Multi-Agent Reinforcement Learning-Based Pilot Assignment for Cell-Free Massive MIMO Systems

Cell-free massive multiple-input multiple-output (CF-mMIMO) has been considered as one of the potential technologies for beyond-5G and 6G to meet the demand for higher data capacity and uniform service rate for user equipment. However, reusing the same pilot signals by several users, owing to limite...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 120492 - 120502
Main Authors Rahmani, Mostafa, Dehghani, Mohammad Javad, Xiao, Pei, Bashar, Manijeh, Debbah, Merouane
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell-free massive multiple-input multiple-output (CF-mMIMO) has been considered as one of the potential technologies for beyond-5G and 6G to meet the demand for higher data capacity and uniform service rate for user equipment. However, reusing the same pilot signals by several users, owing to limited pilot resources, can result in the so-called pilot contamination problem, which can prevent CF-mMIMO from unlocking its full performance potential. It is challenging to employ classical pilot assignment (PA) methods to serve many users simultaneously with low complexity; therefore, a scalable and distributed PA scheme is required. In this paper, we utilize a learning-based approach to handle the pilot contamination problem by formulating PA as a multi-agent static game, developing a two-level hierarchical learning algorithm to mitigate the effects of pilot contamination, and presenting an efficient yet scalable PA strategy. We first model a PA problem as a static multi-agent game with P teams (agents), in which each team is represented by a specific pilot. We then define a multi-agent structure that can automatically determine the most appropriate PA policy in a distributed manner. The numerical results demonstrate that the proposed PA algorithm outperforms previous suboptimal algorithms in terms of the per-user spectral efficiency (SE). In particular, the proposed approach can increase the average SE and 95%-likely SE by approximately 2.2% and 3.3%, respectively, compared to the best state-of-the-art solution.
AbstractList Cell-free massive multiple-input multiple-output (CF-mMIMO) has been considered as one of the potential technologies for beyond-5G and 6G to meet the demand for higher data capacity and uniform service rate for user equipment. However, reusing the same pilot signals by several users, owing to limited pilot resources, can result in the so-called pilot contamination problem, which can prevent CF-mMIMO from unlocking its full performance potential. It is challenging to employ classical pilot assignment (PA) methods to serve many users simultaneously with low complexity; therefore, a scalable and distributed PA scheme is required. In this paper, we utilize a learning-based approach to handle the pilot contamination problem by formulating PA as a multi-agent static game, developing a two-level hierarchical learning algorithm to mitigate the effects of pilot contamination, and presenting an efficient yet scalable PA strategy. We first model a PA problem as a static multi-agent game with P teams (agents), in which each team is represented by a specific pilot. We then define a multi-agent structure that can automatically determine the most appropriate PA policy in a distributed manner. The numerical results demonstrate that the proposed PA algorithm outperforms previous suboptimal algorithms in terms of the per-user spectral efficiency (SE). In particular, the proposed approach can increase the average SE and 95%-likely SE by approximately 2.2% and 3.3%, respectively, compared to the best state-of-the-art solution.
Author Dehghani, Mohammad Javad
Bashar, Manijeh
Xiao, Pei
Debbah, Merouane
Rahmani, Mostafa
Author_xml – sequence: 1
  givenname: Mostafa
  orcidid: 0000-0002-7943-9977
  surname: Rahmani
  fullname: Rahmani, Mostafa
  email: m.rahmani@sutech.ac.ir
  organization: Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran
– sequence: 2
  givenname: Mohammad Javad
  orcidid: 0000-0003-0972-2352
  surname: Dehghani
  fullname: Dehghani, Mohammad Javad
  organization: Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran
– sequence: 3
  givenname: Pei
  orcidid: 0000-0002-7886-5878
  surname: Xiao
  fullname: Xiao, Pei
  organization: 5GIC & 6GIC, Institute for Communication Systems (ICS), University of Surrey, Guildford, U.K
– sequence: 4
  givenname: Manijeh
  surname: Bashar
  fullname: Bashar, Manijeh
  organization: British Telecommunications (BT) Company, Ipswich, U.K
– sequence: 5
  givenname: Merouane
  surname: Debbah
  fullname: Debbah, Merouane
  organization: Technology Innovation Institute, Abu Dhabi, United Arab Emirates
BookMark eNp9kU9rGzEQxZeQQtM0nyCXhZzX1b9dSUd3SVqDTUrd3ApCqx0ZmbWUSnIg375yNimlh-oy0sz7PQa9D9W5Dx6q6hqjBcZIflr2_e12uyCIkAUlBEvanlUXBHeyoS3tzv-6v6-uUtqjckRptfyi-rk5Ttk1yx34XH8H522IBg6n1xp09M7vms86wVh_c1PI9TIlt_Mv86Kse5im5i4C1BtdJk-lrjb39fY5ZTikj9U7q6cEV6_1snq4u_3Rf23W919W_XLdGIZEbowwfBzRoAlCmGtLMbeAaEsYJZwxARyTgVk8smEgFrcdDGygHZeSQQdA6WW1mn3HoPfqMbqDjs8qaKdeGiHulI7ZmQkUF5JSLqjQQjMurBbWlF8ch9FwY9BQvG5mr8cYfh0hZbUPx-jL-opweoI7zItKzioTQ0oRrDIu6-yCz1G7SWGkTtmoORt1yka9ZlNY-g_7tvH_qeuZcgDwh5CyRagV9DdrCJtg
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_MWC_007_2300176
crossref_primary_10_1109_OJCOMS_2024_3447839
crossref_primary_10_1109_TWC_2023_3321334
crossref_primary_10_1007_s11276_023_03641_w
crossref_primary_10_1109_JIOT_2024_3428922
crossref_primary_10_1109_JIOT_2024_3440579
crossref_primary_10_1109_TWC_2024_3403541
Cites_doi 10.1109/ICCW.2018.8403508
10.1561/2000000093
10.1109/LWC.2020.3020003
10.1109/LWC.2019.2904229
10.1109/WCNCW49093.2021.9420002
10.1049/cmu2.12447
10.1109/MCOM.2017.1700487
10.1109/JSAC.2020.3018836
10.1109/JSAC.2019.2933973
10.1109/ACCESS.2021.3110102
10.1017/CBO9781316799895
10.1109/TVT.2020.3000496
10.1109/TWC.2017.2655515
10.1109/WCNC51071.2022.9771964
10.1109/TWC.2022.3146624
10.1038/nature14236
10.1109/TVT.2019.2956217
10.1109/TVT.2018.2867606
10.1109/LCOMM.2021.3089234
10.1109/ICTC46691.2019.8939682
10.1109/TVT.2021.3076440
10.1109/TWC.2019.2941478
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3221935
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 120502
ExternalDocumentID oai_doaj_org_article_789337838a8a478fa8fc110dbdc7cc0b
10_1109_ACCESS_2022_3221935
9950058
Genre orig-research
GrantInformation_xml – fundername: U.K. Engineering and Physical Sciences Research Council
  grantid: EP/P03456X/1
  funderid: 10.13039/501100000266
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-c8c7dd0ba20017af317fe03524327448e712b4f1d4bb2f156eb4b367994e6ee33
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:27:06 EDT 2025
Mon Jun 30 05:34:12 EDT 2025
Thu Apr 24 23:09:28 EDT 2025
Tue Jul 01 02:48:33 EDT 2025
Wed Aug 27 02:15:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c8c7dd0ba20017af317fe03524327448e712b4f1d4bb2f156eb4b367994e6ee33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7943-9977
0000-0002-7886-5878
0000-0003-0972-2352
OpenAccessLink https://doaj.org/article/789337838a8a478fa8fc110dbdc7cc0b
PQID 2739337617
PQPubID 4845423
PageCount 11
ParticipantIDs crossref_primary_10_1109_ACCESS_2022_3221935
ieee_primary_9950058
doaj_primary_oai_doaj_org_article_789337838a8a478fa8fc110dbdc7cc0b
proquest_journals_2739337617
crossref_citationtrail_10_1109_ACCESS_2022_3221935
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
mohebi (ref26) 2022
mnih (ref22) 2015; 518
ref23
ref25
ref20
sutton (ref21) 2018
aggarwal (ref12) 2022; 3
ref8
ref7
ref9
ref4
ref3
ref6
ref5
bu?oniu (ref24) 2010
References_xml – volume: 3
  start-page: 115
  year: 2022
  ident: ref12
  article-title: Has the future started? The current growth of artificial intelligence, machine learning, and deep learning
  publication-title: Iraqi J Comput Sci Math
– ident: ref6
  doi: 10.1109/ICCW.2018.8403508
– ident: ref2
  doi: 10.1561/2000000093
– year: 2022
  ident: ref26
  article-title: Repulsive clustering based pilot assignment for cell-free massive MIMO systems
  publication-title: arXiv 2203 12403
– ident: ref10
  doi: 10.1109/LWC.2020.3020003
– ident: ref13
  doi: 10.1109/LWC.2019.2904229
– ident: ref25
  doi: 10.1109/WCNCW49093.2021.9420002
– ident: ref23
  doi: 10.1049/cmu2.12447
– ident: ref1
  doi: 10.1109/MCOM.2017.1700487
– ident: ref18
  doi: 10.1109/JSAC.2020.3018836
– ident: ref20
  doi: 10.1109/JSAC.2019.2933973
– ident: ref16
  doi: 10.1109/ACCESS.2021.3110102
– ident: ref5
  doi: 10.1017/CBO9781316799895
– ident: ref8
  doi: 10.1109/TVT.2020.3000496
– ident: ref3
  doi: 10.1109/TWC.2017.2655515
– ident: ref17
  doi: 10.1109/WCNC51071.2022.9771964
– ident: ref7
  doi: 10.1109/TWC.2022.3146624
– volume: 518
  start-page: 529
  year: 2015
  ident: ref22
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref11
  doi: 10.1109/TVT.2019.2956217
– ident: ref19
  doi: 10.1109/TVT.2018.2867606
– ident: ref14
  doi: 10.1109/LCOMM.2021.3089234
– ident: ref15
  doi: 10.1109/ICTC46691.2019.8939682
– year: 2018
  ident: ref21
  publication-title: Reinforcement Learning An Introduction
– ident: ref9
  doi: 10.1109/TVT.2021.3076440
– start-page: 183
  year: 2010
  ident: ref24
  article-title: Multi-agent reinforcement learning: An overview
  publication-title: Innovations in Multi-Agent Systems and Applications - 1
– ident: ref4
  doi: 10.1109/TWC.2019.2941478
SSID ssj0000816957
Score 2.349575
Snippet Cell-free massive multiple-input multiple-output (CF-mMIMO) has been considered as one of the potential technologies for beyond-5G and 6G to meet the demand...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120492
SubjectTerms Algorithms
Antennas
Cell-free massive MIMO
Contamination
Data communication
deep reinforcement learning
Fading channels
Interference
Machine learning
MIMO communication
Multiagent systems
pilot assignment
pilot contamination
Reinforcement learning
Spectral efficiency
Uplink
Wireless communication
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcEBKAWxpSAfONbbbOLEyXG7YtUiBRCiUg9Ilh-TqmK1i9rshV_PjOONeAlxiyLbcfSN7ZnxzDcAb9BpxxebsqppNSmlnbQOUVahtDpnT3-kY2jfVxdX6t11eb0Hp2MuDCLG4DOc8mO8yw8bv2VX2VnTlFwGbx_2yXAbcrVGfwoXkGhKnYiF6PNn88WC_oFMwDyfktiSplL-cvhEjv5UVOWPnTgeL8vH0O4mNkSVfJ1uezf133_jbPzfmT-BR0nPFPNBMA5hD9dP4eFP7INH8CUm38o5J1eJTxgpVH30ForEunojz-mQC-Lj7WrTC0Ly9iYGDwhqKRa4WsnlHaJoSQGnTVO0l-0HkSjQn8HV8u3nxYVMxRakV1ndS197HULmLAdZaduRXtEhk6WqgkkEa9Sz3KluFpRzeUdWHzrliko3jcIKsSiew8F6s8YXIJrSayzKYIsuVzrLnK5scDU2BRuT3WwC-Q4F4xMTORfEWJlokWSNGaAzDJ1J0E3gdOz0bSDi-Hfzc4Z3bMos2vEFwWLSojSalLVCk5Da2ipdd7buPA0YXPDa-8xN4IihHAdJKE7gZCcsJq34e5MztSDt1jN9_PdeL-EBT3Bw35zAQX-3xVek0PTudZTkH6tY8Mc
  priority: 102
  providerName: IEEE
Title Multi-Agent Reinforcement Learning-Based Pilot Assignment for Cell-Free Massive MIMO Systems
URI https://ieeexplore.ieee.org/document/9950058
https://www.proquest.com/docview/2739337617
https://doaj.org/article/789337838a8a478fa8fc110dbdc7cc0b
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLHDwa3Ud2kz3WYlGhKqLgQQh5zIpQqmj9_85kY6kIevG6ZPOYmcwryTeMHYJTjg42Ra1xN0mpnLAOQNShsqqgTH-EYxhd1ef38vKhepgr9UV3wjp44I5wJ4rqwSvsyGorlW6tbj2arOCCV95njrQv2ry5YCrqYJ3XTaUSzBBO5qQ_GOCKMCAsimMUYvRbqm-mKCL2pxIrP_RyNDbDVbaSvETe72a3xhZgss6W57ADN9hjfDor-vQ0it9CBED1MdfHE2bqkzhFExX4zfP4ZcqRD89P8eifY0s-gPFYDN8A-AjdZ1R5fHQxuuYJwHyT3Q_P7gbnIpVKEF5meiq89iqEzFm6IqVsi15BCwR1KkuCANSg8sLJNg_SuaLFmA2cdGWtmkZCDVCWW2xx8jKBbcabyisoq2DLtpAqy5yqbXAampJCwTbvseKLasYnHHEqZzE2MZ7IGtOR2hCpTSJ1jx3NfnrtYDR-b35K7Jg1JQzs-AElwyTJMH9JRo9tEDNnnTRNRUUUe2zvi7km7dd3UxAwIOraXO38x9C7bImW06Vq9tji9O0D9tF5mbqDKKcH8Z3hJ-s56Mc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBXUpQV84Fhv83Di5LhdsdpCUxBqpR6QLD8mVcVqt2qzF349Y8cblYcQtyiyo4m-sWc8nvkG4D0aafzFJi8rWk1CSMO1QeSlK7TMfKQ_0DE0Z-X8Qny8LC634HCohUHEkHyGY_8Y7vLdyq59qOyorgvfBu8BPCS7X6R9tdYQUfEtJOpCRmohEuBoMp3SX9AhMMvGpLjkqxS_mJ_A0h_bqvyxFwcDM3sKzUa0Pq_k-3jdmbH98Rtr4__K_gyeRE-TTXrVeA5buHwBO_f4B3fhWyi_5RNfXsW-YiBRtSFeyCLv6hU_JjPn2JfrxapjhOX1VUgfYDSSTXGx4LNbRNaQC07bJmtOms8skqC_hIvZh_PpnMd2C9yKpOq4rax0LjHap1lJ3ZJn0aKnSxW5pxGsUKaZEW3qhDFZS-c-NMLkpaxrgSVinr-C7eVqiXvA6sJKzAun8zYTMkmMLLUzFda5P0626QiyDQrKRi5y3xJjocKZJKlVD53y0KkI3QgOh0k3PRXHv4cfe3iHoZ5HO7wgWFRclkqSu5ZLUlNdaSGrVletpQ8646y0NjEj2PVQDh-JKI7gYKMsKq75O5V5ckHar1P5-u-z3sGj-Xlzqk5Pzj7tw2MvbB_MOYDt7naNb8i96czboNU_AV939BA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Reinforcement+Learning-Based+Pilot+Assignment+for+Cell-Free+Massive+MIMO+Systems&rft.jtitle=IEEE+access&rft.au=Rahmani%2C+Mostafa&rft.au=Dehghani%2C+Mohammad+Javad&rft.au=Xiao%2C+Pei&rft.au=Bashar%2C+Manijeh&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=120492&rft.epage=120502&rft_id=info:doi/10.1109%2FACCESS.2022.3221935&rft.externalDocID=9950058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon