Broccoli Seedling Segmentation Based on Support Vector Machine Combined With Color Texture Features
The segmentation of broccoli seedlings in the crops and weeds co-exist field environment is of great significance for weeding and herbicide spraying. This paper constructed a crop segmentation algorithm with a small training set for discriminating broccoli seedlings from weeds and soil. This algorit...
Saved in:
Published in | IEEE access Vol. 7; pp. 168565 - 168574 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The segmentation of broccoli seedlings in the crops and weeds co-exist field environment is of great significance for weeding and herbicide spraying. This paper constructed a crop segmentation algorithm with a small training set for discriminating broccoli seedlings from weeds and soil. This algorithm was based on a support vector machine (SVM) combined with color-texture features. Correlation analysis and chi-square tests were used to select 6 features from the 21 color features. Gray-level co-occurrence matrix (GLCM) was used to extract 5 texture features. And each parameter of GLCM had been assessed and optimized by the chi-square test. Linear Discriminant Analysis (LDA) was used to decompose the original dataset in a set of 3 successive orthogonal components. This method selected features more reasonable and gained higher plant segmentation accuracy. When the training sample is greater than 50, the accuracy of the test set could reach 90%. The coefficient of determination (R 2 ) between the ground truth broccoli seedling area and the segmentation broccoli area was 0.91, and the root-mean-square error (σ) was 0.10. Results demonstrated that the color-texture features were able to effectively segment broccoli seedlings even when there was a significant amount of weeds. |
---|---|
AbstractList | The segmentation of broccoli seedlings in the crops and weeds co-exist field environment is of great significance for weeding and herbicide spraying. This paper constructed a crop segmentation algorithm with a small training set for discriminating broccoli seedlings from weeds and soil. This algorithm was based on a support vector machine (SVM) combined with color-texture features. Correlation analysis and chi-square tests were used to select 6 features from the 21 color features. Gray-level co-occurrence matrix (GLCM) was used to extract 5 texture features. And each parameter of GLCM had been assessed and optimized by the chi-square test. Linear Discriminant Analysis (LDA) was used to decompose the original dataset in a set of 3 successive orthogonal components. This method selected features more reasonable and gained higher plant segmentation accuracy. When the training sample is greater than 50, the accuracy of the test set could reach 90%. The coefficient of determination (R2) between the ground truth broccoli seedling area and the segmentation broccoli area was 0.91, and the root-mean-square error (σ) was 0.10. Results demonstrated that the color-texture features were able to effectively segment broccoli seedlings even when there was a significant amount of weeds. The segmentation of broccoli seedlings in the crops and weeds co-exist field environment is of great significance for weeding and herbicide spraying. This paper constructed a crop segmentation algorithm with a small training set for discriminating broccoli seedlings from weeds and soil. This algorithm was based on a support vector machine (SVM) combined with color-texture features. Correlation analysis and chi-square tests were used to select 6 features from the 21 color features. Gray-level co-occurrence matrix (GLCM) was used to extract 5 texture features. And each parameter of GLCM had been assessed and optimized by the chi-square test. Linear Discriminant Analysis (LDA) was used to decompose the original dataset in a set of 3 successive orthogonal components. This method selected features more reasonable and gained higher plant segmentation accuracy. When the training sample is greater than 50, the accuracy of the test set could reach 90%. The coefficient of determination (R 2 ) between the ground truth broccoli seedling area and the segmentation broccoli area was 0.91, and the root-mean-square error (σ) was 0.10. Results demonstrated that the color-texture features were able to effectively segment broccoli seedlings even when there was a significant amount of weeds. |
Author | Li, Wei Zou, Kunlin Ge, Luzhen Yuan, Ting Zhang, Chunlong |
Author_xml | – sequence: 1 givenname: Kunlin orcidid: 0000-0002-4040-7791 surname: Zou fullname: Zou, Kunlin organization: College of Engineering, China Agricultural University, Beijing, China – sequence: 2 givenname: Luzhen orcidid: 0000-0001-7751-4905 surname: Ge fullname: Ge, Luzhen organization: College of Engineering, China Agricultural University, Beijing, China – sequence: 3 givenname: Chunlong orcidid: 0000-0003-3427-1856 surname: Zhang fullname: Zhang, Chunlong email: zcl1515@cau.edu.cn organization: College of Engineering, China Agricultural University, Beijing, China – sequence: 4 givenname: Ting orcidid: 0000-0002-5401-6257 surname: Yuan fullname: Yuan, Ting organization: College of Engineering, China Agricultural University, Beijing, China – sequence: 5 givenname: Wei orcidid: 0000-0003-2181-6618 surname: Li fullname: Li, Wei organization: College of Engineering, China Agricultural University, Beijing, China |
BookMark | eNpNUctOwzAQtBBIvPoFXCJxbrGd2ImPEPGoBOLQCo6Ws94UV2lcHFeCv8clFcKXGe_OjC3NOTnufY-EXDE6Y4yqm9u6vl8sZpwyNeNKFKIqj8gZZ1JNc5HL43_8lEyGYU3TqdJIlGcE7oIH8J3LFoi2c_0qkdUG-2ii8312Zwa0WSKL3XbrQ8zeEKIP2YuBD9djVvtNk9Bm7y5-pFuXdkv8iruA2QOaPQ6X5KQ13YCTA16Q5cP9sn6aPr8-zuvb5ykUtIpTkLJRtG0FkwA2zzkFWilQTVNywYQRVZI1KJLaGGMLKoFy3ijeAOMlzy_IfIy13qz1NriNCd_aG6d_Bz6stAnRQYda5UyaQhXStrbgbdmARd4aTEE50hZS1vWYtQ3-c4dD1Gu_C336veaFEJKpSomkykcVBD8MAdu_VxnV-2702I3ed6MP3STX1ehyiPjnqBQtq7T9AdfzjM8 |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_107303 crossref_primary_10_1016_j_inpa_2020_12_003 crossref_primary_10_1016_j_compag_2021_106683 crossref_primary_10_1007_s11119_022_09953_9 crossref_primary_10_1016_j_compag_2021_106242 crossref_primary_10_1016_j_compag_2022_107284 crossref_primary_10_1007_s11042_022_11905_4 crossref_primary_10_3390_rs13020310 crossref_primary_10_3390_s24051544 crossref_primary_10_3390_photonics9060393 crossref_primary_10_1186_s13007_021_00809_3 crossref_primary_10_3390_agronomy14050931 crossref_primary_10_1093_g3journal_jkae026 |
Cites_doi | 10.1109/ACCESS.2017.2732001 10.1109/ACCESS.2018.2844405 10.1007/978-3-319-32034-2_33 10.1103/PhysRev.138.B1182 10.3390/s19051132 10.1016/j.isprsjprs.2013.11.012 10.1109/ACCESS.2019.2928415 10.1016/j.njas.2010.04.001 10.1016/j.patcog.2011.03.005 10.1109/ACCESS.2018.2806372 10.1002/rob.21726 10.1109/MRA.2012.2230118 10.1109/CVPR.2015.7298965 10.1016/j.ins.2019.02.060 10.3390/rs6098424 10.1109/ACCESS.2019.2908846 10.1016/j.asoc.2018.03.018 10.1109/PROC.1979.11328 10.1145/3065386 10.1016/j.biosystemseng.2017.02.002 10.1016/j.drudis.2018.06.016 10.1109/TCSVT.2018.2799214 10.1109/CVPR.2017.189 10.1109/LGRS.2018.2869879 10.1371/journal.pone.0215676 10.3390/s18051580 10.3390/su9081335 10.1109/ACCESS.2018.2843261 10.1109/ACCESS.2018.2812999 10.1109/TIP.2018.2792904 10.1371/journal.pone.0196302 10.1016/j.compag.2015.08.023 10.1016/j.biosystemseng.2018.04.002 10.1109/ACCESS.2018.2805861 10.1016/j.cropro.2012.01.012 10.1080/01431161.2018.1441569 10.1109/ACCESS.2019.2911709 10.1111/j.1365-3180.2009.00696.x 10.1016/j.compind.2018.03.001 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2954587 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 2169-3536 |
EndPage | 168574 |
ExternalDocumentID | oai_doaj_org_article_9316a4946dfd42f7bcde2faec123e0fc 10_1109_ACCESS_2019_2954587 8907887 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31601217 funderid: 10.13039/501100001809 – fundername: National Science and Technology Support Program grantid: 2015BAF20B02 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-c66b90ff516ccd3320c089c9bb72515a58408be5c40aaad406c022b92bc12723 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:13:20 EDT 2024 Thu Oct 10 19:35:54 EDT 2024 Fri Aug 23 03:24:14 EDT 2024 Wed Jun 26 19:27:58 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-c66b90ff516ccd3320c089c9bb72515a58408be5c40aaad406c022b92bc12723 |
ORCID | 0000-0001-7751-4905 0000-0002-5401-6257 0000-0003-2181-6618 0000-0003-3427-1856 0000-0002-4040-7791 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8907887 |
PQID | 2455619895 |
PQPubID | 4845423 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2455619895 crossref_primary_10_1109_ACCESS_2019_2954587 doaj_primary_oai_doaj_org_article_9316a4946dfd42f7bcde2faec123e0fc ieee_primary_8907887 |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 (ref44) 2019 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref39 ref38 ref16 ref18 mcmurray (ref1) 1999; 52 ref24 shahbandeh (ref2) 2019 ref23 ref26 ref25 krizhevsky (ref17) 2012; 60 ref20 ref42 ref41 ref22 ref21 ref43 yu (ref19) 2015 ref28 ref27 kughur (ref5) 2012; 14 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref40 |
References_xml | – ident: ref32 doi: 10.1109/ACCESS.2017.2732001 – ident: ref22 doi: 10.1109/ACCESS.2018.2844405 – year: 2019 ident: ref2 publication-title: Global Production of Vegetables in 2017 by Type (in Million Metric Tons) contributor: fullname: shahbandeh – year: 2015 ident: ref19 article-title: Multi-scale context aggregation by dilated convolutions publication-title: arXiv 1511 07122 contributor: fullname: yu – ident: ref29 doi: 10.1007/978-3-319-32034-2_33 – ident: ref42 doi: 10.1103/PhysRev.138.B1182 – ident: ref13 doi: 10.3390/s19051132 – ident: ref16 doi: 10.1016/j.isprsjprs.2013.11.012 – ident: ref35 doi: 10.1109/ACCESS.2019.2928415 – ident: ref3 doi: 10.1016/j.njas.2010.04.001 – ident: ref28 doi: 10.1016/j.patcog.2011.03.005 – ident: ref31 doi: 10.1109/ACCESS.2018.2806372 – ident: ref15 doi: 10.1002/rob.21726 – ident: ref14 doi: 10.1109/MRA.2012.2230118 – ident: ref18 doi: 10.1109/CVPR.2015.7298965 – ident: ref38 doi: 10.1016/j.ins.2019.02.060 – ident: ref33 doi: 10.3390/rs6098424 – ident: ref8 doi: 10.1109/ACCESS.2019.2908846 – ident: ref36 doi: 10.1016/j.asoc.2018.03.018 – ident: ref40 doi: 10.1109/PROC.1979.11328 – volume: 60 start-page: 84 year: 2012 ident: ref17 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun ACM doi: 10.1145/3065386 contributor: fullname: krizhevsky – ident: ref7 doi: 10.1016/j.biosystemseng.2017.02.002 – ident: ref27 doi: 10.1016/j.drudis.2018.06.016 – ident: ref43 doi: 10.1109/TCSVT.2018.2799214 – ident: ref20 doi: 10.1109/CVPR.2017.189 – ident: ref23 doi: 10.1109/LGRS.2018.2869879 – ident: ref26 doi: 10.1371/journal.pone.0215676 – volume: 52 start-page: 76 year: 1999 ident: ref1 article-title: The origin, distribution and classification of cultivated broccoli varieties publication-title: SEG Technical Program Expanded Abstracts contributor: fullname: mcmurray – ident: ref24 doi: 10.3390/s18051580 – ident: ref41 doi: 10.3390/su9081335 – ident: ref30 doi: 10.1109/ACCESS.2018.2843261 – ident: ref10 doi: 10.1109/ACCESS.2018.2812999 – ident: ref37 doi: 10.1109/TIP.2018.2792904 – ident: ref25 doi: 10.1371/journal.pone.0196302 – ident: ref12 doi: 10.1016/j.compag.2015.08.023 – ident: ref34 doi: 10.1016/j.biosystemseng.2018.04.002 – ident: ref21 doi: 10.1109/ACCESS.2018.2805861 – year: 2019 ident: ref44 publication-title: Support Vector Machines – ident: ref4 doi: 10.1016/j.cropro.2012.01.012 – ident: ref9 doi: 10.1080/01431161.2018.1441569 – ident: ref11 doi: 10.1109/ACCESS.2019.2911709 – ident: ref6 doi: 10.1111/j.1365-3180.2009.00696.x – volume: 14 start-page: 433 year: 2012 ident: ref5 article-title: The effects of herbicides on crop production and environment in Makurdi Local Government Area of Benue State, Nigeria publication-title: Journal of Sustainable Development in Africa contributor: fullname: kughur – ident: ref39 doi: 10.1016/j.compind.2018.03.001 |
SSID | ssj0000816957 |
Score | 2.272516 |
Snippet | The segmentation of broccoli seedlings in the crops and weeds co-exist field environment is of great significance for weeding and herbicide spraying. This... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 168565 |
SubjectTerms | Agriculture Algorithms Broccoli broccoli seedling Chi-square test Color texture Correlation analysis Discriminant analysis Feature extraction Ground truth Herbicides Image color analysis Image segmentation multiple features Pattern recognition Segmentation Soil Spraying Statistical tests support vector machine Support vector machines Training Vegetables weed Weeds |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIhCQR4YCXUS24nHtqKqkMpCgW5WfHagAwW16f_n7KRVJAYWpjiJ5cR3yd17_rgj5Da2XBhI8khCnEZ-Zi8yojCRyRgUmVROhKmY6ZOcvPDHuZi3Un35NWF1eOBacH2VxrLgiktbWp6UmQHrkrJwgCbXsRKC9WWqRaaCDc5jqUTWhBnC-_3BaIQ98mu51L2f2xJ-EV3LFYWI_U2KlV92OTib8TE5alAiHdRvd0L23PKUHLZiB3YIIIEG1OKCPqMD8pvKsfD-2WwlWtIhuidLseDzdiLGpq9hfJ5Ow-pJR9EQICnGKm-L6gPPkLfTGVrqzcpRjwvxuD4js_HDbDSJmowJEXCWVxFIaRQrSxFLAJumCQOWK1DGZIhjRIFog-XGCaxdFIVFZw7ow41KDIozS9Jzsr_8WroLQgMyEsYiYUHMAgpxAHBufbj3pESO0yV3W9np7zouhg58gildi1p7UetG1F0y9PLdVfVBrcMFVLVuVK3_UnWXdLx2do3kSOxz33Zvqy3d_IBrnXCf91PlSlz-x6OvyIHvTj320iP71WrjrhGNVOYmfHg_CiDbIw priority: 102 providerName: Directory of Open Access Journals |
Title | Broccoli Seedling Segmentation Based on Support Vector Machine Combined With Color Texture Features |
URI | https://ieeexplore.ieee.org/document/8907887 https://www.proquest.com/docview/2455619895 https://doaj.org/article/9316a4946dfd42f7bcde2faec123e0fc |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_bQF626lCIfeiSL49hJfFxWRQhpuXTbcrPisUNRxYIge-mv74zjXaG2h57iRE4yyYw939jzAPhUBm08qraosawK3tkrvOl84RuJXVPbaNJWzOKyPv-qL67M1Q4cb2NhYozJ-SxOuZn28sMdrnmp7KQlS44GxS7sNtaOsVrb9RQuIGFNkxMLldKezOZz-gb23rJT3s0y7Db3RPmkHP25qMpfM3FSL2cvYbEhbPQq-TldD36Kv_7I2fi_lL-CFxlnitkoGK9hJ67ewPPZ9UPOtRHp7Ekuwn1AMsiRpOJGfCGFxkHq1Li-zaFJK3FK6i4IanAdUMLs4lta7xeL5I0ZBU0sZGRTl-83ww86IxLFkmZ-epVgnEnHx7ewPPu8nJ8XuQJDgVq2Q4F17a3se1PWiKGqlETZWrTeN4SLTEfoRbY-GurddV0gcICECbxVHkvVqOod7K3uVvE9iIS0jA9kABEGQku4ArUOnD5e9WQzTeB4wxl3P-bZcMk-kdaNjHTMSJcZOYFT5t62KyfJThfor7s85pytyrrTVtehD1r1jccQVd9Foq2KsscJ7DOntg_JTJrA4UYWXB7Qj05priNqW2sO_n3XB3jGBI6rM4ewNzys40fCK4M_Snb-URLX35oL6Nk |
link.rule.ids | 315,783,787,799,867,2109,4032,27936,27937,27938,55087 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remh7AFpasbzqQ49kcRw7iY_LCrS0LJduW25WPHYAVSwVZC_99R073hVqe-AUJ3KSSWbs-caeB8Cn3EllUdRZiXmRhZ29zKrGZrbi2FSl9ipuxUwvy8k3-flKXa3B0SoWxnsfnc_8MDTjXr67x0VYKjuuyZKjQfECXhKurqs-Wmu1ohJKSGhVpdRCOdfHo_GYviL4b-lh2M9SwXHuifqJWfpTWZV_5uKoYM42Ybokrfcr-TlcdHaIv__K2vhc2rdgIyFNNupF4y2s-fk7eDO6fkjZNjydPclGuA1IJjmSXNyyr6TSQpg6Na7vUnDSnJ2QwnOMGqESKKF29j2u-LNp9Mf0jKYWMrOpy4_b7obOiEQ2o7mfXsUC0qTj43uYnZ3OxpMs1WDIUPK6y7AsreZtq_IS0RWF4MhrjdraipCRagi_8Np6Rb2bpnEED5BQgdXCYi4qUXyA9fn93O8Ai1hLWUcmEKEg1IQsUEoXEsiLlqymARwtOWN-9Zk2TLRQuDY9I01gpEmMHMBJ4N6qa0iTHS_QXzdp1Bld5GUjtSxd66RoK4vOi7bxRFvheYsD2A6cWj0kMWkA-0tZMGlIPxohQyVRXWu1-_-7PsKryWx6YS7OL7_swetAbL9Wsw_r3cPCHxB66exhFNo_bZHrMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broccoli+Seedling+Segmentation+Based+on+Support+Vector+Machine+Combined+With+Color+Texture+Features&rft.jtitle=IEEE+access&rft.au=Zou%2C+Kunlin&rft.au=Ge%2C+Luzhen&rft.au=Zhang%2C+Chunlong&rft.au=Yuan%2C+Ting&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=168565&rft.epage=168574&rft_id=info:doi/10.1109%2FACCESS.2019.2954587&rft.externalDocID=8907887 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |