Cyclosis-mediated intercellular transmission of photosynthetic metabolites in Chara revealed with chlorophyll microfluorometry
Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined w...
Saved in:
Published in | Protoplasma Vol. 256; no. 3; pp. 815 - 826 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.05.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0033-183X 1615-6102 1615-6102 |
DOI | 10.1007/s00709-018-01344-0 |
Cover
Loading…
Abstract | Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined with fluorescent tracers whose molecular dimensions are similar to natural metabolites produced in photosynthesis. Chlorophyll fluorescence was recently found to be a sensitive noninvasive indicator of long-distance intracellular transport of physiologically produced photometabolites in characean internodes. The present work shows that the chlorophyll microfluorometry has a potential for studying the cell-to-cell transport of reducing substances released by local illumination of one internode and detected as the fluorescence increase in the neighbor internode. The method provides temporal resolution in the time frame of seconds and can be used to evaluate permeability of plasmodesmata to natural components released by illuminated chloroplasts. The results show that approximately one third of the amount of photometabolites released into the streaming cytoplasm during a 30-s pulse of local light permeates across the nodal complex with the characteristic time of ~ 10 s. The intercellular transport was highly sensitive to moderate elevations of osmolarity in the bath solution (150 mM sorbitol), which contrasts to the view that only transnodal gradients in osmolarity (and internal hydrostatic pressure) have an appreciable influence on plasmodesmal conductance. The inhibition of cell-to-cell transport was reversible and specific; the sorbitol addition had no influence on photosynthetic electron transport and the velocity of cytoplasmic streaming. The conductance of transcellular pores increased in the presence of the actin inhibitor cytochalasin
d
but the cell-to-cell transport was eventually suppressed due to the deceleration and cessation of cytoplasmic streaming. The results show that the permeability of plasmodesmata to low-molecular photometabolites is subject to upregulation and downregulation. |
---|---|
AbstractList | Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined with fluorescent tracers whose molecular dimensions are similar to natural metabolites produced in photosynthesis. Chlorophyll fluorescence was recently found to be a sensitive noninvasive indicator of long-distance intracellular transport of physiologically produced photometabolites in characean internodes. The present work shows that the chlorophyll microfluorometry has a potential for studying the cell-to-cell transport of reducing substances released by local illumination of one internode and detected as the fluorescence increase in the neighbor internode. The method provides temporal resolution in the time frame of seconds and can be used to evaluate permeability of plasmodesmata to natural components released by illuminated chloroplasts. The results show that approximately one third of the amount of photometabolites released into the streaming cytoplasm during a 30-s pulse of local light permeates across the nodal complex with the characteristic time of ~ 10 s. The intercellular transport was highly sensitive to moderate elevations of osmolarity in the bath solution (150 mM sorbitol), which contrasts to the view that only transnodal gradients in osmolarity (and internal hydrostatic pressure) have an appreciable influence on plasmodesmal conductance. The inhibition of cell-to-cell transport was reversible and specific; the sorbitol addition had no influence on photosynthetic electron transport and the velocity of cytoplasmic streaming. The conductance of transcellular pores increased in the presence of the actin inhibitor cytochalasin d but the cell-to-cell transport was eventually suppressed due to the deceleration and cessation of cytoplasmic streaming. The results show that the permeability of plasmodesmata to low-molecular photometabolites is subject to upregulation and downregulation. Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined with fluorescent tracers whose molecular dimensions are similar to natural metabolites produced in photosynthesis. Chlorophyll fluorescence was recently found to be a sensitive noninvasive indicator of long-distance intracellular transport of physiologically produced photometabolites in characean internodes. The present work shows that the chlorophyll microfluorometry has a potential for studying the cell-to-cell transport of reducing substances released by local illumination of one internode and detected as the fluorescence increase in the neighbor internode. The method provides temporal resolution in the time frame of seconds and can be used to evaluate permeability of plasmodesmata to natural components released by illuminated chloroplasts. The results show that approximately one third of the amount of photometabolites released into the streaming cytoplasm during a 30-s pulse of local light permeates across the nodal complex with the characteristic time of ~ 10 s. The intercellular transport was highly sensitive to moderate elevations of osmolarity in the bath solution (150 mM sorbitol), which contrasts to the view that only transnodal gradients in osmolarity (and internal hydrostatic pressure) have an appreciable influence on plasmodesmal conductance. The inhibition of cell-to-cell transport was reversible and specific; the sorbitol addition had no influence on photosynthetic electron transport and the velocity of cytoplasmic streaming. The conductance of transcellular pores increased in the presence of the actin inhibitor cytochalasin d but the cell-to-cell transport was eventually suppressed due to the deceleration and cessation of cytoplasmic streaming. The results show that the permeability of plasmodesmata to low-molecular photometabolites is subject to upregulation and downregulation. Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined with fluorescent tracers whose molecular dimensions are similar to natural metabolites produced in photosynthesis. Chlorophyll fluorescence was recently found to be a sensitive noninvasive indicator of long-distance intracellular transport of physiologically produced photometabolites in characean internodes. The present work shows that the chlorophyll microfluorometry has a potential for studying the cell-to-cell transport of reducing substances released by local illumination of one internode and detected as the fluorescence increase in the neighbor internode. The method provides temporal resolution in the time frame of seconds and can be used to evaluate permeability of plasmodesmata to natural components released by illuminated chloroplasts. The results show that approximately one third of the amount of photometabolites released into the streaming cytoplasm during a 30-s pulse of local light permeates across the nodal complex with the characteristic time of ~ 10 s. The intercellular transport was highly sensitive to moderate elevations of osmolarity in the bath solution (150 mM sorbitol), which contrasts to the view that only transnodal gradients in osmolarity (and internal hydrostatic pressure) have an appreciable influence on plasmodesmal conductance. The inhibition of cell-to-cell transport was reversible and specific; the sorbitol addition had no influence on photosynthetic electron transport and the velocity of cytoplasmic streaming. The conductance of transcellular pores increased in the presence of the actin inhibitor cytochalasin D but the cell-to-cell transport was eventually suppressed due to the deceleration and cessation of cytoplasmic streaming. The results show that the permeability of plasmodesmata to low-molecular photometabolites is subject to upregulation and downregulation. Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined with fluorescent tracers whose molecular dimensions are similar to natural metabolites produced in photosynthesis. Chlorophyll fluorescence was recently found to be a sensitive noninvasive indicator of long-distance intracellular transport of physiologically produced photometabolites in characean internodes. The present work shows that the chlorophyll microfluorometry has a potential for studying the cell-to-cell transport of reducing substances released by local illumination of one internode and detected as the fluorescence increase in the neighbor internode. The method provides temporal resolution in the time frame of seconds and can be used to evaluate permeability of plasmodesmata to natural components released by illuminated chloroplasts. The results show that approximately one third of the amount of photometabolites released into the streaming cytoplasm during a 30-s pulse of local light permeates across the nodal complex with the characteristic time of ~ 10 s. The intercellular transport was highly sensitive to moderate elevations of osmolarity in the bath solution (150 mM sorbitol), which contrasts to the view that only transnodal gradients in osmolarity (and internal hydrostatic pressure) have an appreciable influence on plasmodesmal conductance. The inhibition of cell-to-cell transport was reversible and specific; the sorbitol addition had no influence on photosynthetic electron transport and the velocity of cytoplasmic streaming. The conductance of transcellular pores increased in the presence of the actin inhibitor cytochalasin D but the cell-to-cell transport was eventually suppressed due to the deceleration and cessation of cytoplasmic streaming. The results show that the permeability of plasmodesmata to low-molecular photometabolites is subject to upregulation and downregulation.Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined with fluorescent tracers whose molecular dimensions are similar to natural metabolites produced in photosynthesis. Chlorophyll fluorescence was recently found to be a sensitive noninvasive indicator of long-distance intracellular transport of physiologically produced photometabolites in characean internodes. The present work shows that the chlorophyll microfluorometry has a potential for studying the cell-to-cell transport of reducing substances released by local illumination of one internode and detected as the fluorescence increase in the neighbor internode. The method provides temporal resolution in the time frame of seconds and can be used to evaluate permeability of plasmodesmata to natural components released by illuminated chloroplasts. The results show that approximately one third of the amount of photometabolites released into the streaming cytoplasm during a 30-s pulse of local light permeates across the nodal complex with the characteristic time of ~ 10 s. The intercellular transport was highly sensitive to moderate elevations of osmolarity in the bath solution (150 mM sorbitol), which contrasts to the view that only transnodal gradients in osmolarity (and internal hydrostatic pressure) have an appreciable influence on plasmodesmal conductance. The inhibition of cell-to-cell transport was reversible and specific; the sorbitol addition had no influence on photosynthetic electron transport and the velocity of cytoplasmic streaming. The conductance of transcellular pores increased in the presence of the actin inhibitor cytochalasin D but the cell-to-cell transport was eventually suppressed due to the deceleration and cessation of cytoplasmic streaming. The results show that the permeability of plasmodesmata to low-molecular photometabolites is subject to upregulation and downregulation. |
Author | Bulychev, Alexander A. |
Author_xml | – sequence: 1 givenname: Alexander A. orcidid: 0000-0003-3131-8890 surname: Bulychev fullname: Bulychev, Alexander A. email: bulychev@biophys.msu.ru organization: Department of Biophysics, Faculty of Biology, Moscow State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30610387$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAUhUVJaSbT_oEuiqGbbtxePfxalqEvCGSTQHZCY1_XCrI0leQWb_rbe6eTUMgiXUgC8Z0rnXMu2JkPHhl7zeE9B2g-JNqgK4G3tKRSJTxjG17zqqw5iDO2AZCy5K28PWcXKd0BQCWgesHOJRAh22bDfu_W3oVkUznjYE3GobA-Y-zRucWZWORofJptSjb4IozFYQo5pNXnCbPtixmz2QdnMyYSFrvJRFNE_InG0ahfNk9FP7kQw2FanStm28cwuoUuSBnXl-z5aFzCV_fnlt18_nS9-1peXn35tvt4WfYK2lz2Tb1HWVfdOIxCyLodjMQKBiW7rjGqFnwvB9U2EkfshYFWmgoVjg2vVF3Vo9yyd6e5hxh-LJiyJktHj8ZjWJIWopJCdkLw_6O8VhyUoNe27O0j9C4s0ZORIyVFqwR0RL25p5Y9hawP0c4mrvqhBALaE0DZpBRx1L3NJlPgFL51moM-9q1PfWvqW__tWwNJxSPpw_QnRfIkSgT77xj_ffsJ1R98Lr7h |
CitedBy_id | crossref_primary_10_1134_S1990747824700193 crossref_primary_10_1007_s00709_022_01747_0 crossref_primary_10_31857_S0233475524050056 crossref_primary_10_1016_j_bpj_2022_11_2948 crossref_primary_10_1134_S1021443722010034 crossref_primary_10_1080_02678292_2024_2302457 crossref_primary_10_1134_S0006350920020037 crossref_primary_10_1111_ppl_13058 |
Cites_doi | 10.1016/j.bbabio.2017.02.014 10.1007/978-1-4614-7765-5_2 10.1016/j.bbabio.2015.01.004 10.1007/978-3-642-60035-7_5 10.1111/j.1469-8137.1993.tb03897.x 10.1007/978-3-642-29119-7_11 10.1093/jxb/42.11.1393 10.1007/s00249-013-0895-z 10.1093/oxfordjournals.pcp.a077800 10.1093/bioinformatics/bts537 10.1007/s00709-018-1255-8 10.3389/fpls.2013.00207 10.1007/BF00391090 10.1046/j.1365-313X.1996.10010157.x 10.1046/j.1365-3040.2003.00950.x 10.1007/BF00016479 10.1111/j.1365-313X.1992.tb00143.x 10.1242/jcs.2.3.451 10.1016/j.bbabio.2011.06.009 10.1007/PL00008141 10.1104/pp.110.164970 10.1007/BF01404040 10.1007/BF00198570 10.1104/pp.116.1.81 10.1093/pcp/pcm030 10.3389/fpls.2016.01052 10.1104/pp.109.137083 10.1111/tpj.13918 10.1007/BF01281149 10.1104/pp.112.195115 10.1104/pp.74.2.252 10.1007/978-3-642-66294-2 10.1016/j.pbi.2018.03.005 10.1007/BF01280907 10.1093/jxb/35.7.1016 10.1046/j.1365-3040.2003.00845.x 10.1046/j.1365-313x.1998.00161.x 10.1080/15592324.2017.1362518 10.1104/pp.90.3.1143 10.1016/j.bbabio.2007.01.004 10.1071/FP16283 10.1007/s00709-016-0975-x 10.1007/s10265-014-0676-5 10.1093/jxb/39.11.1561 10.2307/2446040 10.1146/annurev.cellbio.16.1.393 10.1104/pp.16.01041 10.1093/jxb/43.8.1045 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Austria, part of Springer Nature 2019 Protoplasma is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2019 – notice: Protoplasma is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M2M M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 7S9 L.6 |
DOI | 10.1007/s00709-018-01344-0 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni) Medical Database Psychology Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest One Psychology PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology |
EISSN | 1615-6102 |
EndPage | 826 |
ExternalDocumentID | 30610387 10_1007_s00709_018_01344_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Russian Foundation for Basic Research grantid: 16-04-00318 funderid: http://dx.doi.org/10.13039/501100002261 – fundername: Russian Foundation for Basic Research grantid: 16-04-00318 |
GroupedDBID | --- -4W -56 -5G -BR -EM -~C -~X .86 .VR 04C 06C 06D 0R~ 0VY 123 199 1N0 203 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMOBN EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LK8 LLZTM M1P M2M M4Y M7P MA- NAPCQ NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PF0 PQQKQ PROAC PSQYO PSYQQ PT4 PT5 QOK QOR QOS R89 R9I RHV RNS ROL RPX RRX RSV S16 S27 S3A S3B SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX VC2 W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7U Z7V Z7W Z7Y Z8O Z8P Z8Q Z8S ZMTXR ZOVNA ~02 ~EX ~KM -Y2 .GJ 1SB 2.D 28- 2P1 2VQ 3SX 53G 5QI AANXM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG ADYPR AEBTG AEFIE AEKMD AETEA AEZWR AFDZB AFEXP AFFNX AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF EN4 H13 IHE KOW MVM N2Q NDZJH O9- OHT PHGZM PHGZT R4E RIG RNI RZK S1Z S26 S28 SBY SCLPG T16 UZXMN VFIZW WK6 XOL Y6R ZGI ZXP NPM 3V. 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-c76be3659fdf22368da3e50d43997a4621b3d4873efec2a083a5e4ef7154656f3 |
IEDL.DBID | U2A |
ISSN | 0033-183X 1615-6102 |
IngestDate | Fri Jul 11 00:50:12 EDT 2025 Sun Aug 24 04:14:03 EDT 2025 Fri Jul 25 10:50:41 EDT 2025 Thu Apr 03 06:59:51 EDT 2025 Tue Jul 01 03:52:40 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Fri Feb 21 02:37:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Chlorophyll fluorescence Chloroplasts Intercellular transport Photometabolites Cytoplasmic streaming Plasmodesmata Long-distance communications Chara |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-c76be3659fdf22368da3e50d43997a4621b3d4873efec2a083a5e4ef7154656f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3131-8890 |
PMID | 30610387 |
PQID | 2163284209 |
PQPubID | 1456343 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2253239221 proquest_miscellaneous_2164104287 proquest_journals_2163284209 pubmed_primary_30610387 crossref_citationtrail_10_1007_s00709_018_01344_0 crossref_primary_10_1007_s00709_018_01344_0 springer_journals_10_1007_s00709_018_01344_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Austria |
PublicationSubtitle | An International Journal of Animal, Fungal and Plant Cell Biology |
PublicationTitle | Protoplasma |
PublicationTitleAbbrev | Protoplasma |
PublicationTitleAlternate | Protoplasma |
PublicationYear | 2019 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | EpelBLPlasmodesmata: composition, structure and traffickingPlant Mol Biol1994261343135610.1007/BF000164791:CAS:528:DyaK2MXjvFelu7k%3D7532025 Beilby MJ (2016) Multi-scale characean experimental system: from electrophysiology of membrane transporters to cell-to-cell connectivity, cytoplasmic streaming and auxin metabolism. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01052 BulychevAAKomarovaAVPhotoinduction of cyclosis-mediated interactions between distant chloroplastsBiochim Biophys Acta2015184737938910.1016/j.bbabio.2015.01.0041:CAS:528:DC%2BC2MXhtlWgs7Y%3D25615586 GerlitzNGerumRSauerNStadlerRPhotoinducible DRONPA-s: a new tool for investigating cell–cell connectivityPlant J20189475176610.1111/tpj.139181:CAS:528:DC%2BC1cXptlyqsbs%3D29654648 CookMEGrahamLEBothaCEJLavinCAComparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmataAmer J Bot1997841169117810.2307/24460401:STN:280:DC%2BC3MnjvVGksQ%3D%3D BoxRAndrewsMRavenJAIntercellular transport and cytoplasmic streaming in Chara hispidaJ Exp Bot1984351016102110.1093/jxb/35.7.1016 BulychevAAFoissnerIPathways for external alkalinization in intact and in microwounded Chara cells are differentially sensitive to wortmanninPlant Signal Behav20171210.1080/15592324.2017.13625181:CAS:528:DC%2BC2sXhsVGmu7fI288054935640205 KalwarczykTTabakaMHolystRBiologistics – diffusion coefficients for complete proteome of Escherichia coliBioinformatics2012282971297810.1093/bioinformatics/bts5371:CAS:528:DC%2BC38Xhs1Glt7fK229420213496334 GunningBESRobardsAIntercellular communication in plants: studies on plasmodesmata1976BerlinSpringer10.1007/978-3-642-66294-2 DingBKwonM-OWarnbergLEvidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyllPlant J19961015716410.1046/j.1365-313X.1996.10010157.x TuckerJEMauzerallDTuckerEBSymplastic transport of carboxyfluorescein in staminal hairs of Setcreasea purpurea is diffusive and includes loss to the vacuolePlant Physiol1989901143114710.1104/pp.90.3.11431:CAS:528:DyaL1MXkvFequrs%3D166668641061856 RobertsAGOparkaKJPlasmodesmata and the control of symplastic transportPlant, Cell Eviron20032610312410.1046/j.1365-3040.2003.00950.x SchulteCKirstGOWinterUSource-sink characteristic of photoassimilate transport in fertile and sterile plants of Chara vulgaris LPlant Biol19941073623681:CAS:528:DyaK2MXis1OmtLw%3D BulychevAADodonovaSOEffects of cyclosis on chloroplast–cytoplasm interactions revealed with localized lighting in characean cells at rest and after electrical excitationBiochim Biophys Acta201118071221123010.1016/j.bbabio.2011.06.0091:CAS:528:DC%2BC3MXptV2jsrs%3D21708122 ChristensenNMFaulknerCOparkaKEvidence for unidirectional flow through plasmodesmataPlant Physiol20091509610410.1104/pp.109.1370831:CAS:528:DC%2BD1MXlvFahsr8%3D192700592675744 TrebaczKFensomDSHarrisAZawadzkiTTransnodal transport of 14C in Nitella flexilis: III. Further studies on dissolved inorganic carbon movements in tandem cellsJ Exp Bot198839111561157310.1093/jxb/39.11.15611:CAS:528:DyaL1MXnt1Gltw%3D%3D BräutigamAWeberAPMDo metabolite transport processes limit photosynthesis?Plant Physiol2011155434810.1104/pp.110.1649701:CAS:528:DC%2BC3MXksFagsL8%3D20855521 BulychevAAKomarovaAVPhotoregulation of photosystem II activity mediated by cytoplasmic streaming in Chara and its relation to pH bandsBiochim Biophys Acta Bioenerg2017185838639510.1016/j.bbabio.2017.02.0141:CAS:528:DC%2BC2sXjvF2ktr4%3D28257779 BulychevAARybinaAAFoissnerIDejesusCTraskLLong-range lateral transport between immobile chloroplasts in Chara is sensitive to interference of brefeldin A in vesicle traffickingChloroplasts and cytoplasm: structure and functions2018New YorkNova Science, Hauppauge124 BulychevAARybinaAALong-range interactions of Chara chloroplasts are sensitive to plasma-membrane H+ flows and comprise separate photo- and dark-operated pathwaysProtoplasma20182551621163410.1007/s00709-018-1255-81:CAS:528:DC%2BC1cXovVWnsr0%3D29704048 EhlersKWesterlohMGSokołowskaKSowińskiPDevelopmental control of plasmodesmata frequency, structure, and functionSymplasmic transport in vascular plants2013New YorkSpringer418210.1007/978-1-4614-7765-5_2 ComtetJTurgeonRStroockADPhloem loading through plasmodesmata: a biophysical analysisPlant Physiol20171759049151:CAS:528:DC%2BC1cXmsFWnsLw%3D10.1104/pp.16.01041287942595619879 BissonMABartholomewDOsmoregulation or turgor regulation in Chara?Plant Physiol19847425225510.1104/pp.74.2.2521:CAS:528:DyaL2cXhtFyjsLs%3D166634061066664 DingDQTazawaMInfluence of cytoplasmic streaming and turgor pressure gradient on the transnodal transport of rubidium and electrical conductance in Chara corallinaPlant Cell Physiol19893073974810.1093/oxfordjournals.pcp.a077800 KrupeninaNABulychevAAAction potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescenceBiochim Biophys Acta2007176778178810.1016/j.bbabio.2007.01.0041:CAS:528:DC%2BD2sXmt1ygurY%3D17300741 GoodwinPBCantrilLCvan BelAJEvan KesterenWJPUse and limitations of fluorochromes for plasmodesmal researchPlasmodesmata: structure, function, role in cell communication1999BerlinSpringer678410.1007/978-3-642-60035-7_5 LucasWJDingBVan der SchootCPlasmodesmata and the supracellular nature of plantsNew Phytol199312543547610.1111/j.1469-8137.1993.tb03897.x OparkaKJPriorDAMDirect evidence for pressure-generated closure of plasmodesmataPlant J1992274175010.1111/j.1365-313X.1992.tb00143.x JensenKHPhloem physics: mechanisms, constraints, and perspectivesCurr Opin Plant Biol2018439610010.1016/j.pbi.2018.03.00529660560 KomarovaAVSukhovVSBulychevAACyclosis-mediated long distance communications of chloroplasts in giant cells of CharaceaeFunct Plant Biol20184523624610.1071/FP162831:CAS:528:DC%2BC1cXht1CitA%3D%3D ZambryskiPCrawfordKPlasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plantsAnnu Rev Cell Dev Biol20001639342110.1146/annurev.cellbio.16.1.3931:CAS:528:DC%2BD3MXpvFyn11031242 Liesche J, Schulz A (2013) Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00207 TuckerEBTranslocation in the staminal hairs of Setcreasea purpurea. I. A study of cell ultrastructure and cell-to-cell passage of molecular probesProtoplasma198211319320110.1007/BF012809071:CAS:528:DyaL3sXos1Crtg%3D%3D BlackmanLMOverallRLImmunolocalisation of the cytoskeleton to plasmodesmata of Chara corallinaPlant J19981473374110.1046/j.1365-313x.1998.00161.x1:CAS:528:DyaK1cXks1WktLc%3D LiescheJSchulzAIn vivo quantification of cell coupling in plants with different phloem-loading strategiesPlant Physiol201215935536510.1104/pp.112.1951151:CAS:528:DC%2BC38XntV2gsL4%3D224229393375970 TerryBRRobardsAWHydrodynamic radius alone governs the mobility of molecules through plasmodesmataPlanta198717114515710.1007/BF003910901:CAS:528:DyaL2sXksFKjsro%3D24227322 BulychevAAKomarovaAVImplication of long-distance cytoplasmic transport into dynamics of local pH on the surface of microinjured Chara cellsProtoplasma201725455756710.1007/s00709-016-0975-x1:CAS:528:DC%2BC28Xms12ktL8%3D27091340 SpanswickRMCostertonJWFPlasmodesmata in Nitella translucens: structure and electrical resistanceJ Cell Sci196724514641:STN:280:DyaF1c%2FgslGntg%3D%3D6051376 BeilbyMJBissonMVolkovAGpH banding in charophyte algaePlant electrophysiology. Methods and cell electrophysiology2012BerlinSpringer24727110.1007/978-3-642-29119-7_11 FranceschiVRDingBLucasWJMechanism of plasmodesmata formation in characean algae in relation to evolution of intercellular communication in higher plantsPlanta199419234735810.1007/BF00198570 TuckerEBCytoplasmic streaming does not drive intercellular passage in staminal hairs of Setcreasea purpureaProtoplasma198713714014410.1007/BF01281149 PickardWFThe role of cytoplasmic streaming in symplastic transportPlant Cell Environ20032611510.1046/j.1365-3040.2003.00845.x1:CAS:528:DC%2BD3sXhtlKrtLo%3D Holdaway-ClarkeTLWalkerNAHeplerPKOverallRLPhysiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmataPlanta200021032933510.1007/PL000081411:CAS:528:DC%2BD3cXisVagug%3D%3D10664140 KikuyamaMHaraYShimadaKYamamotoKHiramotoYIntercellular transport of macromolecules in NitellaPlant Cell Physiol1992334134171:CAS:528:DyaK38Xks1Kksrc%3D10.1093/oxfordjournals.pcp.a077800 TuckerEBTuckerJECell-to-cell diffusion selectivity in staminal hairs of Setcreasea purpureaProtoplasma1993174364410.1007/BF01404040 DingDQAminoSMimuraTSakanoKNagataTTazawaMQuantitative analysis of intercellularly transported photoassimilates in Chara corallinaJ Exp Bot1992431045105110.1093/jxb/43.8.10451:CAS:528:DyaK38Xls1OktL0%3D JonesDLKochianLVGilroySAluminum induces a decrease in cytosolic calcium concentration in BY-2 tobacco cell culturesPlant Physiol1998116818910.1104/pp.116.1.811:CAS:528:DyaK1cXkslCrsg%3D%3D35190 BulychevAAAlovaAVRubinABPropagation of photoinduced signals with the cytoplasmic flow along Characean internodes: evidence from changes in chloroplast fluorescence and surface pHEur Biophys J20134244145310.1007/s00249-013-0895-z1:CAS:528:DC%2BC3sXnvFyrtrs%3D23467782 DingDQAminoSNagataTTazawaMIntercellular transport and subcellular distribution of photoassimilates in Chara corallinaJ Exp Bot1991421393139810.1093/jxb/42.11.13931:CAS:528:DyaK38XlsFOmsw%3D%3D FoissnerIWasteneysGOWide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cellsPlant Cell Physiol20074858559710.1093/pcp/pcm0301:CAS:528:DC%2BD2sXls1Oqsr0%3D17327257 SchulzADiffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilatesJ Plant Res2015128496110.1007/s10265-014-0676-51:CAS:528:DC%2BC2cXitFyhur%2FN25516499 KJ Oparka (1344_CR39) 1992; 2 EB Tucker (1344_CR47) 1982; 113 TL Holdaway-Clarke (1344_CR29) 2000; 210 DL Jones (1344_CR31) 1998; 116 EB Tucker (1344_CR48) 1987; 137 BES Gunning (1344_CR28) 1976 J Liesche (1344_CR36) 2012; 159 MJ Beilby (1344_CR2) 2012 AA Bulychev (1344_CR12) 2017; 1858 VR Franceschi (1344_CR25) 1994; 192 B Ding (1344_CR18) 1996; 10 N Gerlitz (1344_CR26) 2018; 94 WJ Lucas (1344_CR38) 1993; 125 DQ Ding (1344_CR21) 1989; 30 KH Jensen (1344_CR30) 2018; 43 NM Christensen (1344_CR15) 2009; 150 BL Epel (1344_CR23) 1994; 26 EB Tucker (1344_CR49) 1993; 174 BR Terry (1344_CR45) 1987; 171 J Comtet (1344_CR16) 2017; 175 AG Roberts (1344_CR41) 2003; 26 WF Pickard (1344_CR40) 2003; 26 AA Bulychev (1344_CR7) 2013; 42 AA Bulychev (1344_CR8) 2011; 1807 AV Komarova (1344_CR34) 2018; 45 1344_CR1 AA Bulychev (1344_CR14) 2018 DQ Ding (1344_CR19) 1992; 43 M Kikuyama (1344_CR33) 1992; 33 JE Tucker (1344_CR50) 1989; 90 ME Cook (1344_CR17) 1997; 84 A Schulz (1344_CR42) 2015; 128 LM Blackman (1344_CR4) 1998; 14 MA Bisson (1344_CR3) 1984; 74 AA Bulychev (1344_CR10) 2015; 1847 K Trebacz (1344_CR46) 1988; 39 R Box (1344_CR5) 1984; 35 AA Bulychev (1344_CR9) 2017; 12 NA Krupenina (1344_CR35) 2007; 1767 A Bräutigam (1344_CR6) 2011; 155 RM Spanswick (1344_CR44) 1967; 2 AA Bulychev (1344_CR13) 2018; 255 1344_CR37 C Schulte (1344_CR43) 1994; 107 I Foissner (1344_CR24) 2007; 48 AA Bulychev (1344_CR11) 2017; 254 P Zambryski (1344_CR51) 2000; 16 K Ehlers (1344_CR22) 2013 T Kalwarczyk (1344_CR32) 2012; 28 DQ Ding (1344_CR20) 1991; 42 PB Goodwin (1344_CR27) 1999 |
References_xml | – reference: ComtetJTurgeonRStroockADPhloem loading through plasmodesmata: a biophysical analysisPlant Physiol20171759049151:CAS:528:DC%2BC1cXmsFWnsLw%3D10.1104/pp.16.01041287942595619879 – reference: LiescheJSchulzAIn vivo quantification of cell coupling in plants with different phloem-loading strategiesPlant Physiol201215935536510.1104/pp.112.1951151:CAS:528:DC%2BC38XntV2gsL4%3D224229393375970 – reference: GunningBESRobardsAIntercellular communication in plants: studies on plasmodesmata1976BerlinSpringer10.1007/978-3-642-66294-2 – reference: BoxRAndrewsMRavenJAIntercellular transport and cytoplasmic streaming in Chara hispidaJ Exp Bot1984351016102110.1093/jxb/35.7.1016 – reference: BulychevAAFoissnerIPathways for external alkalinization in intact and in microwounded Chara cells are differentially sensitive to wortmanninPlant Signal Behav20171210.1080/15592324.2017.13625181:CAS:528:DC%2BC2sXhsVGmu7fI288054935640205 – reference: Holdaway-ClarkeTLWalkerNAHeplerPKOverallRLPhysiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmataPlanta200021032933510.1007/PL000081411:CAS:528:DC%2BD3cXisVagug%3D%3D10664140 – reference: CookMEGrahamLEBothaCEJLavinCAComparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmataAmer J Bot1997841169117810.2307/24460401:STN:280:DC%2BC3MnjvVGksQ%3D%3D – reference: EpelBLPlasmodesmata: composition, structure and traffickingPlant Mol Biol1994261343135610.1007/BF000164791:CAS:528:DyaK2MXjvFelu7k%3D7532025 – reference: Beilby MJ (2016) Multi-scale characean experimental system: from electrophysiology of membrane transporters to cell-to-cell connectivity, cytoplasmic streaming and auxin metabolism. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01052 – reference: BulychevAAKomarovaAVPhotoinduction of cyclosis-mediated interactions between distant chloroplastsBiochim Biophys Acta2015184737938910.1016/j.bbabio.2015.01.0041:CAS:528:DC%2BC2MXhtlWgs7Y%3D25615586 – reference: OparkaKJPriorDAMDirect evidence for pressure-generated closure of plasmodesmataPlant J1992274175010.1111/j.1365-313X.1992.tb00143.x – reference: FoissnerIWasteneysGOWide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cellsPlant Cell Physiol20074858559710.1093/pcp/pcm0301:CAS:528:DC%2BD2sXls1Oqsr0%3D17327257 – reference: SpanswickRMCostertonJWFPlasmodesmata in Nitella translucens: structure and electrical resistanceJ Cell Sci196724514641:STN:280:DyaF1c%2FgslGntg%3D%3D6051376 – reference: TuckerEBCytoplasmic streaming does not drive intercellular passage in staminal hairs of Setcreasea purpureaProtoplasma198713714014410.1007/BF01281149 – reference: DingDQAminoSNagataTTazawaMIntercellular transport and subcellular distribution of photoassimilates in Chara corallinaJ Exp Bot1991421393139810.1093/jxb/42.11.13931:CAS:528:DyaK38XlsFOmsw%3D%3D – reference: BeilbyMJBissonMVolkovAGpH banding in charophyte algaePlant electrophysiology. Methods and cell electrophysiology2012BerlinSpringer24727110.1007/978-3-642-29119-7_11 – reference: SchulzADiffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilatesJ Plant Res2015128496110.1007/s10265-014-0676-51:CAS:528:DC%2BC2cXitFyhur%2FN25516499 – reference: DingDQTazawaMInfluence of cytoplasmic streaming and turgor pressure gradient on the transnodal transport of rubidium and electrical conductance in Chara corallinaPlant Cell Physiol19893073974810.1093/oxfordjournals.pcp.a077800 – reference: JonesDLKochianLVGilroySAluminum induces a decrease in cytosolic calcium concentration in BY-2 tobacco cell culturesPlant Physiol1998116818910.1104/pp.116.1.811:CAS:528:DyaK1cXkslCrsg%3D%3D35190 – reference: BlackmanLMOverallRLImmunolocalisation of the cytoskeleton to plasmodesmata of Chara corallinaPlant J19981473374110.1046/j.1365-313x.1998.00161.x1:CAS:528:DyaK1cXks1WktLc%3D – reference: Liesche J, Schulz A (2013) Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00207 – reference: KalwarczykTTabakaMHolystRBiologistics – diffusion coefficients for complete proteome of Escherichia coliBioinformatics2012282971297810.1093/bioinformatics/bts5371:CAS:528:DC%2BC38Xhs1Glt7fK229420213496334 – reference: KikuyamaMHaraYShimadaKYamamotoKHiramotoYIntercellular transport of macromolecules in NitellaPlant Cell Physiol1992334134171:CAS:528:DyaK38Xks1Kksrc%3D10.1093/oxfordjournals.pcp.a077800 – reference: ChristensenNMFaulknerCOparkaKEvidence for unidirectional flow through plasmodesmataPlant Physiol20091509610410.1104/pp.109.1370831:CAS:528:DC%2BD1MXlvFahsr8%3D192700592675744 – reference: LucasWJDingBVan der SchootCPlasmodesmata and the supracellular nature of plantsNew Phytol199312543547610.1111/j.1469-8137.1993.tb03897.x – reference: TuckerJEMauzerallDTuckerEBSymplastic transport of carboxyfluorescein in staminal hairs of Setcreasea purpurea is diffusive and includes loss to the vacuolePlant Physiol1989901143114710.1104/pp.90.3.11431:CAS:528:DyaL1MXkvFequrs%3D166668641061856 – reference: FranceschiVRDingBLucasWJMechanism of plasmodesmata formation in characean algae in relation to evolution of intercellular communication in higher plantsPlanta199419234735810.1007/BF00198570 – reference: TerryBRRobardsAWHydrodynamic radius alone governs the mobility of molecules through plasmodesmataPlanta198717114515710.1007/BF003910901:CAS:528:DyaL2sXksFKjsro%3D24227322 – reference: DingDQAminoSMimuraTSakanoKNagataTTazawaMQuantitative analysis of intercellularly transported photoassimilates in Chara corallinaJ Exp Bot1992431045105110.1093/jxb/43.8.10451:CAS:528:DyaK38Xls1OktL0%3D – reference: BulychevAARybinaAAFoissnerIDejesusCTraskLLong-range lateral transport between immobile chloroplasts in Chara is sensitive to interference of brefeldin A in vesicle traffickingChloroplasts and cytoplasm: structure and functions2018New YorkNova Science, Hauppauge124 – reference: BulychevAAKomarovaAVImplication of long-distance cytoplasmic transport into dynamics of local pH on the surface of microinjured Chara cellsProtoplasma201725455756710.1007/s00709-016-0975-x1:CAS:528:DC%2BC28Xms12ktL8%3D27091340 – reference: BräutigamAWeberAPMDo metabolite transport processes limit photosynthesis?Plant Physiol2011155434810.1104/pp.110.1649701:CAS:528:DC%2BC3MXksFagsL8%3D20855521 – reference: BulychevAAKomarovaAVPhotoregulation of photosystem II activity mediated by cytoplasmic streaming in Chara and its relation to pH bandsBiochim Biophys Acta Bioenerg2017185838639510.1016/j.bbabio.2017.02.0141:CAS:528:DC%2BC2sXjvF2ktr4%3D28257779 – reference: BulychevAARybinaAALong-range interactions of Chara chloroplasts are sensitive to plasma-membrane H+ flows and comprise separate photo- and dark-operated pathwaysProtoplasma20182551621163410.1007/s00709-018-1255-81:CAS:528:DC%2BC1cXovVWnsr0%3D29704048 – reference: RobertsAGOparkaKJPlasmodesmata and the control of symplastic transportPlant, Cell Eviron20032610312410.1046/j.1365-3040.2003.00950.x – reference: TuckerEBTranslocation in the staminal hairs of Setcreasea purpurea. I. A study of cell ultrastructure and cell-to-cell passage of molecular probesProtoplasma198211319320110.1007/BF012809071:CAS:528:DyaL3sXos1Crtg%3D%3D – reference: SchulteCKirstGOWinterUSource-sink characteristic of photoassimilate transport in fertile and sterile plants of Chara vulgaris LPlant Biol19941073623681:CAS:528:DyaK2MXis1OmtLw%3D – reference: DingBKwonM-OWarnbergLEvidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyllPlant J19961015716410.1046/j.1365-313X.1996.10010157.x – reference: GerlitzNGerumRSauerNStadlerRPhotoinducible DRONPA-s: a new tool for investigating cell–cell connectivityPlant J20189475176610.1111/tpj.139181:CAS:528:DC%2BC1cXptlyqsbs%3D29654648 – reference: ZambryskiPCrawfordKPlasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plantsAnnu Rev Cell Dev Biol20001639342110.1146/annurev.cellbio.16.1.3931:CAS:528:DC%2BD3MXpvFyn11031242 – reference: BulychevAAAlovaAVRubinABPropagation of photoinduced signals with the cytoplasmic flow along Characean internodes: evidence from changes in chloroplast fluorescence and surface pHEur Biophys J20134244145310.1007/s00249-013-0895-z1:CAS:528:DC%2BC3sXnvFyrtrs%3D23467782 – reference: BulychevAADodonovaSOEffects of cyclosis on chloroplast–cytoplasm interactions revealed with localized lighting in characean cells at rest and after electrical excitationBiochim Biophys Acta201118071221123010.1016/j.bbabio.2011.06.0091:CAS:528:DC%2BC3MXptV2jsrs%3D21708122 – reference: TrebaczKFensomDSHarrisAZawadzkiTTransnodal transport of 14C in Nitella flexilis: III. Further studies on dissolved inorganic carbon movements in tandem cellsJ Exp Bot198839111561157310.1093/jxb/39.11.15611:CAS:528:DyaL1MXnt1Gltw%3D%3D – reference: GoodwinPBCantrilLCvan BelAJEvan KesterenWJPUse and limitations of fluorochromes for plasmodesmal researchPlasmodesmata: structure, function, role in cell communication1999BerlinSpringer678410.1007/978-3-642-60035-7_5 – reference: KomarovaAVSukhovVSBulychevAACyclosis-mediated long distance communications of chloroplasts in giant cells of CharaceaeFunct Plant Biol20184523624610.1071/FP162831:CAS:528:DC%2BC1cXht1CitA%3D%3D – reference: TuckerEBTuckerJECell-to-cell diffusion selectivity in staminal hairs of Setcreasea purpureaProtoplasma1993174364410.1007/BF01404040 – reference: KrupeninaNABulychevAAAction potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescenceBiochim Biophys Acta2007176778178810.1016/j.bbabio.2007.01.0041:CAS:528:DC%2BD2sXmt1ygurY%3D17300741 – reference: PickardWFThe role of cytoplasmic streaming in symplastic transportPlant Cell Environ20032611510.1046/j.1365-3040.2003.00845.x1:CAS:528:DC%2BD3sXhtlKrtLo%3D – reference: BissonMABartholomewDOsmoregulation or turgor regulation in Chara?Plant Physiol19847425225510.1104/pp.74.2.2521:CAS:528:DyaL2cXhtFyjsLs%3D166634061066664 – reference: EhlersKWesterlohMGSokołowskaKSowińskiPDevelopmental control of plasmodesmata frequency, structure, and functionSymplasmic transport in vascular plants2013New YorkSpringer418210.1007/978-1-4614-7765-5_2 – reference: JensenKHPhloem physics: mechanisms, constraints, and perspectivesCurr Opin Plant Biol2018439610010.1016/j.pbi.2018.03.00529660560 – volume: 1858 start-page: 386 year: 2017 ident: 1344_CR12 publication-title: Biochim Biophys Acta Bioenerg doi: 10.1016/j.bbabio.2017.02.014 – start-page: 41 volume-title: Symplasmic transport in vascular plants year: 2013 ident: 1344_CR22 doi: 10.1007/978-1-4614-7765-5_2 – volume: 1847 start-page: 379 year: 2015 ident: 1344_CR10 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2015.01.004 – start-page: 67 volume-title: Plasmodesmata: structure, function, role in cell communication year: 1999 ident: 1344_CR27 doi: 10.1007/978-3-642-60035-7_5 – volume: 125 start-page: 435 year: 1993 ident: 1344_CR38 publication-title: New Phytol doi: 10.1111/j.1469-8137.1993.tb03897.x – start-page: 247 volume-title: Plant electrophysiology. Methods and cell electrophysiology year: 2012 ident: 1344_CR2 doi: 10.1007/978-3-642-29119-7_11 – volume: 42 start-page: 1393 year: 1991 ident: 1344_CR20 publication-title: J Exp Bot doi: 10.1093/jxb/42.11.1393 – volume: 42 start-page: 441 year: 2013 ident: 1344_CR7 publication-title: Eur Biophys J doi: 10.1007/s00249-013-0895-z – volume: 30 start-page: 739 year: 1989 ident: 1344_CR21 publication-title: Plant Cell Physiol doi: 10.1093/oxfordjournals.pcp.a077800 – volume: 28 start-page: 2971 year: 2012 ident: 1344_CR32 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts537 – volume: 255 start-page: 1621 year: 2018 ident: 1344_CR13 publication-title: Protoplasma doi: 10.1007/s00709-018-1255-8 – ident: 1344_CR37 doi: 10.3389/fpls.2013.00207 – volume: 171 start-page: 145 year: 1987 ident: 1344_CR45 publication-title: Planta doi: 10.1007/BF00391090 – start-page: 1 volume-title: Chloroplasts and cytoplasm: structure and functions year: 2018 ident: 1344_CR14 – volume: 10 start-page: 157 year: 1996 ident: 1344_CR18 publication-title: Plant J doi: 10.1046/j.1365-313X.1996.10010157.x – volume: 26 start-page: 103 year: 2003 ident: 1344_CR41 publication-title: Plant, Cell Eviron doi: 10.1046/j.1365-3040.2003.00950.x – volume: 26 start-page: 1343 year: 1994 ident: 1344_CR23 publication-title: Plant Mol Biol doi: 10.1007/BF00016479 – volume: 2 start-page: 741 year: 1992 ident: 1344_CR39 publication-title: Plant J doi: 10.1111/j.1365-313X.1992.tb00143.x – volume: 2 start-page: 451 year: 1967 ident: 1344_CR44 publication-title: J Cell Sci doi: 10.1242/jcs.2.3.451 – volume: 1807 start-page: 1221 year: 2011 ident: 1344_CR8 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2011.06.009 – volume: 210 start-page: 329 year: 2000 ident: 1344_CR29 publication-title: Planta doi: 10.1007/PL00008141 – volume: 155 start-page: 43 year: 2011 ident: 1344_CR6 publication-title: Plant Physiol doi: 10.1104/pp.110.164970 – volume: 174 start-page: 36 year: 1993 ident: 1344_CR49 publication-title: Protoplasma doi: 10.1007/BF01404040 – volume: 192 start-page: 347 year: 1994 ident: 1344_CR25 publication-title: Planta doi: 10.1007/BF00198570 – volume: 116 start-page: 81 year: 1998 ident: 1344_CR31 publication-title: Plant Physiol doi: 10.1104/pp.116.1.81 – volume: 48 start-page: 585 year: 2007 ident: 1344_CR24 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcm030 – ident: 1344_CR1 doi: 10.3389/fpls.2016.01052 – volume: 150 start-page: 96 year: 2009 ident: 1344_CR15 publication-title: Plant Physiol doi: 10.1104/pp.109.137083 – volume: 94 start-page: 751 year: 2018 ident: 1344_CR26 publication-title: Plant J doi: 10.1111/tpj.13918 – volume: 33 start-page: 413 year: 1992 ident: 1344_CR33 publication-title: Plant Cell Physiol doi: 10.1093/oxfordjournals.pcp.a077800 – volume: 137 start-page: 140 year: 1987 ident: 1344_CR48 publication-title: Protoplasma doi: 10.1007/BF01281149 – volume: 159 start-page: 355 year: 2012 ident: 1344_CR36 publication-title: Plant Physiol doi: 10.1104/pp.112.195115 – volume: 74 start-page: 252 year: 1984 ident: 1344_CR3 publication-title: Plant Physiol doi: 10.1104/pp.74.2.252 – volume-title: Intercellular communication in plants: studies on plasmodesmata year: 1976 ident: 1344_CR28 doi: 10.1007/978-3-642-66294-2 – volume: 43 start-page: 96 year: 2018 ident: 1344_CR30 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2018.03.005 – volume: 113 start-page: 193 year: 1982 ident: 1344_CR47 publication-title: Protoplasma doi: 10.1007/BF01280907 – volume: 35 start-page: 1016 year: 1984 ident: 1344_CR5 publication-title: J Exp Bot doi: 10.1093/jxb/35.7.1016 – volume: 26 start-page: 1 year: 2003 ident: 1344_CR40 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2003.00845.x – volume: 14 start-page: 733 year: 1998 ident: 1344_CR4 publication-title: Plant J doi: 10.1046/j.1365-313x.1998.00161.x – volume: 12 year: 2017 ident: 1344_CR9 publication-title: Plant Signal Behav doi: 10.1080/15592324.2017.1362518 – volume: 90 start-page: 1143 year: 1989 ident: 1344_CR50 publication-title: Plant Physiol doi: 10.1104/pp.90.3.1143 – volume: 1767 start-page: 781 year: 2007 ident: 1344_CR35 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2007.01.004 – volume: 45 start-page: 236 year: 2018 ident: 1344_CR34 publication-title: Funct Plant Biol doi: 10.1071/FP16283 – volume: 254 start-page: 557 year: 2017 ident: 1344_CR11 publication-title: Protoplasma doi: 10.1007/s00709-016-0975-x – volume: 128 start-page: 49 year: 2015 ident: 1344_CR42 publication-title: J Plant Res doi: 10.1007/s10265-014-0676-5 – volume: 39 start-page: 1561 issue: 11 year: 1988 ident: 1344_CR46 publication-title: J Exp Bot doi: 10.1093/jxb/39.11.1561 – volume: 84 start-page: 1169 year: 1997 ident: 1344_CR17 publication-title: Amer J Bot doi: 10.2307/2446040 – volume: 16 start-page: 393 year: 2000 ident: 1344_CR51 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.16.1.393 – volume: 107 start-page: 362 year: 1994 ident: 1344_CR43 publication-title: Plant Biol – volume: 175 start-page: 904 year: 2017 ident: 1344_CR16 publication-title: Plant Physiol doi: 10.1104/pp.16.01041 – volume: 43 start-page: 1045 year: 1992 ident: 1344_CR19 publication-title: J Exp Bot doi: 10.1093/jxb/43.8.1045 |
SSID | ssj0005205 |
Score | 2.2502315 |
Snippet | Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 815 |
SubjectTerms | Actin Biomedical and Life Sciences Cell Biology Cell walls Chara Chlorophyll Chloroplasts Conductance Cytochalasin D Cytoplasm Cytoplasmic streaming Electron transport fluorescence Fluorescent indicators growth and development hydrostatic pressure internodes Life Sciences lighting Metabolites Original Article Osmolarity Permeability permeates Photosynthesis photosynthetic electron transport Plant cells Plant Sciences Plasmodesmata Sorbitol tracer techniques Tracers Zoology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELUoCKmXCihtl4_KlXorVhPbcZITQqgIVYITSHuLbMcWlUK8kOxhL_x2ZpzsAkLd89qrkWfieTOeeUPIT2Oy0idOs1JqzWQuONOlNyzVskytBYesscH56lpd3sq_02w6Jty6saxyeSfGi7oOFnPkvzkAB7hKeVKezh4YTo3C19VxhMYHsoXUZVjSlU_z1yUewwQDIRiY7nRsmomtc8hzg5VCWMolpGTJW8f0Dm2-eymNDuhih3wakSM9G1S9SzZcu0e2h1mSi8_k6Xxhm9D9g9A1Tt9wNUUqiJiZx1JT2qNXAq1ieowGT2d3oQ_dogUECP9I710P9oAdyR1spPgMrynyO4EHqSmma6m9g-A-gF6aht5jIZ9v5gHpDvrHxT65vfhzc37JxuEKzMqk6JnNlXFCgaZqDxBBFbUWLktqjE9yLRVPjaghmhHOO8s1IDWdOel8nuL4dOXFF7LZhtZ9I1RBmOulMaUQTubOG25VrYpCFtp4l4kJSZcnW9mReRwHYDTVijM5aqMCbVRRG1UyIb9We2YD78ba1UdLhVXjN9hVLxYzIT9WP8M548Hr1oV5XCPTGDauWcMzwQFG8nRCvg7GsBIJAi5kmIfdJ0vreBHg__IerJf3kHwEXFYOdZVHZLN_nLtjwD69-R4N_BmuNQFw priority: 102 providerName: ProQuest |
Title | Cyclosis-mediated intercellular transmission of photosynthetic metabolites in Chara revealed with chlorophyll microfluorometry |
URI | https://link.springer.com/article/10.1007/s00709-018-01344-0 https://www.ncbi.nlm.nih.gov/pubmed/30610387 https://www.proquest.com/docview/2163284209 https://www.proquest.com/docview/2164104287 https://www.proquest.com/docview/2253239221 |
Volume | 256 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZtQqGX0vS5TbKo0FsrsCX5ddyGTUNLQyld2PZiJFkiAccKsfewl_72zMiPNKQN9GSBJSM0I8_3SfMg5J3WSeEiq1ghlWIyE5ypwmkWK1nExoBBVhjg_PU0PVnJz-tkPQSFtaO3-3glGf7UU7AbZqZB3x50vhJSMiDquwlyd9DiFV_86djR1y0QgoHCrodQmb9_47Y5uoMx79yPBrNz_JQ8GfAiXfQC3iMPbPOMPOorSG6h9cuH1nPy-2hrat-eA3UN1TdsRTEVRDiZR1dT2qFVAqni8Rj1jl6e-c632wYQIHybXtgO9AEjklsYSPEaXlHM7wQWpKJ4XEvNGZB7D3Kpa3qBjnyu3nhMd9BdbV-Q1fHyx9EJG4orMCOjvGMmS7UVKUiqcgAR0rxSwiZRhfwkUzLlsRYVsBlhnTVcAVJTiZXWZTGWT0-deEl2Gt_Y14SmQHOd1LoQwsrMOs1NWqV5LnOlnU3EjMTjGpdmyDyOBTDqcsqZHORSglzKIJcympH305jLPu_Gvb0PRtGVwx5sSw5QE4wvj4oZeTu9hnXGhVeN9ZvQR8aBNt7ThyeCA4zk8Yy86tVimhIQLswwD6M_jHpyM4F_z_fN_3XfJ48BpxW9n-UB2emuNvYQsFCn5-Rhts7mZHfx6eeXJTw_Lk-_fZ-HDXENygQFcw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDcLBYwEJ7BIbOd1QAhKqy1tVwi10t6C7dgqUhovu1mhXPhJ_EZm8tiCKvbWc-xo5Pns-caeByEvtY4yF1jFMqkUk4ngTGVOs1DJLDQGDLLCBOfjaTw5lZ9n0WyL_B5yYTCscjgT24O68AbvyN9yIA5wlPIgez__wbBrFL6uDi00Olgc2uYnuGzLdwefQL-vON_fO9mdsL6rADMySGtmklhbEYOIhQPbGKeFEjYKCiTmiZIxD7UogMYL66zhCiiKiqy0Lgmxb3jsBPz3GtmWAlyZEdn-uDf98vXvoJKuZ4IQDDbLrE_TaZP1sLIOxiZh8JiQkgX_msJL_PbS22xr8vZvk1s9V6UfOnDdIVu2ukuud90rm3vk125jSr_8Ds5y2-_DFhSLT7RvARjcSmu0g4AjvJCj3tH5ma_9sqmAc8If6bmtAYGYA72EiRQf_hXFilJgswqKF8TUnJV-4QEJZUnPMXTQlSuPBRbqRXOfnF7Jwj8go8pX9hGhMTjWTmqdCWFlYp3mJi7iNJWp0s5GYkzCYWVz09c6x5YbZb6u0txqIwdt5K028mBMXq_nzLtKHxtH7wwKy_tdv8wvMDomL9afYZ1x4VVl_aodI8PWUd0whkeCA3Hl4Zg87MCwFglcPKxpD7PfDOi4EOD_8j7eLO9zcmNycnyUHx1MD5-Qm8AKsy6qc4eM6sXKPgXmVetnPdwp-XbVO-wPHZE_PQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkWChgJTmA1sZ3XASHUsmopVByotLdgO7aKlMbLJiu0F34Yv44ZJ9mCKvbWc-xoNA_PN_Y8CHmpdVK4yCpWSKWYzARnqnCaxUoWsTHgkBUWOH8-SQ9P5cdZMtsiv8daGEyrHM_EcFBX3uAd-R4H4ABHKY-KPTekRXw5mL6b_2A4QQpfWsdxGr2KHNvVTwjf2rdHByDrV5xPP3zdP2TDhAFmZJR3zGSptiIFcisHfjLNKyVsElUI0jMlUx5rUQGkF9ZZwxXAFZVYaV0W4wzx1An47zVyPRNJjDaWzbK_00v66QlCMDCb2VCwE8r2sMcOZilhGpmQkkX_OsVLSPfSK21wftM75PaAWun7Xs3uki3b3CM3-jmWq_vk1_7K1L79DmFzmPxhK4ptKMKrAKa50g49ImgUXs1R7-j8zHe-XTWAPuGP9Nx2oItYDd3CRoopAIpibynwXhXFq2Jqzmq_8KATdU3PMYnQ1UuPrRa6xeoBOb0Stj8k241v7CNCUwixndS6EMLKzDrNTVqleS5zpZ1NxITEI2dLM3Q9x-Ebdbnu1xykUYI0yiCNMpqQ1-s9877nx8bVu6PAysH-2_JCWyfkxfoz8BkZrxrrl2GNjEPIumENTwQHCMvjCdnplWFNEgR72N0edr8ZteOCgP_T-3gzvc_JTbCr8tPRyfETcgvgYdGnd-6S7W6xtE8BgnX6WdB1Sr5dtXH9AYxPQg0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclosis-mediated+intercellular+transmission+of+photosynthetic+metabolites+in+Chara+revealed+with+chlorophyll+microfluorometry&rft.jtitle=Protoplasma&rft.au=Bulychev%2C+Alexander+A.&rft.date=2019-05-01&rft.pub=Springer+Vienna&rft.issn=0033-183X&rft.eissn=1615-6102&rft.volume=256&rft.issue=3&rft.spage=815&rft.epage=826&rft_id=info:doi/10.1007%2Fs00709-018-01344-0&rft.externalDocID=10_1007_s00709_018_01344_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-183X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-183X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-183X&client=summon |