page: 1984 year: 2014 end-page: 1992 ident: bib8 article-title: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams publication-title: JOM – volume: 68 start-page: 118 year: 2013 end-page: 121 ident: bib65 article-title: Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals publication-title: Scr. Mater. – volume: 46 start-page: 3006 year: 2011 end-page: 3012 ident: bib45 article-title: The influence of oxygen and nitrogen contamination on the densification behavior during SPS publication-title: J. Mater. Sci. – volume: 583 start-page: 419 year: 2014 end-page: 426 ident: bib70 article-title: Thermal stability and strengthening in spark plasma sintered Al publication-title: J. Alloys Compd. – volume: 481 start-page: 768 year: 2009 end-page: 775 ident: bib40 article-title: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system publication-title: J. Alloys Compd. – volume: 72–73 start-page: 5 year: 2014 end-page: 8 ident: bib26 article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility publication-title: Scr. Mater. – volume: 464 start-page: 877 year: 2010 end-page: 880 ident: bib72 article-title: Dislocation nucleation governed softening and maximum strength in nano-twinned metals publication-title: Nature – volume: 619 start-page: 137 year: 2014 end-page: 145 ident: bib6 article-title: Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al publication-title: Mater. Sci. Eng. A – volume: 478 start-page: 321 year: 2009 end-page: 324 ident: bib14 article-title: Atomic packing efficiency and phase transition in a high entropy alloy publication-title: J. Alloys Compd. – volume: 20 start-page: 549 year: 2013 end-page: 555 ident: bib19 article-title: Processing effects on the magnetic and mechanical properties of FeCoNiAl publication-title: Int. J. Min. Met. Mater. – volume: 61 start-page: 2993 year: 2013 end-page: 3001 ident: bib67 article-title: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy publication-title: Acta Mater. – volume: 61 start-page: 1 year: 2014 end-page: 93 ident: bib2 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. – volume: 60 start-page: 3340 year: 2012 end-page: 3349 ident: bib55 article-title: Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy publication-title: Acta Mater. – volume: 84 start-page: 145 year: 2015 end-page: 152 ident: bib20 article-title: Nanoscale phase separation in a FCC-based CoCrCuFeNiAl publication-title: Acta Mater. – volume: 57 start-page: 1 year: 2012 end-page: 62 ident: bib58 article-title: Deformation twinning in nanocrystalline materials publication-title: Prog. Mater. Sci. – volume: 9 start-page: 75 year: 2006 end-page: 85 ident: bib68 article-title: Barrier retardation of dislocations. Hall-Petch problem publication-title: Phys. Mesomech. – year: 2005 ident: bib66 article-title: Mechanical Behavior of Materials – volume: 475 start-page: 752 year: 2009 end-page: 757 ident: bib13 article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys publication-title: J. Alloys Compd. – volume: 46 start-page: 131 year: 2014 end-page: 140 ident: bib5 article-title: Recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys publication-title: Intermetallics – volume: 109 start-page: 103505 year: 2011 ident: bib22 article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys publication-title: J. Appl. Phys. – volume: 151 start-page: 126 year: 2015 end-page: 129 ident: bib36 article-title: Hardening of an Al publication-title: Mater. Lett. – volume: 478 start-page: 321 year: 2009 ident: 10.1016/j.actamat.2016.01.050_bib14 article-title: Atomic packing efficiency and phase transition in a high entropy alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.11.059 – volume: 45 start-page: 6329 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib33 article-title: Microstructure and strengthening mechanisms in an ultrafine grained Al-Mg-Sc alloy produced by powder metallurgy publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-014-2569-6 – volume: 460 start-page: 253 year: 2008 ident: 10.1016/j.actamat.2016.01.050_bib37 article-title: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2007.05.104 – volume: 64 start-page: 327 year: 2011 ident: 10.1016/j.actamat.2016.01.050_bib52 article-title: Grain growth and dislocation density evolution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2010.10.027 – volume: 23 start-page: 1254 year: 2009 ident: 10.1016/j.actamat.2016.01.050_bib15 article-title: Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979209060774 – volume: 45 start-page: 2673 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib32 article-title: Stress-induced grain growth in an ultra-fine grained Al alloy publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-014-2258-5 – year: 1992 ident: 10.1016/j.actamat.2016.01.050_bib41 article-title: Phase transformations – volume: 68 start-page: 118 year: 2013 ident: 10.1016/j.actamat.2016.01.050_bib65 article-title: Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2012.09.025 – volume: 52 start-page: 989 year: 2005 ident: 10.1016/j.actamat.2016.01.050_bib71 article-title: Tensile properties of copper with nano-scale twins publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2005.01.033 – volume: 26 start-page: 44 year: 2012 ident: 10.1016/j.actamat.2016.01.050_bib16 article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2012.03.005 – volume: 84 start-page: 145 year: 2015 ident: 10.1016/j.actamat.2016.01.050_bib20 article-title: Nanoscale phase separation in a FCC-based CoCrCuFeNiAl0.5 high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.10.033 – volume: 14 start-page: 185 year: 2012 ident: 10.1016/j.actamat.2016.01.050_bib29 article-title: Influence of pressing temperature on microstructure evolution and mechanical behavior of ultrafine-grained Cu processed by equal-channel angular pressing publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201100080 – volume: 60 start-page: 3340 year: 2012 ident: 10.1016/j.actamat.2016.01.050_bib55 article-title: Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.02.036 – volume: 16 start-page: 830 issue: 7 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib39 article-title: Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology development publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201300409 – volume: 599 start-page: 179 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib4 article-title: Segregation and migration of species in the CrCoFeNi high entropy alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.01.135 – volume: 61 start-page: 4887 year: 2013 ident: 10.1016/j.actamat.2016.01.050_bib47 article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.04.058 – volume: 61 start-page: 2993 year: 2013 ident: 10.1016/j.actamat.2016.01.050_bib67 article-title: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.01.059 – year: 2005 ident: 10.1016/j.actamat.2016.01.050_bib66 – volume: 132 start-page: 233 year: 2012 ident: 10.1016/j.actamat.2016.01.050_bib42 article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.11.021 – volume: 6 start-page: 299 issue: 5 year: 2004 ident: 10.1016/j.actamat.2016.01.050_bib1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concept and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 61 start-page: 1 year: 2007 ident: 10.1016/j.actamat.2016.01.050_bib11 article-title: On the elemental effect of AlCoCrCuFeNi high-entropy alloy system publication-title: Mater. Lett. doi: 10.1016/j.matlet.2006.03.140 – volume: 92 start-page: 241917 year: 2008 ident: 10.1016/j.actamat.2016.01.050_bib12 article-title: Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1−x solid-solution alloys publication-title: Appl. Phys. Lett. doi: 10.1063/1.2938690 – volume: 475 start-page: 752 year: 2009 ident: 10.1016/j.actamat.2016.01.050_bib13 article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.07.124 – volume: 93 start-page: 481 year: 2013 ident: 10.1016/j.actamat.2016.01.050_bib51 article-title: Dynamic balance between grain refinement and grain growth during high-pressure torsion of Cu powders publication-title: Philos. Mag. Lett. doi: 10.1080/09500839.2013.805268 – volume: 15 start-page: 357 year: 2007 ident: 10.1016/j.actamat.2016.01.050_bib10 article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2006.08.005 – volume: 46 start-page: 2817 issue: 12 year: 2005 ident: 10.1016/j.actamat.2016.01.050_bib43 article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element publication-title: Mater. Trans. doi: 10.2320/matertrans.46.2817 – volume: 46 start-page: 3006 year: 2011 ident: 10.1016/j.actamat.2016.01.050_bib45 article-title: The influence of oxygen and nitrogen contamination on the densification behavior during SPS publication-title: J. Mater. Sci. doi: 10.1007/s10853-010-5178-9 – volume: 3 start-page: 1 year: 2015 ident: 10.1016/j.actamat.2016.01.050_bib7 article-title: Hexagonal high-entropy alloys publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2014.951493 – volume: 632 start-page: 591 year: 2015 ident: 10.1016/j.actamat.2016.01.050_bib34 article-title: Strengthening mechanisms and deformation behavior of cryomilled Al–Cu–Mg–Ag alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.01.160 – year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib46 – year: 2011 ident: 10.1016/j.actamat.2016.01.050_bib62 – volume: 464 start-page: 877 year: 2010 ident: 10.1016/j.actamat.2016.01.050_bib72 article-title: Dislocation nucleation governed softening and maximum strength in nano-twinned metals publication-title: Nature doi: 10.1038/nature08929 – volume: 45 start-page: 2633 year: 1997 ident: 10.1016/j.actamat.2016.01.050_bib59 article-title: Formation of annealing twins in f.c.c. crystals publication-title: Acta Mater. doi: 10.1016/S1359-6454(96)00336-9 – volume: 68 start-page: 526 year: 2013 ident: 10.1016/j.actamat.2016.01.050_bib64 article-title: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2012.12.002 – volume: 1 start-page: 22 year: 1953 ident: 10.1016/j.actamat.2016.01.050_bib50 article-title: X-ray line broadening from filed Al and W publication-title: Acta Metall. doi: 10.1016/0001-6160(53)90006-6 – volume: 88 start-page: 355 year: 2015 ident: 10.1016/j.actamat.2016.01.050_bib24 article-title: Insights into the phase diagram of the CrMnFeCoNi high entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.01.068 – volume: 58 start-page: 947 year: 2007 ident: 10.1016/j.actamat.2016.01.050_bib60 article-title: Annealing twin formation and recrystallization study of cold-drawn copper wires from EBSD measurements publication-title: Mater. Charact. doi: 10.1016/j.matchar.2006.09.009 – volume: 1 start-page: 63 year: 2010 ident: 10.1016/j.actamat.2016.01.050_bib54 article-title: Nanostructural hierarchy increases the strength of aluminium alloys publication-title: Nat. Commun. doi: 10.1038/ncomms1062 – volume: 21 start-page: 433 year: 2011 ident: 10.1016/j.actamat.2016.01.050_bib23 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog. Nat. Sci. Mater. Int. doi: 10.1016/S1002-0071(12)60080-X – volume: 94 start-page: 124 year: 2015 ident: 10.1016/j.actamat.2016.01.050_bib27 article-title: Design of a twinning-induced plasticity high entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.04.014 – volume: 527 start-page: 1027 year: 2010 ident: 10.1016/j.actamat.2016.01.050_bib38 article-title: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2009.09.019 – volume: 70 start-page: 63 year: 2012 ident: 10.1016/j.actamat.2016.01.050_bib17 article-title: Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys publication-title: Mater. Charact. doi: 10.1016/j.matchar.2012.05.005 – volume: 57 start-page: 1 year: 2012 ident: 10.1016/j.actamat.2016.01.050_bib58 article-title: Deformation twinning in nanocrystalline materials publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2011.05.001 – volume: 64 start-page: 311 year: 2011 ident: 10.1016/j.actamat.2016.01.050_bib73 article-title: Grain size dependence of tensile properties in ultrafine-grained Cu with nanoscale twins publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2010.10.015 – volume: 66 start-page: 1984 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib8 article-title: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams publication-title: JOM doi: 10.1007/s11837-014-1085-x – volume: 72–73 start-page: 5 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib26 article-title: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2013.09.030 – volume: 419 start-page: 912 year: 2002 ident: 10.1016/j.actamat.2016.01.050_bib31 article-title: High tensile ductility in a nanostructured metal publication-title: Nature doi: 10.1038/nature01133 – volume: 61 start-page: 2769 year: 2013 ident: 10.1016/j.actamat.2016.01.050_bib28 article-title: Strenthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.09.036 – volume: 12 start-page: 769 year: 2010 ident: 10.1016/j.actamat.2016.01.050_bib61 article-title: Strategies for improving tensile ductility of bulk nanostructured materials publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200900335 – volume: 556 start-page: 170 year: 2012 ident: 10.1016/j.actamat.2016.01.050_bib18 article-title: Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.06.075 – volume: 46 start-page: 1 year: 2001 ident: 10.1016/j.actamat.2016.01.050_bib48 article-title: Mechanical alloying and milling publication-title: Prog. Mater. Sci. doi: 10.1016/S0079-6425(99)00010-9 – volume: 151 start-page: 126 year: 2015 ident: 10.1016/j.actamat.2016.01.050_bib36 article-title: Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.03.066 – volume: 481 start-page: 768 year: 2009 ident: 10.1016/j.actamat.2016.01.050_bib40 article-title: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.03.087 – volume: 61 start-page: 5743 year: 2013 ident: 10.1016/j.actamat.2016.01.050_bib21 article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.06.018 – volume: 89 start-page: 327 year: 2015 ident: 10.1016/j.actamat.2016.01.050_bib35 article-title: Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.01.062 – volume: 46 start-page: 131 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib5 article-title: Recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2013.10.024 – volume: 61 start-page: 1 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib2 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 62 start-page: 141 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib30 article-title: Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.09.042 – volume: 2 start-page: 107 issue: 3 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib3 article-title: High-entropy alloys: a critical review publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2014.912690 – volume: 94 start-page: 091911 year: 2009 ident: 10.1016/j.actamat.2016.01.050_bib56 article-title: Dislocation density evolution during high pressure torsion of a nanocrystalline Ni–Fe alloy publication-title: Appl. Phys. Lett. doi: 10.1063/1.3095852 – volume: 96 start-page: 258 year: 2015 ident: 10.1016/j.actamat.2016.01.050_bib25 article-title: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.06.025 – year: 2009 ident: 10.1016/j.actamat.2016.01.050_bib69 – volume: 109 start-page: 103505 year: 2011 ident: 10.1016/j.actamat.2016.01.050_bib22 article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys publication-title: J. Appl. Phys. doi: 10.1063/1.3587228 – volume: 583 start-page: 419 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib70 article-title: Thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.08.176 – volume: 3 start-page: 95 year: 2015 ident: 10.1016/j.actamat.2016.01.050_bib9 article-title: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2014.985855 – volume: 67 start-page: 245 year: 2012 ident: 10.1016/j.actamat.2016.01.050_bib57 article-title: Twins in cryomilled and spark plasma sintered Cu–Zn–Al publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2012.04.024 – volume: 56 start-page: 2429 year: 2008 ident: 10.1016/j.actamat.2016.01.050_bib53 article-title: Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles publication-title: Acta Mater. doi: 10.1016/j.actamat.2008.01.030 – volume: 20 start-page: 549 year: 2013 ident: 10.1016/j.actamat.2016.01.050_bib19 article-title: Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy publication-title: Int. J. Min. Met. Mater. doi: 10.1007/s12613-013-0764-x – volume: 619 start-page: 137 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib6 article-title: Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.09.077 – volume: 62 start-page: 105 year: 2014 ident: 10.1016/j.actamat.2016.01.050_bib63 article-title: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.09.037 – volume: 3 start-page: 1455 year: 2013 ident: 10.1016/j.actamat.2016.01.050_bib44 article-title: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability publication-title: Sci. Rep. doi: 10.1038/srep01455 – volume: 1 start-page: 34 year: 1956 ident: 10.1016/j.actamat.2016.01.050_bib49 article-title: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum publication-title: Philos. Mag. doi: 10.1080/14786435608238074 – volume: 9 start-page: 75 issue: 3–4 year: 2006 ident: 10.1016/j.actamat.2016.01.050_bib68 article-title: Barrier retardation of dislocations. Hall-Petch problem publication-title: Phys. Mesomech. |
SSID | ssj0012740 |
Score | 2.6355903 |
Snippet | We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 59 |
SubjectTerms | Bulk sampling Face centered cubic lattice Grains High-entropy alloys Microstructure Nanocrystalline Nanostructure Single-phase Spark plasma sintering Strengthening Strengthening mechanism Transmission electron microscopy |
Title | Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy |
URI | https://dx.doi.org/10.1016/j.actamat.2016.01.050 https://www.proquest.com/docview/1808058996 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLem7QIHxBgTAzYZaVe3cWMn9rGKqApovcCk3SzbcSBT51Rre-iFM3827-WjgwlpEpdISd6LLD_nfcTv9wshl25SVQICD9QmiWRChsC0cglzKmS6dFpVCtHIV4tsfi0-38ibA1IMWBhsq-x9f-fTW2_dXxn3szle1fX4K0-lRj4q3rJG5YgoFyLHVT76uW_z4FB1dUhhqRlKP6B4xrcw5I2FxBA7vLKWvRPh9_-OT488dRt-Zi_Jiz5vpNNuaMfkIMRX5PkfbIIn5NcVNtd1hLDb-0BtLClCQeJ3ZDgAEXoXEOdbr-_WtI5wn86Kgu4VQBqEloGtfkBoo9HGxt_vIHtE2u5Ai2YiF_VEzsJETpf5SBZbDkeKhMcMvxE3qx3Fbfzda3I9-_itmLP-RwvMi0RtmNdKIaY291WSeikgqrtSVTrNoFxLbaor5HkvfQ65RwkeQEgeXO6t9kpYq5L0lBzGJoY3hKbWJp47pYNFbkFsUs2qwLXTIshcV2dEDNNrfM9Cjj_DWJqh3ezW9FYxaBWTcANWOSOjvdqqo-F4SkENtjN_rScDoeIp1Q-DrQ28a7iBYmNotmvDkYRTQoWavf3_x78jz_Cs6_55Tw7ByOEcEpuNu2hX7gU5mn76Ml_8Bj9M-DY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHVF6iQMFIcMxunNiJfeBQpay2tLsXWqk34zhOSbV1Vt1dob1w5v_wBzuTx_IQUiWkXnJIPFY0Y88j-eYzIe_yqCw5BB6oTUIRcOFcoGQeBrl0iSpyJUuJ3ciTaTI-5Z_OxNkW-dn3wiCssvP9rU9vvHV3Z9hpczivquFnFguFfFSsYY1K0w5ZeeTW36BuW3w4PAAjv4-i0ceTbBx0RwsElodyGVglJXaRprYMYys4xLG8kKWKEyhQYhOrEpnNC5tCtC1gzXPBXJ5ao6zkxsgwhnnvkLsc3AUemzD4vsGVMCjz2tZkoQJ8vV9tQ8ML0NHSQCaKkLKkoQvFfv9_B8S_QkMT70Y75GGXqNL9VhePyJbzj8mD3-gLn5AfE0TztQy0qytHjS8o9p74c6RUgCH00mFjcbW4XNDKw3M6yjK6EYDRMGjmgvlXiKXUG1_bqzWkq8gT7mhWR2JaRWLkIrE_SwciWzG4UmRYDvCjdD1fU8QNrJ-S01tR_zOy7WvvnhMaGxNalkvlDJIZIio2KR1TueJOpKrcJbxXr7Yd7TmevjHTPb7tQndW0WgVHTINVtklg43YvOX9uElA9rbTfyxgDbHpJtG3va01bG78Y2O8q1cLzZD1U0BJnLz4_-nfkHvjk8mxPj6cHr0k9_FJCz16RbbB4G4Psqpl_rpZxZR8ue1tcw0UuTG_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+strengthening+mechanisms+in+an+FCC+structured+single-phase+nanocrystalline+Co25Ni25Fe25Al7.5Cu17.5+high-entropy+alloy&rft.jtitle=Acta+materialia&rft.au=Fu%2C+Zhiqiang&rft.au=Chen%2C+Weiping&rft.au=Wen%2C+Haiming&rft.au=Zhang%2C+Dalong&rft.date=2016-04-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=107&rft.spage=59&rft.epage=71&rft_id=info:doi/10.1016%2Fj.actamat.2016.01.050&rft.externalDocID=S1359645416300477 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |