Multi-Agent Reinforcement Learning-Based Pilot Assignment for Cell-Free Massive MIMO Systems
Cell-free massive multiple-input multiple-output (CF-mMIMO) has been considered as one of the potential technologies for beyond-5G and 6G to meet the demand for higher data capacity and uniform service rate for user equipment. However, reusing the same pilot signals by several users, owing to limite...
Saved in:
Published in | IEEE access Vol. 10; pp. 120492 - 120502 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cell-free massive multiple-input multiple-output (CF-mMIMO) has been considered as one of the potential technologies for beyond-5G and 6G to meet the demand for higher data capacity and uniform service rate for user equipment. However, reusing the same pilot signals by several users, owing to limited pilot resources, can result in the so-called pilot contamination problem, which can prevent CF-mMIMO from unlocking its full performance potential. It is challenging to employ classical pilot assignment (PA) methods to serve many users simultaneously with low complexity; therefore, a scalable and distributed PA scheme is required. In this paper, we utilize a learning-based approach to handle the pilot contamination problem by formulating PA as a multi-agent static game, developing a two-level hierarchical learning algorithm to mitigate the effects of pilot contamination, and presenting an efficient yet scalable PA strategy. We first model a PA problem as a static multi-agent game with P teams (agents), in which each team is represented by a specific pilot. We then define a multi-agent structure that can automatically determine the most appropriate PA policy in a distributed manner. The numerical results demonstrate that the proposed PA algorithm outperforms previous suboptimal algorithms in terms of the per-user spectral efficiency (SE). In particular, the proposed approach can increase the average SE and 95%-likely SE by approximately 2.2% and 3.3%, respectively, compared to the best state-of-the-art solution. |
---|---|
AbstractList | Cell-free massive multiple-input multiple-output (CF-mMIMO) has been considered as one of the potential technologies for beyond-5G and 6G to meet the demand for higher data capacity and uniform service rate for user equipment. However, reusing the same pilot signals by several users, owing to limited pilot resources, can result in the so-called pilot contamination problem, which can prevent CF-mMIMO from unlocking its full performance potential. It is challenging to employ classical pilot assignment (PA) methods to serve many users simultaneously with low complexity; therefore, a scalable and distributed PA scheme is required. In this paper, we utilize a learning-based approach to handle the pilot contamination problem by formulating PA as a multi-agent static game, developing a two-level hierarchical learning algorithm to mitigate the effects of pilot contamination, and presenting an efficient yet scalable PA strategy. We first model a PA problem as a static multi-agent game with P teams (agents), in which each team is represented by a specific pilot. We then define a multi-agent structure that can automatically determine the most appropriate PA policy in a distributed manner. The numerical results demonstrate that the proposed PA algorithm outperforms previous suboptimal algorithms in terms of the per-user spectral efficiency (SE). In particular, the proposed approach can increase the average SE and 95%-likely SE by approximately 2.2% and 3.3%, respectively, compared to the best state-of-the-art solution. |
Author | Dehghani, Mohammad Javad Bashar, Manijeh Xiao, Pei Debbah, Merouane Rahmani, Mostafa |
Author_xml | – sequence: 1 givenname: Mostafa orcidid: 0000-0002-7943-9977 surname: Rahmani fullname: Rahmani, Mostafa email: m.rahmani@sutech.ac.ir organization: Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran – sequence: 2 givenname: Mohammad Javad orcidid: 0000-0003-0972-2352 surname: Dehghani fullname: Dehghani, Mohammad Javad organization: Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran – sequence: 3 givenname: Pei orcidid: 0000-0002-7886-5878 surname: Xiao fullname: Xiao, Pei organization: 5GIC & 6GIC, Institute for Communication Systems (ICS), University of Surrey, Guildford, U.K – sequence: 4 givenname: Manijeh surname: Bashar fullname: Bashar, Manijeh organization: British Telecommunications (BT) Company, Ipswich, U.K – sequence: 5 givenname: Merouane surname: Debbah fullname: Debbah, Merouane organization: Technology Innovation Institute, Abu Dhabi, United Arab Emirates |
BookMark | eNp9kU9rGzEQxZeQQtM0nyCXhZzX1b9dSUd3SVqDTUrd3ApCqx0ZmbWUSnIg375yNimlh-oy0sz7PQa9D9W5Dx6q6hqjBcZIflr2_e12uyCIkAUlBEvanlUXBHeyoS3tzv-6v6-uUtqjckRptfyi-rk5Ttk1yx34XH8H522IBg6n1xp09M7vms86wVh_c1PI9TIlt_Mv86Kse5im5i4C1BtdJk-lrjb39fY5ZTikj9U7q6cEV6_1snq4u_3Rf23W919W_XLdGIZEbowwfBzRoAlCmGtLMbeAaEsYJZwxARyTgVk8smEgFrcdDGygHZeSQQdA6WW1mn3HoPfqMbqDjs8qaKdeGiHulI7ZmQkUF5JSLqjQQjMurBbWlF8ch9FwY9BQvG5mr8cYfh0hZbUPx-jL-opweoI7zItKzioTQ0oRrDIu6-yCz1G7SWGkTtmoORt1yka9ZlNY-g_7tvH_qeuZcgDwh5CyRagV9DdrCJtg |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_MWC_007_2300176 crossref_primary_10_1109_OJCOMS_2024_3447839 crossref_primary_10_1109_TWC_2023_3321334 crossref_primary_10_1007_s11276_023_03641_w crossref_primary_10_1109_JIOT_2024_3428922 crossref_primary_10_1109_JIOT_2024_3440579 crossref_primary_10_1109_TWC_2024_3403541 |
Cites_doi | 10.1109/ICCW.2018.8403508 10.1561/2000000093 10.1109/LWC.2020.3020003 10.1109/LWC.2019.2904229 10.1109/WCNCW49093.2021.9420002 10.1049/cmu2.12447 10.1109/MCOM.2017.1700487 10.1109/JSAC.2020.3018836 10.1109/JSAC.2019.2933973 10.1109/ACCESS.2021.3110102 10.1017/CBO9781316799895 10.1109/TVT.2020.3000496 10.1109/TWC.2017.2655515 10.1109/WCNC51071.2022.9771964 10.1109/TWC.2022.3146624 10.1038/nature14236 10.1109/TVT.2019.2956217 10.1109/TVT.2018.2867606 10.1109/LCOMM.2021.3089234 10.1109/ICTC46691.2019.8939682 10.1109/TVT.2021.3076440 10.1109/TWC.2019.2941478 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3221935 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 120502 |
ExternalDocumentID | oai_doaj_org_article_789337838a8a478fa8fc110dbdc7cc0b 10_1109_ACCESS_2022_3221935 9950058 |
Genre | orig-research |
GrantInformation_xml | – fundername: U.K. Engineering and Physical Sciences Research Council grantid: EP/P03456X/1 funderid: 10.13039/501100000266 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-c8c7dd0ba20017af317fe03524327448e712b4f1d4bb2f156eb4b367994e6ee33 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:27:06 EDT 2025 Mon Jun 30 05:34:12 EDT 2025 Thu Apr 24 23:09:28 EDT 2025 Tue Jul 01 02:48:33 EDT 2025 Wed Aug 27 02:15:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-c8c7dd0ba20017af317fe03524327448e712b4f1d4bb2f156eb4b367994e6ee33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7943-9977 0000-0002-7886-5878 0000-0003-0972-2352 |
OpenAccessLink | https://doaj.org/article/789337838a8a478fa8fc110dbdc7cc0b |
PQID | 2739337617 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2022_3221935 ieee_primary_9950058 doaj_primary_oai_doaj_org_article_789337838a8a478fa8fc110dbdc7cc0b proquest_journals_2739337617 crossref_citationtrail_10_1109_ACCESS_2022_3221935 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 mohebi (ref26) 2022 mnih (ref22) 2015; 518 ref23 ref25 ref20 sutton (ref21) 2018 aggarwal (ref12) 2022; 3 ref8 ref7 ref9 ref4 ref3 ref6 ref5 bu?oniu (ref24) 2010 |
References_xml | – volume: 3 start-page: 115 year: 2022 ident: ref12 article-title: Has the future started? The current growth of artificial intelligence, machine learning, and deep learning publication-title: Iraqi J Comput Sci Math – ident: ref6 doi: 10.1109/ICCW.2018.8403508 – ident: ref2 doi: 10.1561/2000000093 – year: 2022 ident: ref26 article-title: Repulsive clustering based pilot assignment for cell-free massive MIMO systems publication-title: arXiv 2203 12403 – ident: ref10 doi: 10.1109/LWC.2020.3020003 – ident: ref13 doi: 10.1109/LWC.2019.2904229 – ident: ref25 doi: 10.1109/WCNCW49093.2021.9420002 – ident: ref23 doi: 10.1049/cmu2.12447 – ident: ref1 doi: 10.1109/MCOM.2017.1700487 – ident: ref18 doi: 10.1109/JSAC.2020.3018836 – ident: ref20 doi: 10.1109/JSAC.2019.2933973 – ident: ref16 doi: 10.1109/ACCESS.2021.3110102 – ident: ref5 doi: 10.1017/CBO9781316799895 – ident: ref8 doi: 10.1109/TVT.2020.3000496 – ident: ref3 doi: 10.1109/TWC.2017.2655515 – ident: ref17 doi: 10.1109/WCNC51071.2022.9771964 – ident: ref7 doi: 10.1109/TWC.2022.3146624 – volume: 518 start-page: 529 year: 2015 ident: ref22 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: ref11 doi: 10.1109/TVT.2019.2956217 – ident: ref19 doi: 10.1109/TVT.2018.2867606 – ident: ref14 doi: 10.1109/LCOMM.2021.3089234 – ident: ref15 doi: 10.1109/ICTC46691.2019.8939682 – year: 2018 ident: ref21 publication-title: Reinforcement Learning An Introduction – ident: ref9 doi: 10.1109/TVT.2021.3076440 – start-page: 183 year: 2010 ident: ref24 article-title: Multi-agent reinforcement learning: An overview publication-title: Innovations in Multi-Agent Systems and Applications - 1 – ident: ref4 doi: 10.1109/TWC.2019.2941478 |
SSID | ssj0000816957 |
Score | 2.349575 |
Snippet | Cell-free massive multiple-input multiple-output (CF-mMIMO) has been considered as one of the potential technologies for beyond-5G and 6G to meet the demand... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120492 |
SubjectTerms | Algorithms Antennas Cell-free massive MIMO Contamination Data communication deep reinforcement learning Fading channels Interference Machine learning MIMO communication Multiagent systems pilot assignment pilot contamination Reinforcement learning Spectral efficiency Uplink Wireless communication |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcEBKAWxpSAfONbbbOLEyXG7YtUiBRCiUg9Ilh-TqmK1i9rshV_PjOONeAlxiyLbcfSN7ZnxzDcAb9BpxxebsqppNSmlnbQOUVahtDpnT3-kY2jfVxdX6t11eb0Hp2MuDCLG4DOc8mO8yw8bv2VX2VnTlFwGbx_2yXAbcrVGfwoXkGhKnYiF6PNn88WC_oFMwDyfktiSplL-cvhEjv5UVOWPnTgeL8vH0O4mNkSVfJ1uezf133_jbPzfmT-BR0nPFPNBMA5hD9dP4eFP7INH8CUm38o5J1eJTxgpVH30ForEunojz-mQC-Lj7WrTC0Ly9iYGDwhqKRa4WsnlHaJoSQGnTVO0l-0HkSjQn8HV8u3nxYVMxRakV1ndS197HULmLAdZaduRXtEhk6WqgkkEa9Sz3KluFpRzeUdWHzrliko3jcIKsSiew8F6s8YXIJrSayzKYIsuVzrLnK5scDU2BRuT3WwC-Q4F4xMTORfEWJlokWSNGaAzDJ1J0E3gdOz0bSDi-Hfzc4Z3bMos2vEFwWLSojSalLVCk5Da2ipdd7buPA0YXPDa-8xN4IihHAdJKE7gZCcsJq34e5MztSDt1jN9_PdeL-EBT3Bw35zAQX-3xVek0PTudZTkH6tY8Mc priority: 102 providerName: IEEE |
Title | Multi-Agent Reinforcement Learning-Based Pilot Assignment for Cell-Free Massive MIMO Systems |
URI | https://ieeexplore.ieee.org/document/9950058 https://www.proquest.com/docview/2739337617 https://doaj.org/article/789337838a8a478fa8fc110dbdc7cc0b |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLHDwa3Ud2kz3WYlGhKqLgQQh5zIpQqmj9_85kY6kIevG6ZPOYmcwryTeMHYJTjg42Ra1xN0mpnLAOQNShsqqgTH-EYxhd1ef38vKhepgr9UV3wjp44I5wJ4rqwSvsyGorlW6tbj2arOCCV95njrQv2ry5YCrqYJ3XTaUSzBBO5qQ_GOCKMCAsimMUYvRbqm-mKCL2pxIrP_RyNDbDVbaSvETe72a3xhZgss6W57ADN9hjfDor-vQ0it9CBED1MdfHE2bqkzhFExX4zfP4ZcqRD89P8eifY0s-gPFYDN8A-AjdZ1R5fHQxuuYJwHyT3Q_P7gbnIpVKEF5meiq89iqEzFm6IqVsi15BCwR1KkuCANSg8sLJNg_SuaLFmA2cdGWtmkZCDVCWW2xx8jKBbcabyisoq2DLtpAqy5yqbXAampJCwTbvseKLasYnHHEqZzE2MZ7IGtOR2hCpTSJ1jx3NfnrtYDR-b35K7Jg1JQzs-AElwyTJMH9JRo9tEDNnnTRNRUUUe2zvi7km7dd3UxAwIOraXO38x9C7bImW06Vq9tji9O0D9tF5mbqDKKcH8Z3hJ-s56Mc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBXUpQV84Fhv83Di5LhdsdpCUxBqpR6QLD8mVcVqt2qzF349Y8cblYcQtyiyo4m-sWc8nvkG4D0aafzFJi8rWk1CSMO1QeSlK7TMfKQ_0DE0Z-X8Qny8LC634HCohUHEkHyGY_8Y7vLdyq59qOyorgvfBu8BPCS7X6R9tdYQUfEtJOpCRmohEuBoMp3SX9AhMMvGpLjkqxS_mJ_A0h_bqvyxFwcDM3sKzUa0Pq_k-3jdmbH98Rtr4__K_gyeRE-TTXrVeA5buHwBO_f4B3fhWyi_5RNfXsW-YiBRtSFeyCLv6hU_JjPn2JfrxapjhOX1VUgfYDSSTXGx4LNbRNaQC07bJmtOms8skqC_hIvZh_PpnMd2C9yKpOq4rax0LjHap1lJ3ZJn0aKnSxW5pxGsUKaZEW3qhDFZS-c-NMLkpaxrgSVinr-C7eVqiXvA6sJKzAun8zYTMkmMLLUzFda5P0626QiyDQrKRi5y3xJjocKZJKlVD53y0KkI3QgOh0k3PRXHv4cfe3iHoZ5HO7wgWFRclkqSu5ZLUlNdaSGrVletpQ8646y0NjEj2PVQDh-JKI7gYKMsKq75O5V5ckHar1P5-u-z3sGj-Xlzqk5Pzj7tw2MvbB_MOYDt7naNb8i96czboNU_AV939BA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Reinforcement+Learning-Based+Pilot+Assignment+for+Cell-Free+Massive+MIMO+Systems&rft.jtitle=IEEE+access&rft.au=Rahmani%2C+Mostafa&rft.au=Dehghani%2C+Mohammad+Javad&rft.au=Xiao%2C+Pei&rft.au=Bashar%2C+Manijeh&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=120492&rft.epage=120502&rft_id=info:doi/10.1109%2FACCESS.2022.3221935&rft.externalDocID=9950058 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |