Cyclosis-mediated intercellular transmission of photosynthetic metabolites in Chara revealed with chlorophyll microfluorometry

Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined w...

Full description

Saved in:
Bibliographic Details
Published inProtoplasma Vol. 256; no. 3; pp. 815 - 826
Main Author Bulychev, Alexander A.
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.05.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0033-183X
1615-6102
1615-6102
DOI10.1007/s00709-018-01344-0

Cover

Loading…
Abstract Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined with fluorescent tracers whose molecular dimensions are similar to natural metabolites produced in photosynthesis. Chlorophyll fluorescence was recently found to be a sensitive noninvasive indicator of long-distance intracellular transport of physiologically produced photometabolites in characean internodes. The present work shows that the chlorophyll microfluorometry has a potential for studying the cell-to-cell transport of reducing substances released by local illumination of one internode and detected as the fluorescence increase in the neighbor internode. The method provides temporal resolution in the time frame of seconds and can be used to evaluate permeability of plasmodesmata to natural components released by illuminated chloroplasts. The results show that approximately one third of the amount of photometabolites released into the streaming cytoplasm during a 30-s pulse of local light permeates across the nodal complex with the characteristic time of ~ 10 s. The intercellular transport was highly sensitive to moderate elevations of osmolarity in the bath solution (150 mM sorbitol), which contrasts to the view that only transnodal gradients in osmolarity (and internal hydrostatic pressure) have an appreciable influence on plasmodesmal conductance. The inhibition of cell-to-cell transport was reversible and specific; the sorbitol addition had no influence on photosynthetic electron transport and the velocity of cytoplasmic streaming. The conductance of transcellular pores increased in the presence of the actin inhibitor cytochalasin d but the cell-to-cell transport was eventually suppressed due to the deceleration and cessation of cytoplasmic streaming. The results show that the permeability of plasmodesmata to low-molecular photometabolites is subject to upregulation and downregulation.
AbstractList Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined with fluorescent tracers whose molecular dimensions are similar to natural metabolites produced in photosynthesis. Chlorophyll fluorescence was recently found to be a sensitive noninvasive indicator of long-distance intracellular transport of physiologically produced photometabolites in characean internodes. The present work shows that the chlorophyll microfluorometry has a potential for studying the cell-to-cell transport of reducing substances released by local illumination of one internode and detected as the fluorescence increase in the neighbor internode. The method provides temporal resolution in the time frame of seconds and can be used to evaluate permeability of plasmodesmata to natural components released by illuminated chloroplasts. The results show that approximately one third of the amount of photometabolites released into the streaming cytoplasm during a 30-s pulse of local light permeates across the nodal complex with the characteristic time of ~ 10 s. The intercellular transport was highly sensitive to moderate elevations of osmolarity in the bath solution (150 mM sorbitol), which contrasts to the view that only transnodal gradients in osmolarity (and internal hydrostatic pressure) have an appreciable influence on plasmodesmal conductance. The inhibition of cell-to-cell transport was reversible and specific; the sorbitol addition had no influence on photosynthetic electron transport and the velocity of cytoplasmic streaming. The conductance of transcellular pores increased in the presence of the actin inhibitor cytochalasin d but the cell-to-cell transport was eventually suppressed due to the deceleration and cessation of cytoplasmic streaming. The results show that the permeability of plasmodesmata to low-molecular photometabolites is subject to upregulation and downregulation.
Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined with fluorescent tracers whose molecular dimensions are similar to natural metabolites produced in photosynthesis. Chlorophyll fluorescence was recently found to be a sensitive noninvasive indicator of long-distance intracellular transport of physiologically produced photometabolites in characean internodes. The present work shows that the chlorophyll microfluorometry has a potential for studying the cell-to-cell transport of reducing substances released by local illumination of one internode and detected as the fluorescence increase in the neighbor internode. The method provides temporal resolution in the time frame of seconds and can be used to evaluate permeability of plasmodesmata to natural components released by illuminated chloroplasts. The results show that approximately one third of the amount of photometabolites released into the streaming cytoplasm during a 30-s pulse of local light permeates across the nodal complex with the characteristic time of ~ 10 s. The intercellular transport was highly sensitive to moderate elevations of osmolarity in the bath solution (150 mM sorbitol), which contrasts to the view that only transnodal gradients in osmolarity (and internal hydrostatic pressure) have an appreciable influence on plasmodesmal conductance. The inhibition of cell-to-cell transport was reversible and specific; the sorbitol addition had no influence on photosynthetic electron transport and the velocity of cytoplasmic streaming. The conductance of transcellular pores increased in the presence of the actin inhibitor cytochalasin d but the cell-to-cell transport was eventually suppressed due to the deceleration and cessation of cytoplasmic streaming. The results show that the permeability of plasmodesmata to low-molecular photometabolites is subject to upregulation and downregulation.
Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined with fluorescent tracers whose molecular dimensions are similar to natural metabolites produced in photosynthesis. Chlorophyll fluorescence was recently found to be a sensitive noninvasive indicator of long-distance intracellular transport of physiologically produced photometabolites in characean internodes. The present work shows that the chlorophyll microfluorometry has a potential for studying the cell-to-cell transport of reducing substances released by local illumination of one internode and detected as the fluorescence increase in the neighbor internode. The method provides temporal resolution in the time frame of seconds and can be used to evaluate permeability of plasmodesmata to natural components released by illuminated chloroplasts. The results show that approximately one third of the amount of photometabolites released into the streaming cytoplasm during a 30-s pulse of local light permeates across the nodal complex with the characteristic time of ~ 10 s. The intercellular transport was highly sensitive to moderate elevations of osmolarity in the bath solution (150 mM sorbitol), which contrasts to the view that only transnodal gradients in osmolarity (and internal hydrostatic pressure) have an appreciable influence on plasmodesmal conductance. The inhibition of cell-to-cell transport was reversible and specific; the sorbitol addition had no influence on photosynthetic electron transport and the velocity of cytoplasmic streaming. The conductance of transcellular pores increased in the presence of the actin inhibitor cytochalasin D but the cell-to-cell transport was eventually suppressed due to the deceleration and cessation of cytoplasmic streaming. The results show that the permeability of plasmodesmata to low-molecular photometabolites is subject to upregulation and downregulation.
Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined with fluorescent tracers whose molecular dimensions are similar to natural metabolites produced in photosynthesis. Chlorophyll fluorescence was recently found to be a sensitive noninvasive indicator of long-distance intracellular transport of physiologically produced photometabolites in characean internodes. The present work shows that the chlorophyll microfluorometry has a potential for studying the cell-to-cell transport of reducing substances released by local illumination of one internode and detected as the fluorescence increase in the neighbor internode. The method provides temporal resolution in the time frame of seconds and can be used to evaluate permeability of plasmodesmata to natural components released by illuminated chloroplasts. The results show that approximately one third of the amount of photometabolites released into the streaming cytoplasm during a 30-s pulse of local light permeates across the nodal complex with the characteristic time of ~ 10 s. The intercellular transport was highly sensitive to moderate elevations of osmolarity in the bath solution (150 mM sorbitol), which contrasts to the view that only transnodal gradients in osmolarity (and internal hydrostatic pressure) have an appreciable influence on plasmodesmal conductance. The inhibition of cell-to-cell transport was reversible and specific; the sorbitol addition had no influence on photosynthetic electron transport and the velocity of cytoplasmic streaming. The conductance of transcellular pores increased in the presence of the actin inhibitor cytochalasin D but the cell-to-cell transport was eventually suppressed due to the deceleration and cessation of cytoplasmic streaming. The results show that the permeability of plasmodesmata to low-molecular photometabolites is subject to upregulation and downregulation.Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and signaling substances required for growth and development. The pathways and features of intercellular movement of assimilates are often examined with fluorescent tracers whose molecular dimensions are similar to natural metabolites produced in photosynthesis. Chlorophyll fluorescence was recently found to be a sensitive noninvasive indicator of long-distance intracellular transport of physiologically produced photometabolites in characean internodes. The present work shows that the chlorophyll microfluorometry has a potential for studying the cell-to-cell transport of reducing substances released by local illumination of one internode and detected as the fluorescence increase in the neighbor internode. The method provides temporal resolution in the time frame of seconds and can be used to evaluate permeability of plasmodesmata to natural components released by illuminated chloroplasts. The results show that approximately one third of the amount of photometabolites released into the streaming cytoplasm during a 30-s pulse of local light permeates across the nodal complex with the characteristic time of ~ 10 s. The intercellular transport was highly sensitive to moderate elevations of osmolarity in the bath solution (150 mM sorbitol), which contrasts to the view that only transnodal gradients in osmolarity (and internal hydrostatic pressure) have an appreciable influence on plasmodesmal conductance. The inhibition of cell-to-cell transport was reversible and specific; the sorbitol addition had no influence on photosynthetic electron transport and the velocity of cytoplasmic streaming. The conductance of transcellular pores increased in the presence of the actin inhibitor cytochalasin D but the cell-to-cell transport was eventually suppressed due to the deceleration and cessation of cytoplasmic streaming. The results show that the permeability of plasmodesmata to low-molecular photometabolites is subject to upregulation and downregulation.
Author Bulychev, Alexander A.
Author_xml – sequence: 1
  givenname: Alexander A.
  orcidid: 0000-0003-3131-8890
  surname: Bulychev
  fullname: Bulychev, Alexander A.
  email: bulychev@biophys.msu.ru
  organization: Department of Biophysics, Faculty of Biology, Moscow State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30610387$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVJaSbT_oEuiqGbbtxePfxalqEvCGSTQHZCY1_XCrI0leQWb_rbe6eTUMgiXUgC8Z0rnXMu2JkPHhl7zeE9B2g-JNqgK4G3tKRSJTxjG17zqqw5iDO2AZCy5K28PWcXKd0BQCWgesHOJRAh22bDfu_W3oVkUznjYE3GobA-Y-zRucWZWORofJptSjb4IozFYQo5pNXnCbPtixmz2QdnMyYSFrvJRFNE_InG0ahfNk9FP7kQw2FanStm28cwuoUuSBnXl-z5aFzCV_fnlt18_nS9-1peXn35tvt4WfYK2lz2Tb1HWVfdOIxCyLodjMQKBiW7rjGqFnwvB9U2EkfshYFWmgoVjg2vVF3Vo9yyd6e5hxh-LJiyJktHj8ZjWJIWopJCdkLw_6O8VhyUoNe27O0j9C4s0ZORIyVFqwR0RL25p5Y9hawP0c4mrvqhBALaE0DZpBRx1L3NJlPgFL51moM-9q1PfWvqW__tWwNJxSPpw_QnRfIkSgT77xj_ffsJ1R98Lr7h
CitedBy_id crossref_primary_10_1134_S1990747824700193
crossref_primary_10_1007_s00709_022_01747_0
crossref_primary_10_31857_S0233475524050056
crossref_primary_10_1016_j_bpj_2022_11_2948
crossref_primary_10_1134_S1021443722010034
crossref_primary_10_1080_02678292_2024_2302457
crossref_primary_10_1134_S0006350920020037
crossref_primary_10_1111_ppl_13058
Cites_doi 10.1016/j.bbabio.2017.02.014
10.1007/978-1-4614-7765-5_2
10.1016/j.bbabio.2015.01.004
10.1007/978-3-642-60035-7_5
10.1111/j.1469-8137.1993.tb03897.x
10.1007/978-3-642-29119-7_11
10.1093/jxb/42.11.1393
10.1007/s00249-013-0895-z
10.1093/oxfordjournals.pcp.a077800
10.1093/bioinformatics/bts537
10.1007/s00709-018-1255-8
10.3389/fpls.2013.00207
10.1007/BF00391090
10.1046/j.1365-313X.1996.10010157.x
10.1046/j.1365-3040.2003.00950.x
10.1007/BF00016479
10.1111/j.1365-313X.1992.tb00143.x
10.1242/jcs.2.3.451
10.1016/j.bbabio.2011.06.009
10.1007/PL00008141
10.1104/pp.110.164970
10.1007/BF01404040
10.1007/BF00198570
10.1104/pp.116.1.81
10.1093/pcp/pcm030
10.3389/fpls.2016.01052
10.1104/pp.109.137083
10.1111/tpj.13918
10.1007/BF01281149
10.1104/pp.112.195115
10.1104/pp.74.2.252
10.1007/978-3-642-66294-2
10.1016/j.pbi.2018.03.005
10.1007/BF01280907
10.1093/jxb/35.7.1016
10.1046/j.1365-3040.2003.00845.x
10.1046/j.1365-313x.1998.00161.x
10.1080/15592324.2017.1362518
10.1104/pp.90.3.1143
10.1016/j.bbabio.2007.01.004
10.1071/FP16283
10.1007/s00709-016-0975-x
10.1007/s10265-014-0676-5
10.1093/jxb/39.11.1561
10.2307/2446040
10.1146/annurev.cellbio.16.1.393
10.1104/pp.16.01041
10.1093/jxb/43.8.1045
ContentType Journal Article
Copyright Springer-Verlag GmbH Austria, part of Springer Nature 2019
Protoplasma is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2019
– notice: Protoplasma is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2M
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
7S9
L.6
DOI 10.1007/s00709-018-01344-0
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest One Psychology

PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1615-6102
EndPage 826
ExternalDocumentID 30610387
10_1007_s00709_018_01344_0
Genre Journal Article
GrantInformation_xml – fundername: Russian Foundation for Basic Research
  grantid: 16-04-00318
  funderid: http://dx.doi.org/10.13039/501100002261
– fundername: Russian Foundation for Basic Research
  grantid: 16-04-00318
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-~C
-~X
.86
.VR
04C
06C
06D
0R~
0VY
123
199
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMOBN
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M1P
M2M
M4Y
M7P
MA-
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RRX
RSV
S16
S27
S3A
S3B
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
VC2
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z8O
Z8P
Z8Q
Z8S
ZMTXR
ZOVNA
~02
~EX
~KM
-Y2
.GJ
1SB
2.D
28-
2P1
2VQ
3SX
53G
5QI
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
ADYPR
AEBTG
AEFIE
AEKMD
AETEA
AEZWR
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
EN4
H13
IHE
KOW
MVM
N2Q
NDZJH
O9-
OHT
PHGZM
PHGZT
R4E
RIG
RNI
RZK
S1Z
S26
S28
SBY
SCLPG
T16
UZXMN
VFIZW
WK6
XOL
Y6R
ZGI
ZXP
NPM
3V.
7XB
8FK
ABRTQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c408t-c76be3659fdf22368da3e50d43997a4621b3d4873efec2a083a5e4ef7154656f3
IEDL.DBID U2A
ISSN 0033-183X
1615-6102
IngestDate Fri Jul 11 00:50:12 EDT 2025
Sun Aug 24 04:14:03 EDT 2025
Fri Jul 25 10:50:41 EDT 2025
Thu Apr 03 06:59:51 EDT 2025
Tue Jul 01 03:52:40 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Fri Feb 21 02:37:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Chlorophyll fluorescence
Chloroplasts
Intercellular transport
Photometabolites
Cytoplasmic streaming
Plasmodesmata
Long-distance communications
Chara
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c76be3659fdf22368da3e50d43997a4621b3d4873efec2a083a5e4ef7154656f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3131-8890
PMID 30610387
PQID 2163284209
PQPubID 1456343
PageCount 12
ParticipantIDs proquest_miscellaneous_2253239221
proquest_miscellaneous_2164104287
proquest_journals_2163284209
pubmed_primary_30610387
crossref_citationtrail_10_1007_s00709_018_01344_0
crossref_primary_10_1007_s00709_018_01344_0
springer_journals_10_1007_s00709_018_01344_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Austria
PublicationSubtitle An International Journal of Animal, Fungal and Plant Cell Biology
PublicationTitle Protoplasma
PublicationTitleAbbrev Protoplasma
PublicationTitleAlternate Protoplasma
PublicationYear 2019
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References EpelBLPlasmodesmata: composition, structure and traffickingPlant Mol Biol1994261343135610.1007/BF000164791:CAS:528:DyaK2MXjvFelu7k%3D7532025
Beilby MJ (2016) Multi-scale characean experimental system: from electrophysiology of membrane transporters to cell-to-cell connectivity, cytoplasmic streaming and auxin metabolism. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01052
BulychevAAKomarovaAVPhotoinduction of cyclosis-mediated interactions between distant chloroplastsBiochim Biophys Acta2015184737938910.1016/j.bbabio.2015.01.0041:CAS:528:DC%2BC2MXhtlWgs7Y%3D25615586
GerlitzNGerumRSauerNStadlerRPhotoinducible DRONPA-s: a new tool for investigating cell–cell connectivityPlant J20189475176610.1111/tpj.139181:CAS:528:DC%2BC1cXptlyqsbs%3D29654648
CookMEGrahamLEBothaCEJLavinCAComparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmataAmer J Bot1997841169117810.2307/24460401:STN:280:DC%2BC3MnjvVGksQ%3D%3D
BoxRAndrewsMRavenJAIntercellular transport and cytoplasmic streaming in Chara hispidaJ Exp Bot1984351016102110.1093/jxb/35.7.1016
BulychevAAFoissnerIPathways for external alkalinization in intact and in microwounded Chara cells are differentially sensitive to wortmanninPlant Signal Behav20171210.1080/15592324.2017.13625181:CAS:528:DC%2BC2sXhsVGmu7fI288054935640205
KalwarczykTTabakaMHolystRBiologistics – diffusion coefficients for complete proteome of Escherichia coliBioinformatics2012282971297810.1093/bioinformatics/bts5371:CAS:528:DC%2BC38Xhs1Glt7fK229420213496334
GunningBESRobardsAIntercellular communication in plants: studies on plasmodesmata1976BerlinSpringer10.1007/978-3-642-66294-2
DingBKwonM-OWarnbergLEvidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyllPlant J19961015716410.1046/j.1365-313X.1996.10010157.x
TuckerJEMauzerallDTuckerEBSymplastic transport of carboxyfluorescein in staminal hairs of Setcreasea purpurea is diffusive and includes loss to the vacuolePlant Physiol1989901143114710.1104/pp.90.3.11431:CAS:528:DyaL1MXkvFequrs%3D166668641061856
RobertsAGOparkaKJPlasmodesmata and the control of symplastic transportPlant, Cell Eviron20032610312410.1046/j.1365-3040.2003.00950.x
SchulteCKirstGOWinterUSource-sink characteristic of photoassimilate transport in fertile and sterile plants of Chara vulgaris LPlant Biol19941073623681:CAS:528:DyaK2MXis1OmtLw%3D
BulychevAADodonovaSOEffects of cyclosis on chloroplast–cytoplasm interactions revealed with localized lighting in characean cells at rest and after electrical excitationBiochim Biophys Acta201118071221123010.1016/j.bbabio.2011.06.0091:CAS:528:DC%2BC3MXptV2jsrs%3D21708122
ChristensenNMFaulknerCOparkaKEvidence for unidirectional flow through plasmodesmataPlant Physiol20091509610410.1104/pp.109.1370831:CAS:528:DC%2BD1MXlvFahsr8%3D192700592675744
TrebaczKFensomDSHarrisAZawadzkiTTransnodal transport of 14C in Nitella flexilis: III. Further studies on dissolved inorganic carbon movements in tandem cellsJ Exp Bot198839111561157310.1093/jxb/39.11.15611:CAS:528:DyaL1MXnt1Gltw%3D%3D
BräutigamAWeberAPMDo metabolite transport processes limit photosynthesis?Plant Physiol2011155434810.1104/pp.110.1649701:CAS:528:DC%2BC3MXksFagsL8%3D20855521
BulychevAAKomarovaAVPhotoregulation of photosystem II activity mediated by cytoplasmic streaming in Chara and its relation to pH bandsBiochim Biophys Acta Bioenerg2017185838639510.1016/j.bbabio.2017.02.0141:CAS:528:DC%2BC2sXjvF2ktr4%3D28257779
BulychevAARybinaAAFoissnerIDejesusCTraskLLong-range lateral transport between immobile chloroplasts in Chara is sensitive to interference of brefeldin A in vesicle traffickingChloroplasts and cytoplasm: structure and functions2018New YorkNova Science, Hauppauge124
BulychevAARybinaAALong-range interactions of Chara chloroplasts are sensitive to plasma-membrane H+ flows and comprise separate photo- and dark-operated pathwaysProtoplasma20182551621163410.1007/s00709-018-1255-81:CAS:528:DC%2BC1cXovVWnsr0%3D29704048
EhlersKWesterlohMGSokołowskaKSowińskiPDevelopmental control of plasmodesmata frequency, structure, and functionSymplasmic transport in vascular plants2013New YorkSpringer418210.1007/978-1-4614-7765-5_2
ComtetJTurgeonRStroockADPhloem loading through plasmodesmata: a biophysical analysisPlant Physiol20171759049151:CAS:528:DC%2BC1cXmsFWnsLw%3D10.1104/pp.16.01041287942595619879
BissonMABartholomewDOsmoregulation or turgor regulation in Chara?Plant Physiol19847425225510.1104/pp.74.2.2521:CAS:528:DyaL2cXhtFyjsLs%3D166634061066664
DingDQTazawaMInfluence of cytoplasmic streaming and turgor pressure gradient on the transnodal transport of rubidium and electrical conductance in Chara corallinaPlant Cell Physiol19893073974810.1093/oxfordjournals.pcp.a077800
KrupeninaNABulychevAAAction potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescenceBiochim Biophys Acta2007176778178810.1016/j.bbabio.2007.01.0041:CAS:528:DC%2BD2sXmt1ygurY%3D17300741
GoodwinPBCantrilLCvan BelAJEvan KesterenWJPUse and limitations of fluorochromes for plasmodesmal researchPlasmodesmata: structure, function, role in cell communication1999BerlinSpringer678410.1007/978-3-642-60035-7_5
LucasWJDingBVan der SchootCPlasmodesmata and the supracellular nature of plantsNew Phytol199312543547610.1111/j.1469-8137.1993.tb03897.x
OparkaKJPriorDAMDirect evidence for pressure-generated closure of plasmodesmataPlant J1992274175010.1111/j.1365-313X.1992.tb00143.x
JensenKHPhloem physics: mechanisms, constraints, and perspectivesCurr Opin Plant Biol2018439610010.1016/j.pbi.2018.03.00529660560
KomarovaAVSukhovVSBulychevAACyclosis-mediated long distance communications of chloroplasts in giant cells of CharaceaeFunct Plant Biol20184523624610.1071/FP162831:CAS:528:DC%2BC1cXht1CitA%3D%3D
ZambryskiPCrawfordKPlasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plantsAnnu Rev Cell Dev Biol20001639342110.1146/annurev.cellbio.16.1.3931:CAS:528:DC%2BD3MXpvFyn11031242
Liesche J, Schulz A (2013) Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00207
TuckerEBTranslocation in the staminal hairs of Setcreasea purpurea. I. A study of cell ultrastructure and cell-to-cell passage of molecular probesProtoplasma198211319320110.1007/BF012809071:CAS:528:DyaL3sXos1Crtg%3D%3D
BlackmanLMOverallRLImmunolocalisation of the cytoskeleton to plasmodesmata of Chara corallinaPlant J19981473374110.1046/j.1365-313x.1998.00161.x1:CAS:528:DyaK1cXks1WktLc%3D
LiescheJSchulzAIn vivo quantification of cell coupling in plants with different phloem-loading strategiesPlant Physiol201215935536510.1104/pp.112.1951151:CAS:528:DC%2BC38XntV2gsL4%3D224229393375970
TerryBRRobardsAWHydrodynamic radius alone governs the mobility of molecules through plasmodesmataPlanta198717114515710.1007/BF003910901:CAS:528:DyaL2sXksFKjsro%3D24227322
BulychevAAKomarovaAVImplication of long-distance cytoplasmic transport into dynamics of local pH on the surface of microinjured Chara cellsProtoplasma201725455756710.1007/s00709-016-0975-x1:CAS:528:DC%2BC28Xms12ktL8%3D27091340
SpanswickRMCostertonJWFPlasmodesmata in Nitella translucens: structure and electrical resistanceJ Cell Sci196724514641:STN:280:DyaF1c%2FgslGntg%3D%3D6051376
BeilbyMJBissonMVolkovAGpH banding in charophyte algaePlant electrophysiology. Methods and cell electrophysiology2012BerlinSpringer24727110.1007/978-3-642-29119-7_11
FranceschiVRDingBLucasWJMechanism of plasmodesmata formation in characean algae in relation to evolution of intercellular communication in higher plantsPlanta199419234735810.1007/BF00198570
TuckerEBCytoplasmic streaming does not drive intercellular passage in staminal hairs of Setcreasea purpureaProtoplasma198713714014410.1007/BF01281149
PickardWFThe role of cytoplasmic streaming in symplastic transportPlant Cell Environ20032611510.1046/j.1365-3040.2003.00845.x1:CAS:528:DC%2BD3sXhtlKrtLo%3D
Holdaway-ClarkeTLWalkerNAHeplerPKOverallRLPhysiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmataPlanta200021032933510.1007/PL000081411:CAS:528:DC%2BD3cXisVagug%3D%3D10664140
KikuyamaMHaraYShimadaKYamamotoKHiramotoYIntercellular transport of macromolecules in NitellaPlant Cell Physiol1992334134171:CAS:528:DyaK38Xks1Kksrc%3D10.1093/oxfordjournals.pcp.a077800
TuckerEBTuckerJECell-to-cell diffusion selectivity in staminal hairs of Setcreasea purpureaProtoplasma1993174364410.1007/BF01404040
DingDQAminoSMimuraTSakanoKNagataTTazawaMQuantitative analysis of intercellularly transported photoassimilates in Chara corallinaJ Exp Bot1992431045105110.1093/jxb/43.8.10451:CAS:528:DyaK38Xls1OktL0%3D
JonesDLKochianLVGilroySAluminum induces a decrease in cytosolic calcium concentration in BY-2 tobacco cell culturesPlant Physiol1998116818910.1104/pp.116.1.811:CAS:528:DyaK1cXkslCrsg%3D%3D35190
BulychevAAAlovaAVRubinABPropagation of photoinduced signals with the cytoplasmic flow along Characean internodes: evidence from changes in chloroplast fluorescence and surface pHEur Biophys J20134244145310.1007/s00249-013-0895-z1:CAS:528:DC%2BC3sXnvFyrtrs%3D23467782
DingDQAminoSNagataTTazawaMIntercellular transport and subcellular distribution of photoassimilates in Chara corallinaJ Exp Bot1991421393139810.1093/jxb/42.11.13931:CAS:528:DyaK38XlsFOmsw%3D%3D
FoissnerIWasteneysGOWide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cellsPlant Cell Physiol20074858559710.1093/pcp/pcm0301:CAS:528:DC%2BD2sXls1Oqsr0%3D17327257
SchulzADiffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilatesJ Plant Res2015128496110.1007/s10265-014-0676-51:CAS:528:DC%2BC2cXitFyhur%2FN25516499
KJ Oparka (1344_CR39) 1992; 2
EB Tucker (1344_CR47) 1982; 113
TL Holdaway-Clarke (1344_CR29) 2000; 210
DL Jones (1344_CR31) 1998; 116
EB Tucker (1344_CR48) 1987; 137
BES Gunning (1344_CR28) 1976
J Liesche (1344_CR36) 2012; 159
MJ Beilby (1344_CR2) 2012
AA Bulychev (1344_CR12) 2017; 1858
VR Franceschi (1344_CR25) 1994; 192
B Ding (1344_CR18) 1996; 10
N Gerlitz (1344_CR26) 2018; 94
WJ Lucas (1344_CR38) 1993; 125
DQ Ding (1344_CR21) 1989; 30
KH Jensen (1344_CR30) 2018; 43
NM Christensen (1344_CR15) 2009; 150
BL Epel (1344_CR23) 1994; 26
EB Tucker (1344_CR49) 1993; 174
BR Terry (1344_CR45) 1987; 171
J Comtet (1344_CR16) 2017; 175
AG Roberts (1344_CR41) 2003; 26
WF Pickard (1344_CR40) 2003; 26
AA Bulychev (1344_CR7) 2013; 42
AA Bulychev (1344_CR8) 2011; 1807
AV Komarova (1344_CR34) 2018; 45
1344_CR1
AA Bulychev (1344_CR14) 2018
DQ Ding (1344_CR19) 1992; 43
M Kikuyama (1344_CR33) 1992; 33
JE Tucker (1344_CR50) 1989; 90
ME Cook (1344_CR17) 1997; 84
A Schulz (1344_CR42) 2015; 128
LM Blackman (1344_CR4) 1998; 14
MA Bisson (1344_CR3) 1984; 74
AA Bulychev (1344_CR10) 2015; 1847
K Trebacz (1344_CR46) 1988; 39
R Box (1344_CR5) 1984; 35
AA Bulychev (1344_CR9) 2017; 12
NA Krupenina (1344_CR35) 2007; 1767
A Bräutigam (1344_CR6) 2011; 155
RM Spanswick (1344_CR44) 1967; 2
AA Bulychev (1344_CR13) 2018; 255
1344_CR37
C Schulte (1344_CR43) 1994; 107
I Foissner (1344_CR24) 2007; 48
AA Bulychev (1344_CR11) 2017; 254
P Zambryski (1344_CR51) 2000; 16
K Ehlers (1344_CR22) 2013
T Kalwarczyk (1344_CR32) 2012; 28
DQ Ding (1344_CR20) 1991; 42
PB Goodwin (1344_CR27) 1999
References_xml – reference: ComtetJTurgeonRStroockADPhloem loading through plasmodesmata: a biophysical analysisPlant Physiol20171759049151:CAS:528:DC%2BC1cXmsFWnsLw%3D10.1104/pp.16.01041287942595619879
– reference: LiescheJSchulzAIn vivo quantification of cell coupling in plants with different phloem-loading strategiesPlant Physiol201215935536510.1104/pp.112.1951151:CAS:528:DC%2BC38XntV2gsL4%3D224229393375970
– reference: GunningBESRobardsAIntercellular communication in plants: studies on plasmodesmata1976BerlinSpringer10.1007/978-3-642-66294-2
– reference: BoxRAndrewsMRavenJAIntercellular transport and cytoplasmic streaming in Chara hispidaJ Exp Bot1984351016102110.1093/jxb/35.7.1016
– reference: BulychevAAFoissnerIPathways for external alkalinization in intact and in microwounded Chara cells are differentially sensitive to wortmanninPlant Signal Behav20171210.1080/15592324.2017.13625181:CAS:528:DC%2BC2sXhsVGmu7fI288054935640205
– reference: Holdaway-ClarkeTLWalkerNAHeplerPKOverallRLPhysiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmataPlanta200021032933510.1007/PL000081411:CAS:528:DC%2BD3cXisVagug%3D%3D10664140
– reference: CookMEGrahamLEBothaCEJLavinCAComparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmataAmer J Bot1997841169117810.2307/24460401:STN:280:DC%2BC3MnjvVGksQ%3D%3D
– reference: EpelBLPlasmodesmata: composition, structure and traffickingPlant Mol Biol1994261343135610.1007/BF000164791:CAS:528:DyaK2MXjvFelu7k%3D7532025
– reference: Beilby MJ (2016) Multi-scale characean experimental system: from electrophysiology of membrane transporters to cell-to-cell connectivity, cytoplasmic streaming and auxin metabolism. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01052
– reference: BulychevAAKomarovaAVPhotoinduction of cyclosis-mediated interactions between distant chloroplastsBiochim Biophys Acta2015184737938910.1016/j.bbabio.2015.01.0041:CAS:528:DC%2BC2MXhtlWgs7Y%3D25615586
– reference: OparkaKJPriorDAMDirect evidence for pressure-generated closure of plasmodesmataPlant J1992274175010.1111/j.1365-313X.1992.tb00143.x
– reference: FoissnerIWasteneysGOWide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cellsPlant Cell Physiol20074858559710.1093/pcp/pcm0301:CAS:528:DC%2BD2sXls1Oqsr0%3D17327257
– reference: SpanswickRMCostertonJWFPlasmodesmata in Nitella translucens: structure and electrical resistanceJ Cell Sci196724514641:STN:280:DyaF1c%2FgslGntg%3D%3D6051376
– reference: TuckerEBCytoplasmic streaming does not drive intercellular passage in staminal hairs of Setcreasea purpureaProtoplasma198713714014410.1007/BF01281149
– reference: DingDQAminoSNagataTTazawaMIntercellular transport and subcellular distribution of photoassimilates in Chara corallinaJ Exp Bot1991421393139810.1093/jxb/42.11.13931:CAS:528:DyaK38XlsFOmsw%3D%3D
– reference: BeilbyMJBissonMVolkovAGpH banding in charophyte algaePlant electrophysiology. Methods and cell electrophysiology2012BerlinSpringer24727110.1007/978-3-642-29119-7_11
– reference: SchulzADiffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilatesJ Plant Res2015128496110.1007/s10265-014-0676-51:CAS:528:DC%2BC2cXitFyhur%2FN25516499
– reference: DingDQTazawaMInfluence of cytoplasmic streaming and turgor pressure gradient on the transnodal transport of rubidium and electrical conductance in Chara corallinaPlant Cell Physiol19893073974810.1093/oxfordjournals.pcp.a077800
– reference: JonesDLKochianLVGilroySAluminum induces a decrease in cytosolic calcium concentration in BY-2 tobacco cell culturesPlant Physiol1998116818910.1104/pp.116.1.811:CAS:528:DyaK1cXkslCrsg%3D%3D35190
– reference: BlackmanLMOverallRLImmunolocalisation of the cytoskeleton to plasmodesmata of Chara corallinaPlant J19981473374110.1046/j.1365-313x.1998.00161.x1:CAS:528:DyaK1cXks1WktLc%3D
– reference: Liesche J, Schulz A (2013) Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00207
– reference: KalwarczykTTabakaMHolystRBiologistics – diffusion coefficients for complete proteome of Escherichia coliBioinformatics2012282971297810.1093/bioinformatics/bts5371:CAS:528:DC%2BC38Xhs1Glt7fK229420213496334
– reference: KikuyamaMHaraYShimadaKYamamotoKHiramotoYIntercellular transport of macromolecules in NitellaPlant Cell Physiol1992334134171:CAS:528:DyaK38Xks1Kksrc%3D10.1093/oxfordjournals.pcp.a077800
– reference: ChristensenNMFaulknerCOparkaKEvidence for unidirectional flow through plasmodesmataPlant Physiol20091509610410.1104/pp.109.1370831:CAS:528:DC%2BD1MXlvFahsr8%3D192700592675744
– reference: LucasWJDingBVan der SchootCPlasmodesmata and the supracellular nature of plantsNew Phytol199312543547610.1111/j.1469-8137.1993.tb03897.x
– reference: TuckerJEMauzerallDTuckerEBSymplastic transport of carboxyfluorescein in staminal hairs of Setcreasea purpurea is diffusive and includes loss to the vacuolePlant Physiol1989901143114710.1104/pp.90.3.11431:CAS:528:DyaL1MXkvFequrs%3D166668641061856
– reference: FranceschiVRDingBLucasWJMechanism of plasmodesmata formation in characean algae in relation to evolution of intercellular communication in higher plantsPlanta199419234735810.1007/BF00198570
– reference: TerryBRRobardsAWHydrodynamic radius alone governs the mobility of molecules through plasmodesmataPlanta198717114515710.1007/BF003910901:CAS:528:DyaL2sXksFKjsro%3D24227322
– reference: DingDQAminoSMimuraTSakanoKNagataTTazawaMQuantitative analysis of intercellularly transported photoassimilates in Chara corallinaJ Exp Bot1992431045105110.1093/jxb/43.8.10451:CAS:528:DyaK38Xls1OktL0%3D
– reference: BulychevAARybinaAAFoissnerIDejesusCTraskLLong-range lateral transport between immobile chloroplasts in Chara is sensitive to interference of brefeldin A in vesicle traffickingChloroplasts and cytoplasm: structure and functions2018New YorkNova Science, Hauppauge124
– reference: BulychevAAKomarovaAVImplication of long-distance cytoplasmic transport into dynamics of local pH on the surface of microinjured Chara cellsProtoplasma201725455756710.1007/s00709-016-0975-x1:CAS:528:DC%2BC28Xms12ktL8%3D27091340
– reference: BräutigamAWeberAPMDo metabolite transport processes limit photosynthesis?Plant Physiol2011155434810.1104/pp.110.1649701:CAS:528:DC%2BC3MXksFagsL8%3D20855521
– reference: BulychevAAKomarovaAVPhotoregulation of photosystem II activity mediated by cytoplasmic streaming in Chara and its relation to pH bandsBiochim Biophys Acta Bioenerg2017185838639510.1016/j.bbabio.2017.02.0141:CAS:528:DC%2BC2sXjvF2ktr4%3D28257779
– reference: BulychevAARybinaAALong-range interactions of Chara chloroplasts are sensitive to plasma-membrane H+ flows and comprise separate photo- and dark-operated pathwaysProtoplasma20182551621163410.1007/s00709-018-1255-81:CAS:528:DC%2BC1cXovVWnsr0%3D29704048
– reference: RobertsAGOparkaKJPlasmodesmata and the control of symplastic transportPlant, Cell Eviron20032610312410.1046/j.1365-3040.2003.00950.x
– reference: TuckerEBTranslocation in the staminal hairs of Setcreasea purpurea. I. A study of cell ultrastructure and cell-to-cell passage of molecular probesProtoplasma198211319320110.1007/BF012809071:CAS:528:DyaL3sXos1Crtg%3D%3D
– reference: SchulteCKirstGOWinterUSource-sink characteristic of photoassimilate transport in fertile and sterile plants of Chara vulgaris LPlant Biol19941073623681:CAS:528:DyaK2MXis1OmtLw%3D
– reference: DingBKwonM-OWarnbergLEvidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyllPlant J19961015716410.1046/j.1365-313X.1996.10010157.x
– reference: GerlitzNGerumRSauerNStadlerRPhotoinducible DRONPA-s: a new tool for investigating cell–cell connectivityPlant J20189475176610.1111/tpj.139181:CAS:528:DC%2BC1cXptlyqsbs%3D29654648
– reference: ZambryskiPCrawfordKPlasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plantsAnnu Rev Cell Dev Biol20001639342110.1146/annurev.cellbio.16.1.3931:CAS:528:DC%2BD3MXpvFyn11031242
– reference: BulychevAAAlovaAVRubinABPropagation of photoinduced signals with the cytoplasmic flow along Characean internodes: evidence from changes in chloroplast fluorescence and surface pHEur Biophys J20134244145310.1007/s00249-013-0895-z1:CAS:528:DC%2BC3sXnvFyrtrs%3D23467782
– reference: BulychevAADodonovaSOEffects of cyclosis on chloroplast–cytoplasm interactions revealed with localized lighting in characean cells at rest and after electrical excitationBiochim Biophys Acta201118071221123010.1016/j.bbabio.2011.06.0091:CAS:528:DC%2BC3MXptV2jsrs%3D21708122
– reference: TrebaczKFensomDSHarrisAZawadzkiTTransnodal transport of 14C in Nitella flexilis: III. Further studies on dissolved inorganic carbon movements in tandem cellsJ Exp Bot198839111561157310.1093/jxb/39.11.15611:CAS:528:DyaL1MXnt1Gltw%3D%3D
– reference: GoodwinPBCantrilLCvan BelAJEvan KesterenWJPUse and limitations of fluorochromes for plasmodesmal researchPlasmodesmata: structure, function, role in cell communication1999BerlinSpringer678410.1007/978-3-642-60035-7_5
– reference: KomarovaAVSukhovVSBulychevAACyclosis-mediated long distance communications of chloroplasts in giant cells of CharaceaeFunct Plant Biol20184523624610.1071/FP162831:CAS:528:DC%2BC1cXht1CitA%3D%3D
– reference: TuckerEBTuckerJECell-to-cell diffusion selectivity in staminal hairs of Setcreasea purpureaProtoplasma1993174364410.1007/BF01404040
– reference: KrupeninaNABulychevAAAction potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescenceBiochim Biophys Acta2007176778178810.1016/j.bbabio.2007.01.0041:CAS:528:DC%2BD2sXmt1ygurY%3D17300741
– reference: PickardWFThe role of cytoplasmic streaming in symplastic transportPlant Cell Environ20032611510.1046/j.1365-3040.2003.00845.x1:CAS:528:DC%2BD3sXhtlKrtLo%3D
– reference: BissonMABartholomewDOsmoregulation or turgor regulation in Chara?Plant Physiol19847425225510.1104/pp.74.2.2521:CAS:528:DyaL2cXhtFyjsLs%3D166634061066664
– reference: EhlersKWesterlohMGSokołowskaKSowińskiPDevelopmental control of plasmodesmata frequency, structure, and functionSymplasmic transport in vascular plants2013New YorkSpringer418210.1007/978-1-4614-7765-5_2
– reference: JensenKHPhloem physics: mechanisms, constraints, and perspectivesCurr Opin Plant Biol2018439610010.1016/j.pbi.2018.03.00529660560
– volume: 1858
  start-page: 386
  year: 2017
  ident: 1344_CR12
  publication-title: Biochim Biophys Acta Bioenerg
  doi: 10.1016/j.bbabio.2017.02.014
– start-page: 41
  volume-title: Symplasmic transport in vascular plants
  year: 2013
  ident: 1344_CR22
  doi: 10.1007/978-1-4614-7765-5_2
– volume: 1847
  start-page: 379
  year: 2015
  ident: 1344_CR10
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbabio.2015.01.004
– start-page: 67
  volume-title: Plasmodesmata: structure, function, role in cell communication
  year: 1999
  ident: 1344_CR27
  doi: 10.1007/978-3-642-60035-7_5
– volume: 125
  start-page: 435
  year: 1993
  ident: 1344_CR38
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1993.tb03897.x
– start-page: 247
  volume-title: Plant electrophysiology. Methods and cell electrophysiology
  year: 2012
  ident: 1344_CR2
  doi: 10.1007/978-3-642-29119-7_11
– volume: 42
  start-page: 1393
  year: 1991
  ident: 1344_CR20
  publication-title: J Exp Bot
  doi: 10.1093/jxb/42.11.1393
– volume: 42
  start-page: 441
  year: 2013
  ident: 1344_CR7
  publication-title: Eur Biophys J
  doi: 10.1007/s00249-013-0895-z
– volume: 30
  start-page: 739
  year: 1989
  ident: 1344_CR21
  publication-title: Plant Cell Physiol
  doi: 10.1093/oxfordjournals.pcp.a077800
– volume: 28
  start-page: 2971
  year: 2012
  ident: 1344_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts537
– volume: 255
  start-page: 1621
  year: 2018
  ident: 1344_CR13
  publication-title: Protoplasma
  doi: 10.1007/s00709-018-1255-8
– ident: 1344_CR37
  doi: 10.3389/fpls.2013.00207
– volume: 171
  start-page: 145
  year: 1987
  ident: 1344_CR45
  publication-title: Planta
  doi: 10.1007/BF00391090
– start-page: 1
  volume-title: Chloroplasts and cytoplasm: structure and functions
  year: 2018
  ident: 1344_CR14
– volume: 10
  start-page: 157
  year: 1996
  ident: 1344_CR18
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1996.10010157.x
– volume: 26
  start-page: 103
  year: 2003
  ident: 1344_CR41
  publication-title: Plant, Cell Eviron
  doi: 10.1046/j.1365-3040.2003.00950.x
– volume: 26
  start-page: 1343
  year: 1994
  ident: 1344_CR23
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00016479
– volume: 2
  start-page: 741
  year: 1992
  ident: 1344_CR39
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.1992.tb00143.x
– volume: 2
  start-page: 451
  year: 1967
  ident: 1344_CR44
  publication-title: J Cell Sci
  doi: 10.1242/jcs.2.3.451
– volume: 1807
  start-page: 1221
  year: 2011
  ident: 1344_CR8
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbabio.2011.06.009
– volume: 210
  start-page: 329
  year: 2000
  ident: 1344_CR29
  publication-title: Planta
  doi: 10.1007/PL00008141
– volume: 155
  start-page: 43
  year: 2011
  ident: 1344_CR6
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.164970
– volume: 174
  start-page: 36
  year: 1993
  ident: 1344_CR49
  publication-title: Protoplasma
  doi: 10.1007/BF01404040
– volume: 192
  start-page: 347
  year: 1994
  ident: 1344_CR25
  publication-title: Planta
  doi: 10.1007/BF00198570
– volume: 116
  start-page: 81
  year: 1998
  ident: 1344_CR31
  publication-title: Plant Physiol
  doi: 10.1104/pp.116.1.81
– volume: 48
  start-page: 585
  year: 2007
  ident: 1344_CR24
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcm030
– ident: 1344_CR1
  doi: 10.3389/fpls.2016.01052
– volume: 150
  start-page: 96
  year: 2009
  ident: 1344_CR15
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.137083
– volume: 94
  start-page: 751
  year: 2018
  ident: 1344_CR26
  publication-title: Plant J
  doi: 10.1111/tpj.13918
– volume: 33
  start-page: 413
  year: 1992
  ident: 1344_CR33
  publication-title: Plant Cell Physiol
  doi: 10.1093/oxfordjournals.pcp.a077800
– volume: 137
  start-page: 140
  year: 1987
  ident: 1344_CR48
  publication-title: Protoplasma
  doi: 10.1007/BF01281149
– volume: 159
  start-page: 355
  year: 2012
  ident: 1344_CR36
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.195115
– volume: 74
  start-page: 252
  year: 1984
  ident: 1344_CR3
  publication-title: Plant Physiol
  doi: 10.1104/pp.74.2.252
– volume-title: Intercellular communication in plants: studies on plasmodesmata
  year: 1976
  ident: 1344_CR28
  doi: 10.1007/978-3-642-66294-2
– volume: 43
  start-page: 96
  year: 2018
  ident: 1344_CR30
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2018.03.005
– volume: 113
  start-page: 193
  year: 1982
  ident: 1344_CR47
  publication-title: Protoplasma
  doi: 10.1007/BF01280907
– volume: 35
  start-page: 1016
  year: 1984
  ident: 1344_CR5
  publication-title: J Exp Bot
  doi: 10.1093/jxb/35.7.1016
– volume: 26
  start-page: 1
  year: 2003
  ident: 1344_CR40
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.2003.00845.x
– volume: 14
  start-page: 733
  year: 1998
  ident: 1344_CR4
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1998.00161.x
– volume: 12
  year: 2017
  ident: 1344_CR9
  publication-title: Plant Signal Behav
  doi: 10.1080/15592324.2017.1362518
– volume: 90
  start-page: 1143
  year: 1989
  ident: 1344_CR50
  publication-title: Plant Physiol
  doi: 10.1104/pp.90.3.1143
– volume: 1767
  start-page: 781
  year: 2007
  ident: 1344_CR35
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbabio.2007.01.004
– volume: 45
  start-page: 236
  year: 2018
  ident: 1344_CR34
  publication-title: Funct Plant Biol
  doi: 10.1071/FP16283
– volume: 254
  start-page: 557
  year: 2017
  ident: 1344_CR11
  publication-title: Protoplasma
  doi: 10.1007/s00709-016-0975-x
– volume: 128
  start-page: 49
  year: 2015
  ident: 1344_CR42
  publication-title: J Plant Res
  doi: 10.1007/s10265-014-0676-5
– volume: 39
  start-page: 1561
  issue: 11
  year: 1988
  ident: 1344_CR46
  publication-title: J Exp Bot
  doi: 10.1093/jxb/39.11.1561
– volume: 84
  start-page: 1169
  year: 1997
  ident: 1344_CR17
  publication-title: Amer J Bot
  doi: 10.2307/2446040
– volume: 16
  start-page: 393
  year: 2000
  ident: 1344_CR51
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.16.1.393
– volume: 107
  start-page: 362
  year: 1994
  ident: 1344_CR43
  publication-title: Plant Biol
– volume: 175
  start-page: 904
  year: 2017
  ident: 1344_CR16
  publication-title: Plant Physiol
  doi: 10.1104/pp.16.01041
– volume: 43
  start-page: 1045
  year: 1992
  ident: 1344_CR19
  publication-title: J Exp Bot
  doi: 10.1093/jxb/43.8.1045
SSID ssj0005205
Score 2.2502315
Snippet Symplastic interconnections of plant cells via perforations in adjoining cell walls (plasmodesmata) enable long-distance transport of photoassimilates and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 815
SubjectTerms Actin
Biomedical and Life Sciences
Cell Biology
Cell walls
Chara
Chlorophyll
Chloroplasts
Conductance
Cytochalasin D
Cytoplasm
Cytoplasmic streaming
Electron transport
fluorescence
Fluorescent indicators
growth and development
hydrostatic pressure
internodes
Life Sciences
lighting
Metabolites
Original Article
Osmolarity
Permeability
permeates
Photosynthesis
photosynthetic electron transport
Plant cells
Plant Sciences
Plasmodesmata
Sorbitol
tracer techniques
Tracers
Zoology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELUoCKmXCihtl4_KlXorVhPbcZITQqgIVYITSHuLbMcWlUK8kOxhL_x2ZpzsAkLd89qrkWfieTOeeUPIT2Oy0idOs1JqzWQuONOlNyzVskytBYesscH56lpd3sq_02w6Jty6saxyeSfGi7oOFnPkvzkAB7hKeVKezh4YTo3C19VxhMYHsoXUZVjSlU_z1yUewwQDIRiY7nRsmomtc8hzg5VCWMolpGTJW8f0Dm2-eymNDuhih3wakSM9G1S9SzZcu0e2h1mSi8_k6Xxhm9D9g9A1Tt9wNUUqiJiZx1JT2qNXAq1ieowGT2d3oQ_dogUECP9I710P9oAdyR1spPgMrynyO4EHqSmma6m9g-A-gF6aht5jIZ9v5gHpDvrHxT65vfhzc37JxuEKzMqk6JnNlXFCgaZqDxBBFbUWLktqjE9yLRVPjaghmhHOO8s1IDWdOel8nuL4dOXFF7LZhtZ9I1RBmOulMaUQTubOG25VrYpCFtp4l4kJSZcnW9mReRwHYDTVijM5aqMCbVRRG1UyIb9We2YD78ba1UdLhVXjN9hVLxYzIT9WP8M548Hr1oV5XCPTGDauWcMzwQFG8nRCvg7GsBIJAi5kmIfdJ0vreBHg__IerJf3kHwEXFYOdZVHZLN_nLtjwD69-R4N_BmuNQFw
  priority: 102
  providerName: ProQuest
Title Cyclosis-mediated intercellular transmission of photosynthetic metabolites in Chara revealed with chlorophyll microfluorometry
URI https://link.springer.com/article/10.1007/s00709-018-01344-0
https://www.ncbi.nlm.nih.gov/pubmed/30610387
https://www.proquest.com/docview/2163284209
https://www.proquest.com/docview/2164104287
https://www.proquest.com/docview/2253239221
Volume 256
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZtQqGX0vS5TbKo0FsrsCX5ddyGTUNLQyld2PZiJFkiAccKsfewl_72zMiPNKQN9GSBJSM0I8_3SfMg5J3WSeEiq1ghlWIyE5ypwmkWK1nExoBBVhjg_PU0PVnJz-tkPQSFtaO3-3glGf7UU7AbZqZB3x50vhJSMiDquwlyd9DiFV_86djR1y0QgoHCrodQmb9_47Y5uoMx79yPBrNz_JQ8GfAiXfQC3iMPbPOMPOorSG6h9cuH1nPy-2hrat-eA3UN1TdsRTEVRDiZR1dT2qFVAqni8Rj1jl6e-c632wYQIHybXtgO9AEjklsYSPEaXlHM7wQWpKJ4XEvNGZB7D3Kpa3qBjnyu3nhMd9BdbV-Q1fHyx9EJG4orMCOjvGMmS7UVKUiqcgAR0rxSwiZRhfwkUzLlsRYVsBlhnTVcAVJTiZXWZTGWT0-deEl2Gt_Y14SmQHOd1LoQwsrMOs1NWqV5LnOlnU3EjMTjGpdmyDyOBTDqcsqZHORSglzKIJcympH305jLPu_Gvb0PRtGVwx5sSw5QE4wvj4oZeTu9hnXGhVeN9ZvQR8aBNt7ThyeCA4zk8Yy86tVimhIQLswwD6M_jHpyM4F_z_fN_3XfJ48BpxW9n-UB2emuNvYQsFCn5-Rhts7mZHfx6eeXJTw_Lk-_fZ-HDXENygQFcw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDcLBYwEJ7BIbOd1QAhKqy1tVwi10t6C7dgqUhovu1mhXPhJ_EZm8tiCKvbWc-xo5Pns-caeByEvtY4yF1jFMqkUk4ngTGVOs1DJLDQGDLLCBOfjaTw5lZ9n0WyL_B5yYTCscjgT24O68AbvyN9yIA5wlPIgez__wbBrFL6uDi00Olgc2uYnuGzLdwefQL-vON_fO9mdsL6rADMySGtmklhbEYOIhQPbGKeFEjYKCiTmiZIxD7UogMYL66zhCiiKiqy0Lgmxb3jsBPz3GtmWAlyZEdn-uDf98vXvoJKuZ4IQDDbLrE_TaZP1sLIOxiZh8JiQkgX_msJL_PbS22xr8vZvk1s9V6UfOnDdIVu2ukuud90rm3vk125jSr_8Ds5y2-_DFhSLT7RvARjcSmu0g4AjvJCj3tH5ma_9sqmAc8If6bmtAYGYA72EiRQf_hXFilJgswqKF8TUnJV-4QEJZUnPMXTQlSuPBRbqRXOfnF7Jwj8go8pX9hGhMTjWTmqdCWFlYp3mJi7iNJWp0s5GYkzCYWVz09c6x5YbZb6u0txqIwdt5K028mBMXq_nzLtKHxtH7wwKy_tdv8wvMDomL9afYZ1x4VVl_aodI8PWUd0whkeCA3Hl4Zg87MCwFglcPKxpD7PfDOi4EOD_8j7eLO9zcmNycnyUHx1MD5-Qm8AKsy6qc4eM6sXKPgXmVetnPdwp-XbVO-wPHZE_PQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkWChgJTmA1sZ3XASHUsmopVByotLdgO7aKlMbLJiu0F34Yv44ZJ9mCKvbWc-xoNA_PN_Y8CHmpdVK4yCpWSKWYzARnqnCaxUoWsTHgkBUWOH8-SQ9P5cdZMtsiv8daGEyrHM_EcFBX3uAd-R4H4ABHKY-KPTekRXw5mL6b_2A4QQpfWsdxGr2KHNvVTwjf2rdHByDrV5xPP3zdP2TDhAFmZJR3zGSptiIFcisHfjLNKyVsElUI0jMlUx5rUQGkF9ZZwxXAFZVYaV0W4wzx1An47zVyPRNJjDaWzbK_00v66QlCMDCb2VCwE8r2sMcOZilhGpmQkkX_OsVLSPfSK21wftM75PaAWun7Xs3uki3b3CM3-jmWq_vk1_7K1L79DmFzmPxhK4ptKMKrAKa50g49ImgUXs1R7-j8zHe-XTWAPuGP9Nx2oItYDd3CRoopAIpibynwXhXFq2Jqzmq_8KATdU3PMYnQ1UuPrRa6xeoBOb0Stj8k241v7CNCUwixndS6EMLKzDrNTVqleS5zpZ1NxITEI2dLM3Q9x-Ebdbnu1xykUYI0yiCNMpqQ1-s9877nx8bVu6PAysH-2_JCWyfkxfoz8BkZrxrrl2GNjEPIumENTwQHCMvjCdnplWFNEgR72N0edr8ZteOCgP_T-3gzvc_JTbCr8tPRyfETcgvgYdGnd-6S7W6xtE8BgnX6WdB1Sr5dtXH9AYxPQg0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclosis-mediated+intercellular+transmission+of+photosynthetic+metabolites+in+Chara+revealed+with+chlorophyll+microfluorometry&rft.jtitle=Protoplasma&rft.au=Bulychev%2C+Alexander+A.&rft.date=2019-05-01&rft.pub=Springer+Vienna&rft.issn=0033-183X&rft.eissn=1615-6102&rft.volume=256&rft.issue=3&rft.spage=815&rft.epage=826&rft_id=info:doi/10.1007%2Fs00709-018-01344-0&rft.externalDocID=10_1007_s00709_018_01344_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-183X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-183X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-183X&client=summon