Broccoli Seedling Segmentation Based on Support Vector Machine Combined With Color Texture Features

The segmentation of broccoli seedlings in the crops and weeds co-exist field environment is of great significance for weeding and herbicide spraying. This paper constructed a crop segmentation algorithm with a small training set for discriminating broccoli seedlings from weeds and soil. This algorit...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 168565 - 168574
Main Authors Zou, Kunlin, Ge, Luzhen, Zhang, Chunlong, Yuan, Ting, Li, Wei
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The segmentation of broccoli seedlings in the crops and weeds co-exist field environment is of great significance for weeding and herbicide spraying. This paper constructed a crop segmentation algorithm with a small training set for discriminating broccoli seedlings from weeds and soil. This algorithm was based on a support vector machine (SVM) combined with color-texture features. Correlation analysis and chi-square tests were used to select 6 features from the 21 color features. Gray-level co-occurrence matrix (GLCM) was used to extract 5 texture features. And each parameter of GLCM had been assessed and optimized by the chi-square test. Linear Discriminant Analysis (LDA) was used to decompose the original dataset in a set of 3 successive orthogonal components. This method selected features more reasonable and gained higher plant segmentation accuracy. When the training sample is greater than 50, the accuracy of the test set could reach 90%. The coefficient of determination (R 2 ) between the ground truth broccoli seedling area and the segmentation broccoli area was 0.91, and the root-mean-square error (σ) was 0.10. Results demonstrated that the color-texture features were able to effectively segment broccoli seedlings even when there was a significant amount of weeds.
AbstractList The segmentation of broccoli seedlings in the crops and weeds co-exist field environment is of great significance for weeding and herbicide spraying. This paper constructed a crop segmentation algorithm with a small training set for discriminating broccoli seedlings from weeds and soil. This algorithm was based on a support vector machine (SVM) combined with color-texture features. Correlation analysis and chi-square tests were used to select 6 features from the 21 color features. Gray-level co-occurrence matrix (GLCM) was used to extract 5 texture features. And each parameter of GLCM had been assessed and optimized by the chi-square test. Linear Discriminant Analysis (LDA) was used to decompose the original dataset in a set of 3 successive orthogonal components. This method selected features more reasonable and gained higher plant segmentation accuracy. When the training sample is greater than 50, the accuracy of the test set could reach 90%. The coefficient of determination (R2) between the ground truth broccoli seedling area and the segmentation broccoli area was 0.91, and the root-mean-square error (σ) was 0.10. Results demonstrated that the color-texture features were able to effectively segment broccoli seedlings even when there was a significant amount of weeds.
The segmentation of broccoli seedlings in the crops and weeds co-exist field environment is of great significance for weeding and herbicide spraying. This paper constructed a crop segmentation algorithm with a small training set for discriminating broccoli seedlings from weeds and soil. This algorithm was based on a support vector machine (SVM) combined with color-texture features. Correlation analysis and chi-square tests were used to select 6 features from the 21 color features. Gray-level co-occurrence matrix (GLCM) was used to extract 5 texture features. And each parameter of GLCM had been assessed and optimized by the chi-square test. Linear Discriminant Analysis (LDA) was used to decompose the original dataset in a set of 3 successive orthogonal components. This method selected features more reasonable and gained higher plant segmentation accuracy. When the training sample is greater than 50, the accuracy of the test set could reach 90%. The coefficient of determination (R 2 ) between the ground truth broccoli seedling area and the segmentation broccoli area was 0.91, and the root-mean-square error (σ) was 0.10. Results demonstrated that the color-texture features were able to effectively segment broccoli seedlings even when there was a significant amount of weeds.
Author Li, Wei
Zou, Kunlin
Ge, Luzhen
Yuan, Ting
Zhang, Chunlong
Author_xml – sequence: 1
  givenname: Kunlin
  orcidid: 0000-0002-4040-7791
  surname: Zou
  fullname: Zou, Kunlin
  organization: College of Engineering, China Agricultural University, Beijing, China
– sequence: 2
  givenname: Luzhen
  orcidid: 0000-0001-7751-4905
  surname: Ge
  fullname: Ge, Luzhen
  organization: College of Engineering, China Agricultural University, Beijing, China
– sequence: 3
  givenname: Chunlong
  orcidid: 0000-0003-3427-1856
  surname: Zhang
  fullname: Zhang, Chunlong
  email: zcl1515@cau.edu.cn
  organization: College of Engineering, China Agricultural University, Beijing, China
– sequence: 4
  givenname: Ting
  orcidid: 0000-0002-5401-6257
  surname: Yuan
  fullname: Yuan, Ting
  organization: College of Engineering, China Agricultural University, Beijing, China
– sequence: 5
  givenname: Wei
  orcidid: 0000-0003-2181-6618
  surname: Li
  fullname: Li, Wei
  organization: College of Engineering, China Agricultural University, Beijing, China
BookMark eNpNUctOwzAQtBBIvPoFXCJxbrGd2ImPEPGoBOLQCo6Ws94UV2lcHFeCv8clFcKXGe_OjC3NOTnufY-EXDE6Y4yqm9u6vl8sZpwyNeNKFKIqj8gZZ1JNc5HL43_8lEyGYU3TqdJIlGcE7oIH8J3LFoi2c_0qkdUG-2ii8312Zwa0WSKL3XbrQ8zeEKIP2YuBD9djVvtNk9Bm7y5-pFuXdkv8iruA2QOaPQ6X5KQ13YCTA16Q5cP9sn6aPr8-zuvb5ykUtIpTkLJRtG0FkwA2zzkFWilQTVNywYQRVZI1KJLaGGMLKoFy3ijeAOMlzy_IfIy13qz1NriNCd_aG6d_Bz6stAnRQYda5UyaQhXStrbgbdmARd4aTEE50hZS1vWYtQ3-c4dD1Gu_C336veaFEJKpSomkykcVBD8MAdu_VxnV-2702I3ed6MP3STX1ehyiPjnqBQtq7T9AdfzjM8
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_compag_2022_107303
crossref_primary_10_1016_j_inpa_2020_12_003
crossref_primary_10_1016_j_compag_2021_106683
crossref_primary_10_1007_s11119_022_09953_9
crossref_primary_10_1016_j_compag_2021_106242
crossref_primary_10_1016_j_compag_2022_107284
crossref_primary_10_1007_s11042_022_11905_4
crossref_primary_10_3390_rs13020310
crossref_primary_10_3390_s24051544
crossref_primary_10_3390_photonics9060393
crossref_primary_10_1186_s13007_021_00809_3
crossref_primary_10_3390_agronomy14050931
crossref_primary_10_1093_g3journal_jkae026
Cites_doi 10.1109/ACCESS.2017.2732001
10.1109/ACCESS.2018.2844405
10.1007/978-3-319-32034-2_33
10.1103/PhysRev.138.B1182
10.3390/s19051132
10.1016/j.isprsjprs.2013.11.012
10.1109/ACCESS.2019.2928415
10.1016/j.njas.2010.04.001
10.1016/j.patcog.2011.03.005
10.1109/ACCESS.2018.2806372
10.1002/rob.21726
10.1109/MRA.2012.2230118
10.1109/CVPR.2015.7298965
10.1016/j.ins.2019.02.060
10.3390/rs6098424
10.1109/ACCESS.2019.2908846
10.1016/j.asoc.2018.03.018
10.1109/PROC.1979.11328
10.1145/3065386
10.1016/j.biosystemseng.2017.02.002
10.1016/j.drudis.2018.06.016
10.1109/TCSVT.2018.2799214
10.1109/CVPR.2017.189
10.1109/LGRS.2018.2869879
10.1371/journal.pone.0215676
10.3390/s18051580
10.3390/su9081335
10.1109/ACCESS.2018.2843261
10.1109/ACCESS.2018.2812999
10.1109/TIP.2018.2792904
10.1371/journal.pone.0196302
10.1016/j.compag.2015.08.023
10.1016/j.biosystemseng.2018.04.002
10.1109/ACCESS.2018.2805861
10.1016/j.cropro.2012.01.012
10.1080/01431161.2018.1441569
10.1109/ACCESS.2019.2911709
10.1111/j.1365-3180.2009.00696.x
10.1016/j.compind.2018.03.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2954587
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 2169-3536
EndPage 168574
ExternalDocumentID oai_doaj_org_article_9316a4946dfd42f7bcde2faec123e0fc
10_1109_ACCESS_2019_2954587
8907887
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31601217
  funderid: 10.13039/501100001809
– fundername: National Science and Technology Support Program
  grantid: 2015BAF20B02
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-c66b90ff516ccd3320c089c9bb72515a58408be5c40aaad406c022b92bc12723
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:13:20 EDT 2024
Thu Oct 10 19:35:54 EDT 2024
Fri Aug 23 03:24:14 EDT 2024
Wed Jun 26 19:27:58 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c66b90ff516ccd3320c089c9bb72515a58408be5c40aaad406c022b92bc12723
ORCID 0000-0001-7751-4905
0000-0002-5401-6257
0000-0003-2181-6618
0000-0003-3427-1856
0000-0002-4040-7791
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8907887
PQID 2455619895
PQPubID 4845423
PageCount 10
ParticipantIDs proquest_journals_2455619895
crossref_primary_10_1109_ACCESS_2019_2954587
doaj_primary_oai_doaj_org_article_9316a4946dfd42f7bcde2faec123e0fc
ieee_primary_8907887
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
(ref44) 2019
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref39
ref38
ref16
ref18
mcmurray (ref1) 1999; 52
ref24
shahbandeh (ref2) 2019
ref23
ref26
ref25
krizhevsky (ref17) 2012; 60
ref20
ref42
ref41
ref22
ref21
ref43
yu (ref19) 2015
ref28
ref27
kughur (ref5) 2012; 14
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref40
References_xml – ident: ref32
  doi: 10.1109/ACCESS.2017.2732001
– ident: ref22
  doi: 10.1109/ACCESS.2018.2844405
– year: 2019
  ident: ref2
  publication-title: Global Production of Vegetables in 2017 by Type (in Million Metric Tons)
  contributor:
    fullname: shahbandeh
– year: 2015
  ident: ref19
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: arXiv 1511 07122
  contributor:
    fullname: yu
– ident: ref29
  doi: 10.1007/978-3-319-32034-2_33
– ident: ref42
  doi: 10.1103/PhysRev.138.B1182
– ident: ref13
  doi: 10.3390/s19051132
– ident: ref16
  doi: 10.1016/j.isprsjprs.2013.11.012
– ident: ref35
  doi: 10.1109/ACCESS.2019.2928415
– ident: ref3
  doi: 10.1016/j.njas.2010.04.001
– ident: ref28
  doi: 10.1016/j.patcog.2011.03.005
– ident: ref31
  doi: 10.1109/ACCESS.2018.2806372
– ident: ref15
  doi: 10.1002/rob.21726
– ident: ref14
  doi: 10.1109/MRA.2012.2230118
– ident: ref18
  doi: 10.1109/CVPR.2015.7298965
– ident: ref38
  doi: 10.1016/j.ins.2019.02.060
– ident: ref33
  doi: 10.3390/rs6098424
– ident: ref8
  doi: 10.1109/ACCESS.2019.2908846
– ident: ref36
  doi: 10.1016/j.asoc.2018.03.018
– ident: ref40
  doi: 10.1109/PROC.1979.11328
– volume: 60
  start-page: 84
  year: 2012
  ident: ref17
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
  doi: 10.1145/3065386
  contributor:
    fullname: krizhevsky
– ident: ref7
  doi: 10.1016/j.biosystemseng.2017.02.002
– ident: ref27
  doi: 10.1016/j.drudis.2018.06.016
– ident: ref43
  doi: 10.1109/TCSVT.2018.2799214
– ident: ref20
  doi: 10.1109/CVPR.2017.189
– ident: ref23
  doi: 10.1109/LGRS.2018.2869879
– ident: ref26
  doi: 10.1371/journal.pone.0215676
– volume: 52
  start-page: 76
  year: 1999
  ident: ref1
  article-title: The origin, distribution and classification of cultivated broccoli varieties
  publication-title: SEG Technical Program Expanded Abstracts
  contributor:
    fullname: mcmurray
– ident: ref24
  doi: 10.3390/s18051580
– ident: ref41
  doi: 10.3390/su9081335
– ident: ref30
  doi: 10.1109/ACCESS.2018.2843261
– ident: ref10
  doi: 10.1109/ACCESS.2018.2812999
– ident: ref37
  doi: 10.1109/TIP.2018.2792904
– ident: ref25
  doi: 10.1371/journal.pone.0196302
– ident: ref12
  doi: 10.1016/j.compag.2015.08.023
– ident: ref34
  doi: 10.1016/j.biosystemseng.2018.04.002
– ident: ref21
  doi: 10.1109/ACCESS.2018.2805861
– year: 2019
  ident: ref44
  publication-title: Support Vector Machines
– ident: ref4
  doi: 10.1016/j.cropro.2012.01.012
– ident: ref9
  doi: 10.1080/01431161.2018.1441569
– ident: ref11
  doi: 10.1109/ACCESS.2019.2911709
– ident: ref6
  doi: 10.1111/j.1365-3180.2009.00696.x
– volume: 14
  start-page: 433
  year: 2012
  ident: ref5
  article-title: The effects of herbicides on crop production and environment in Makurdi Local Government Area of Benue State, Nigeria
  publication-title: Journal of Sustainable Development in Africa
  contributor:
    fullname: kughur
– ident: ref39
  doi: 10.1016/j.compind.2018.03.001
SSID ssj0000816957
Score 2.272516
Snippet The segmentation of broccoli seedlings in the crops and weeds co-exist field environment is of great significance for weeding and herbicide spraying. This...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 168565
SubjectTerms Agriculture
Algorithms
Broccoli
broccoli seedling
Chi-square test
Color texture
Correlation analysis
Discriminant analysis
Feature extraction
Ground truth
Herbicides
Image color analysis
Image segmentation
multiple features
Pattern recognition
Segmentation
Soil
Spraying
Statistical tests
support vector machine
Support vector machines
Training
Vegetables
weed
Weeds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIhCQR4YCXUS24nHtqKqkMpCgW5WfHagAwW16f_n7KRVJAYWpjiJ5cR3yd17_rgj5Da2XBhI8khCnEZ-Zi8yojCRyRgUmVROhKmY6ZOcvPDHuZi3Un35NWF1eOBacH2VxrLgiktbWp6UmQHrkrJwgCbXsRKC9WWqRaaCDc5jqUTWhBnC-_3BaIQ98mu51L2f2xJ-EV3LFYWI_U2KlV92OTib8TE5alAiHdRvd0L23PKUHLZiB3YIIIEG1OKCPqMD8pvKsfD-2WwlWtIhuidLseDzdiLGpq9hfJ5Ow-pJR9EQICnGKm-L6gPPkLfTGVrqzcpRjwvxuD4js_HDbDSJmowJEXCWVxFIaRQrSxFLAJumCQOWK1DGZIhjRIFog-XGCaxdFIVFZw7ow41KDIozS9Jzsr_8WroLQgMyEsYiYUHMAgpxAHBufbj3pESO0yV3W9np7zouhg58gildi1p7UetG1F0y9PLdVfVBrcMFVLVuVK3_UnWXdLx2do3kSOxz33Zvqy3d_IBrnXCf91PlSlz-x6OvyIHvTj320iP71WrjrhGNVOYmfHg_CiDbIw
  priority: 102
  providerName: Directory of Open Access Journals
Title Broccoli Seedling Segmentation Based on Support Vector Machine Combined With Color Texture Features
URI https://ieeexplore.ieee.org/document/8907887
https://www.proquest.com/docview/2455619895
https://doaj.org/article/9316a4946dfd42f7bcde2faec123e0fc
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_bQF626lCIfeiSL49hJfFxWRQhpuXTbcrPisUNRxYIge-mv74zjXaG2h57iRE4yyYw939jzAPhUBm08qraosawK3tkrvOl84RuJXVPbaNJWzOKyPv-qL67M1Q4cb2NhYozJ-SxOuZn28sMdrnmp7KQlS44GxS7sNtaOsVrb9RQuIGFNkxMLldKezOZz-gb23rJT3s0y7Db3RPmkHP25qMpfM3FSL2cvYbEhbPQq-TldD36Kv_7I2fi_lL-CFxlnitkoGK9hJ67ewPPZ9UPOtRHp7Ekuwn1AMsiRpOJGfCGFxkHq1Li-zaFJK3FK6i4IanAdUMLs4lta7xeL5I0ZBU0sZGRTl-83ww86IxLFkmZ-epVgnEnHx7ewPPu8nJ8XuQJDgVq2Q4F17a3se1PWiKGqlETZWrTeN4SLTEfoRbY-GurddV0gcICECbxVHkvVqOod7K3uVvE9iIS0jA9kABEGQku4ArUOnD5e9WQzTeB4wxl3P-bZcMk-kdaNjHTMSJcZOYFT5t62KyfJThfor7s85pytyrrTVtehD1r1jccQVd9Foq2KsscJ7DOntg_JTJrA4UYWXB7Qj05priNqW2sO_n3XB3jGBI6rM4ewNzys40fCK4M_Snb-URLX35oL6Nk
link.rule.ids 315,783,787,799,867,2109,4032,27936,27937,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remh7AFpasbzqQ49kcRw7iY_LCrS0LJduW25WPHYAVSwVZC_99R073hVqe-AUJ3KSSWbs-caeB8Cn3EllUdRZiXmRhZ29zKrGZrbi2FSl9ipuxUwvy8k3-flKXa3B0SoWxnsfnc_8MDTjXr67x0VYKjuuyZKjQfECXhKurqs-Wmu1ohJKSGhVpdRCOdfHo_GYviL4b-lh2M9SwXHuifqJWfpTWZV_5uKoYM42Ybokrfcr-TlcdHaIv__K2vhc2rdgIyFNNupF4y2s-fk7eDO6fkjZNjydPclGuA1IJjmSXNyyr6TSQpg6Na7vUnDSnJ2QwnOMGqESKKF29j2u-LNp9Mf0jKYWMrOpy4_b7obOiEQ2o7mfXsUC0qTj43uYnZ3OxpMs1WDIUPK6y7AsreZtq_IS0RWF4MhrjdraipCRagi_8Np6Rb2bpnEED5BQgdXCYi4qUXyA9fn93O8Ai1hLWUcmEKEg1IQsUEoXEsiLlqymARwtOWN-9Zk2TLRQuDY9I01gpEmMHMBJ4N6qa0iTHS_QXzdp1Bld5GUjtSxd66RoK4vOi7bxRFvheYsD2A6cWj0kMWkA-0tZMGlIPxohQyVRXWu1-_-7PsKryWx6YS7OL7_swetAbL9Wsw_r3cPCHxB66exhFNo_bZHrMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broccoli+Seedling+Segmentation+Based+on+Support+Vector+Machine+Combined+With+Color+Texture+Features&rft.jtitle=IEEE+access&rft.au=Zou%2C+Kunlin&rft.au=Ge%2C+Luzhen&rft.au=Zhang%2C+Chunlong&rft.au=Yuan%2C+Ting&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=168565&rft.epage=168574&rft_id=info:doi/10.1109%2FACCESS.2019.2954587&rft.externalDocID=8907887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon