Contextualizing selection bias in Mendelian randomization: how bad is it likely to be?

Abstract Background Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and confounders of the risk factor–outcome association. However, the relative importance of selection bias for Mendelian randomizat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of epidemiology Vol. 48; no. 3; pp. 691 - 701
Main Authors Gkatzionis, Apostolos, Burgess, Stephen
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.06.2019
Subjects
Online AccessGet full text
ISSN0300-5771
1464-3685
1464-3685
DOI10.1093/ije/dyy202

Cover

Abstract Abstract Background Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and confounders of the risk factor–outcome association. However, the relative importance of selection bias for Mendelian randomization compared with other potential biases is unclear. Methods We performed an extensive simulation study to assess the impact of selection bias on a typical Mendelian randomization investigation. We considered inverse probability weighting as a potential method for reducing selection bias. Finally, we investigated whether selection bias may explain a recently reported finding that lipoprotein(a) is not a causal risk factor for cardiovascular mortality in individuals with previous coronary heart disease. Results Selection bias had a severe impact on bias and Type 1 error rates in our simulation study, but only when selection effects were large. For moderate effects of the risk factor on selection, bias was generally small and Type 1 error rate inflation was not considerable. Inverse probability weighting ameliorated bias when the selection model was correctly specified, but increased bias when selection bias was moderate and the model was misspecified. In the example of lipoprotein(a), strong genetic associations and strong confounder effects on selection mean the reported null effect on cardiovascular mortality could plausibly be explained by selection bias. Conclusions Selection bias can adversely affect Mendelian randomization investigations, but its impact is likely to be less than other biases. Selection bias is substantial when the effects of the risk factor and confounders on selection are particularly large.
AbstractList Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and confounders of the risk factor-outcome association. However, the relative importance of selection bias for Mendelian randomization compared with other potential biases is unclear. We performed an extensive simulation study to assess the impact of selection bias on a typical Mendelian randomization investigation. We considered inverse probability weighting as a potential method for reducing selection bias. Finally, we investigated whether selection bias may explain a recently reported finding that lipoprotein(a) is not a causal risk factor for cardiovascular mortality in individuals with previous coronary heart disease. Selection bias had a severe impact on bias and Type 1 error rates in our simulation study, but only when selection effects were large. For moderate effects of the risk factor on selection, bias was generally small and Type 1 error rate inflation was not considerable. Inverse probability weighting ameliorated bias when the selection model was correctly specified, but increased bias when selection bias was moderate and the model was misspecified. In the example of lipoprotein(a), strong genetic associations and strong confounder effects on selection mean the reported null effect on cardiovascular mortality could plausibly be explained by selection bias. Selection bias can adversely affect Mendelian randomization investigations, but its impact is likely to be less than other biases. Selection bias is substantial when the effects of the risk factor and confounders on selection are particularly large.
Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and confounders of the risk factor-outcome association. However, the relative importance of selection bias for Mendelian randomization compared with other potential biases is unclear.BACKGROUNDSelection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and confounders of the risk factor-outcome association. However, the relative importance of selection bias for Mendelian randomization compared with other potential biases is unclear.We performed an extensive simulation study to assess the impact of selection bias on a typical Mendelian randomization investigation. We considered inverse probability weighting as a potential method for reducing selection bias. Finally, we investigated whether selection bias may explain a recently reported finding that lipoprotein(a) is not a causal risk factor for cardiovascular mortality in individuals with previous coronary heart disease.METHODSWe performed an extensive simulation study to assess the impact of selection bias on a typical Mendelian randomization investigation. We considered inverse probability weighting as a potential method for reducing selection bias. Finally, we investigated whether selection bias may explain a recently reported finding that lipoprotein(a) is not a causal risk factor for cardiovascular mortality in individuals with previous coronary heart disease.Selection bias had a severe impact on bias and Type 1 error rates in our simulation study, but only when selection effects were large. For moderate effects of the risk factor on selection, bias was generally small and Type 1 error rate inflation was not considerable. Inverse probability weighting ameliorated bias when the selection model was correctly specified, but increased bias when selection bias was moderate and the model was misspecified. In the example of lipoprotein(a), strong genetic associations and strong confounder effects on selection mean the reported null effect on cardiovascular mortality could plausibly be explained by selection bias.RESULTSSelection bias had a severe impact on bias and Type 1 error rates in our simulation study, but only when selection effects were large. For moderate effects of the risk factor on selection, bias was generally small and Type 1 error rate inflation was not considerable. Inverse probability weighting ameliorated bias when the selection model was correctly specified, but increased bias when selection bias was moderate and the model was misspecified. In the example of lipoprotein(a), strong genetic associations and strong confounder effects on selection mean the reported null effect on cardiovascular mortality could plausibly be explained by selection bias.Selection bias can adversely affect Mendelian randomization investigations, but its impact is likely to be less than other biases. Selection bias is substantial when the effects of the risk factor and confounders on selection are particularly large.CONCLUSIONSSelection bias can adversely affect Mendelian randomization investigations, but its impact is likely to be less than other biases. Selection bias is substantial when the effects of the risk factor and confounders on selection are particularly large.
Abstract Background Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and confounders of the risk factor–outcome association. However, the relative importance of selection bias for Mendelian randomization compared with other potential biases is unclear. Methods We performed an extensive simulation study to assess the impact of selection bias on a typical Mendelian randomization investigation. We considered inverse probability weighting as a potential method for reducing selection bias. Finally, we investigated whether selection bias may explain a recently reported finding that lipoprotein(a) is not a causal risk factor for cardiovascular mortality in individuals with previous coronary heart disease. Results Selection bias had a severe impact on bias and Type 1 error rates in our simulation study, but only when selection effects were large. For moderate effects of the risk factor on selection, bias was generally small and Type 1 error rate inflation was not considerable. Inverse probability weighting ameliorated bias when the selection model was correctly specified, but increased bias when selection bias was moderate and the model was misspecified. In the example of lipoprotein(a), strong genetic associations and strong confounder effects on selection mean the reported null effect on cardiovascular mortality could plausibly be explained by selection bias. Conclusions Selection bias can adversely affect Mendelian randomization investigations, but its impact is likely to be less than other biases. Selection bias is substantial when the effects of the risk factor and confounders on selection are particularly large.
Author Burgess, Stephen
Gkatzionis, Apostolos
AuthorAffiliation 1 MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
2 Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
AuthorAffiliation_xml – name: 1 MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
– name: 2 Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
Author_xml – sequence: 1
  givenname: Apostolos
  surname: Gkatzionis
  fullname: Gkatzionis, Apostolos
  organization: MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
– sequence: 2
  givenname: Stephen
  orcidid: 0000-0001-5365-8760
  surname: Burgess
  fullname: Burgess, Stephen
  email: sb452@medschl.cam.ac.uk
  organization: MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30325422$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS0URCaBDR-AvEFCSEPKj7bHLEBoxEsKYgNsLXe7OnHw2EPbDUy-HodJECDEpmpRp-4t1T0iByknJOQ-gycMjDgJF3jidzsO_BZZMKnkUqhVd0AWIACWndbskByVcgHApJTmDjkUIHgnOV-QT-ucKn6vs4vhMqQzWjDiUENOtA-u0JDoO0weY3CJTi75vAmX7mr-lJ7nb7R3noaGVRrDZ4w7WjPt8fldcnt0seC9635MPr56-WH9Znn6_vXb9YvT5SBhVVtVpjPoe60VAjODcEaPfGDCOz2OHnoGvm-nAuMdG3tlVisp1Cg9aKO1FMfk2V53O_cb9AOmOrlot1PYuGlnswv2z0kK5_Ysf7VKdUYq0QQeXQtM-cuMpdpNKAPG6BLmuVjOOOhOGK4a-uB3r18mN89sAOyBYcqlTDjaIdSfv2rWIVoG9iov2_Ky-7zayuO_Vm5U_wk_3MN53v6P-wGK7aU3
CitedBy_id crossref_primary_10_1038_s43856_021_00061_9
crossref_primary_10_1093_ntr_ntae089
crossref_primary_10_1016_j_ehb_2022_101154
crossref_primary_10_1136_egastro_2023_100042
crossref_primary_10_1186_s12916_021_02193_0
crossref_primary_10_1007_s10552_022_01562_1
crossref_primary_10_1186_s12916_020_01703_w
crossref_primary_10_1038_s41467_020_17002_0
crossref_primary_10_1186_s12885_021_09067_x
crossref_primary_10_3233_JPD_223188
crossref_primary_10_1001_jamapsychiatry_2025_0033
crossref_primary_10_1002_acr_24884
crossref_primary_10_1177_0272989X241232607
crossref_primary_10_1093_eurheartj_ehab248
crossref_primary_10_3389_fonc_2021_681396
crossref_primary_10_1111_jcpe_14029
crossref_primary_10_1038_s41598_021_01291_6
crossref_primary_10_1093_gerona_glz240
crossref_primary_10_3389_fnagi_2022_847583
crossref_primary_10_1016_j_bbi_2022_05_006
crossref_primary_10_1017_S0033291724000321
crossref_primary_10_1038_s41467_019_13855_2
crossref_primary_10_1016_j_clnu_2020_03_009
crossref_primary_10_1161_JAHA_120_016771
crossref_primary_10_1002_jcsm_13174
crossref_primary_10_1186_s12874_024_02153_1
crossref_primary_10_1002_ana_25918
crossref_primary_10_12688_wellcomeopenres_15555_1
crossref_primary_10_1371_journal_pgen_1011246
crossref_primary_10_1002_alz_12743
crossref_primary_10_1214_22_AOS2247
crossref_primary_10_12688_wellcomeopenres_15555_3
crossref_primary_10_12688_wellcomeopenres_15555_2
crossref_primary_10_1371_journal_pmed_1003413
crossref_primary_10_7326_M21_3324
crossref_primary_10_2337_dc21_1284
crossref_primary_10_1016_j_eclinm_2020_100488
crossref_primary_10_1016_j_neuroimage_2022_119385
crossref_primary_10_1038_s41380_024_02878_x
crossref_primary_10_1097_MD_0000000000040141
crossref_primary_10_3389_fgene_2020_610852
crossref_primary_10_1007_s12672_025_02159_1
crossref_primary_10_1002_cam4_7051
crossref_primary_10_1167_iovs_63_6_29
crossref_primary_10_1136_bmj_l1855
crossref_primary_10_1016_j_ebiom_2022_104154
crossref_primary_10_1016_j_neurobiolaging_2021_02_010
crossref_primary_10_4048_jbc_2021_24_e53
crossref_primary_10_1186_s13059_022_02703_0
crossref_primary_10_3390_nu17010038
crossref_primary_10_1007_s40273_022_01183_1
crossref_primary_10_1371_journal_pmed_1004090
crossref_primary_10_1007_s40471_020_00233_6
crossref_primary_10_1007_s00535_024_02155_2
crossref_primary_10_1017_S0033291723001290
crossref_primary_10_1136_bmj_l1042
crossref_primary_10_1038_s41698_020_00131_6
crossref_primary_10_1016_j_jalz_2019_09_086
crossref_primary_10_1017_S0033291720000951
crossref_primary_10_1093_ije_dyae046
crossref_primary_10_1038_s41576_021_00387_z
crossref_primary_10_1002_sim_10173
crossref_primary_10_3233_JPD_213188
crossref_primary_10_1093_eurjpc_zwab005
crossref_primary_10_12688_wellcomeopenres_15628_3
crossref_primary_10_1038_s41598_022_05415_4
crossref_primary_10_1038_s41380_024_02446_3
crossref_primary_10_12688_wellcomeopenres_15628_1
crossref_primary_10_12688_wellcomeopenres_15628_2
crossref_primary_10_1371_journal_pcbi_1009238
crossref_primary_10_3390_nu15122703
crossref_primary_10_12688_wellcomeopenres_15334_2
crossref_primary_10_1007_s10654_024_01097_6
crossref_primary_10_3389_fnut_2022_1025212
crossref_primary_10_1038_s41366_021_00942_y
crossref_primary_10_1093_ije_dyz250
crossref_primary_10_3389_fgene_2021_729326
crossref_primary_10_1016_j_ijcard_2021_02_027
crossref_primary_10_1093_brain_awac392
crossref_primary_10_1126_sciadv_abj8969
crossref_primary_10_2147_NSS_S495411
crossref_primary_10_1136_bmjopen_2023_081399
crossref_primary_10_1016_j_ajhg_2022_12_017
crossref_primary_10_3389_fgene_2021_569323
crossref_primary_10_1371_journal_pgen_1010596
crossref_primary_10_1038_s41398_022_02141_3
crossref_primary_10_1093_jamia_ocae098
crossref_primary_10_1186_s13561_021_00314_2
crossref_primary_10_1007_s10654_022_00879_0
crossref_primary_10_1007_s00198_019_05118_z
crossref_primary_10_1093_aje_kwab103
crossref_primary_10_1161_CIRCRESAHA_122_319950
crossref_primary_10_1093_ije_dyad027
crossref_primary_10_1002_oby_24056
crossref_primary_10_71079_ASIDE_IM_03222516
crossref_primary_10_1002_path_5421
crossref_primary_10_1093_ije_dyad028
crossref_primary_10_3389_fcvm_2021_809717
crossref_primary_10_1016_j_clnu_2020_12_042
crossref_primary_10_1371_journal_pgen_1010107
crossref_primary_10_1136_bmj_2022_072148
crossref_primary_10_1038_s41431_022_01038_5
crossref_primary_10_1093_ije_dyz152
crossref_primary_10_1038_s41467_024_46796_6
crossref_primary_10_1101_cshperspect_a040501
crossref_primary_10_1093_hmg_ddac153
crossref_primary_10_12688_wellcomeopenres_16752_1
crossref_primary_10_1093_ije_dyab014
crossref_primary_10_1161_STROKEAHA_120_032617
crossref_primary_10_1093_ije_dyaa288
crossref_primary_10_1038_s41467_021_26280_1
crossref_primary_10_1038_s10038_020_00837_2
crossref_primary_10_1038_s41562_024_01919_3
crossref_primary_10_1186_s12916_023_03078_0
crossref_primary_10_1007_s10654_022_00874_5
crossref_primary_10_1136_jnnp_2023_332293
crossref_primary_10_1371_journal_pgen_1010290
crossref_primary_10_1016_S2589_7500_19_30028_7
Cites_doi 10.1093/ije/dyp334
10.1136/bmj.e7325
10.1093/ije/dyv080
10.1002/gepi.21758
10.1161/CIRCGENETICS.116.001616
10.1136/jech.2004.029496
10.1177/0962280210395740
10.1136/bmj.39167.407616.DB
10.1177/0962280206077743
10.1038/srep18422
10.1093/ije/dyg070
10.1080/01621459.1996.10476902
10.1371/journal.pmed.0050052
10.1093/ije/dyx131
10.1214/ss/1009211805
10.1172/JCI115855
10.1093/aje/kwj062
10.1201/b18084
10.1097/EDE.0000000000000639
10.1016/j.jclinepi.2015.09.016
10.1371/journal.pone.0018174
10.1056/NEJMoa0902604
10.1093/aje/kwu284
10.1097/01.ede.0000222409.00878.37
10.1158/1055-9965.EPI-05-0196
10.1002/gepi.21965
10.1001/jama.2009.801
10.1097/01.ede.0000135174.63482.43
10.1002/sim.5871
10.1097/01.EDE.0000042804.12056.6C
10.1016/S2213-8587(17)30096-7
10.1371/journal.pmed.1002314
10.1093/ije/dyx206
10.1097/EDE.0b013e3181f74493
10.1093/ije/dyr036
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. 2018
The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association.
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. 2018
– notice: The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/ije/dyy202
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
DocumentTitleAlternate Special theme: Mendelian randomization
EISSN 1464-3685
EndPage 701
ExternalDocumentID PMC6659463
30325422
10_1093_ije_dyy202
10.1093/ije/dyy202
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Royal Society
  grantid: 204623/Z/16/Z
  funderid: 10.13039/501100000288
– fundername: UK Medical Research Council
– fundername: Wellcome Trust
  funderid: 10.13039/100004440
– fundername: Core Medical Research Council Biostatistics Unit Funding Code
  grantid: MC_UU_00002/7
– fundername: Medical Research Council Methodology Research Panel
  grantid: RG88311
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: MR/N027493/1
– fundername: Wellcome Trust
  grantid: 204623/Z/16/Z
– fundername: Medical Research Council
  grantid: RG88311
– fundername: British Heart Foundation
  grantid: RG/13/13/30194
– fundername: Medical Research Council
  grantid: MC_UU_00002/7
– fundername: Medical Research Council
  grantid: MR/L003120/1
– fundername: ;
– fundername: ;
  grantid: MC_UU_00002/7
– fundername: ;
  grantid: RG88311
– fundername: ; ;
  grantid: 204623/Z/16/Z
– fundername: ; ;
GroupedDBID ---
-E4
.2P
.I3
.ZR
0R~
18M
1TH
29J
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
A8Z
AABZA
AACZT
AAJKP
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
ABDFA
ABEHJ
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABNHQ
ABNKS
ABOCM
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABYLZ
ABZBJ
ACGFO
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ACVHY
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFCKW
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGQZG
AGSYK
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AMHCJ
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BWUDY
C45
CDBKE
CNZYI
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FLUFQ
FOEOM
FOTVD
FQBLK
FTKQU
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
N9A
NGC
NOMLY
NOYVH
NPJNY
NU-
O9-
OAWHX
OBS
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
SV3
TEORI
TJX
TOX
TR2
W2D
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZKX
~91
AAYXX
AGORE
AHGBF
AJBYB
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ESTFP
5PM
AAJQQ
ID FETCH-LOGICAL-c408t-c46959edb776e019c3a97f2c13da7ffd0b10db25401251fb6988436f4d0797743
IEDL.DBID TOX
ISSN 0300-5771
1464-3685
IngestDate Thu Aug 21 13:15:07 EDT 2025
Mon Sep 08 10:37:05 EDT 2025
Mon Jul 21 06:08:10 EDT 2025
Thu Apr 24 22:54:53 EDT 2025
Tue Jul 01 01:59:00 EDT 2025
Wed Apr 02 07:04:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords selection bias
collider bias
instrumental variables
inverse probability weighting
causal inference
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c46959edb776e019c3a97f2c13da7ffd0b10db25401251fb6988436f4d0797743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5365-8760
OpenAccessLink https://dx.doi.org/10.1093/ije/dyy202
PMID 30325422
PQID 2120753926
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6659463
proquest_miscellaneous_2120753926
pubmed_primary_30325422
crossref_citationtrail_10_1093_ije_dyy202
crossref_primary_10_1093_ije_dyy202
oup_primary_10_1093_ije_dyy202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle International journal of epidemiology
PublicationTitleAlternate Int J Epidemiol
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Guo (2019072608002272900_dyy202-B17) 2017; 46
Hu (2019072608002272900_dyy202-B36) 2017; 10
Cole (2019072608002272900_dyy202-B8) 2010; 39
Noyce (2019072608002272900_dyy202-B20) 2017; 14
Burgess (2019072608002272900_dyy202-B34) 2013; 32
Zewinger (2019072608002272900_dyy202-B18) 2017; 5
Davey Smith (2019072608002272900_dyy202-B1) 2003; 32
Burgess (2019072608002272900_dyy202-B24) 2011; 40
Lee (2019072608002272900_dyy202-B29) 2011; 6
Greenland (2019072608002272900_dyy202-B33) 1999; 14
Hernán (2019072608002272900_dyy202-B7) 2004; 15
Seaman (2019072608002272900_dyy202-B27) 2013; 22
Gail (2019072608002272900_dyy202-B5) 2005
Cho (2019072608002272900_dyy202-B22) 2016; 5
Chen (2019072608002272900_dyy202-B23) 2008; 5
Didelez (2019072608002272900_dyy202-B4) 2007; 16
Nitsch (2019072608002272900_dyy202-B13) 2006; 163
Swanson (2019072608002272900_dyy202-B10) 2015; 181
Munafò (2019072608002272900_dyy202-B9) 2018; 47
Hernán (2019072608002272900_dyy202-B37) 2006; 17
Lewis (2019072608002272900_dyy202-B21) 2005; 14
Burgess (2019072608002272900_dyy202-B38) 2012; 345
VanderWeele (2019072608002272900_dyy202-B14) 2011; 22
Vansteelandt (2019072608002272900_dyy202-B19) 2017
Hernán (2019072608002272900_dyy202-B28) 2006; 60
Burgess (2019072608002272900_dyy202-B35) 2013; 37
Bowden (2019072608002272900_dyy202-B26) 2016; 40
Hughes (2019072608002272900_dyy202-B12) 2017
Kamstrup (2019072608002272900_dyy202-B32) 2009; 301
Boerwinkle (2019072608002272900_dyy202-B30) 1992; 90
Canan (2019072608002272900_dyy202-B11) 2017; 28
Angrist (2019072608002272900_dyy202-B3) 1996; 91
Gaziano (2019072608002272900_dyy202-B16) 2016; 70
Watts (2019072608002272900_dyy202-B15) 2007; 334
Bowden (2019072608002272900_dyy202-B25) 2015; 44
Burgess (2019072608002272900_dyy202-B2) 2015
Greenland (2019072608002272900_dyy202-B6) 2003; 14
Clarke (2019072608002272900_dyy202-B31) 2009; 361
References_xml – volume: 39
  start-page: 417
  year: 2010
  ident: 2019072608002272900_dyy202-B8
  article-title: Illustrating bias due to conditioning on a collider
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyp334
– volume: 345
  start-page: e7325.
  year: 2012
  ident: 2019072608002272900_dyy202-B38
  article-title: Use of Mendelian randomisation to assess potential benefit of clinical intervention
  publication-title: BMJ
  doi: 10.1136/bmj.e7325
– volume: 44
  start-page: 512
  year: 2015
  ident: 2019072608002272900_dyy202-B25
  article-title: Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyv080
– volume: 37
  start-page: 658
  year: 2013
  ident: 2019072608002272900_dyy202-B35
  article-title: Mendelian randomization analysis with multiple genetic variants using summarized data
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21758
– volume: 10
  start-page: e001616.
  year: 2017
  ident: 2019072608002272900_dyy202-B36
  article-title: Impact of selection bias on estimation of subsequent event risk
  publication-title: Circ Cardiovasc Genet
  doi: 10.1161/CIRCGENETICS.116.001616
– volume: 60
  start-page: 578
  year: 2006
  ident: 2019072608002272900_dyy202-B28
  article-title: Estimating causal effects from epidemiological data
  publication-title: J Epidemiol Community Health
  doi: 10.1136/jech.2004.029496
– year: 2017
  ident: 2019072608002272900_dyy202-B19
  article-title: Survivor bias in Mendelian randomization analysis
  publication-title: Biostatistics
– start-page: 192237
  year: 2017
  ident: 2019072608002272900_dyy202-B12
  article-title: Selection bias in instrumental variable analyses
  publication-title: bioRxiv
– volume: 22
  start-page: 278
  year: 2013
  ident: 2019072608002272900_dyy202-B27
  article-title: Review of inverse probability weighting for dealing with missing data
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280210395740
– volume: 334
  start-page: 659.
  year: 2007
  ident: 2019072608002272900_dyy202-B15
  article-title: UK Biobank gets 10% response rate as it starts recruiting volunteers
  publication-title: BMJ
  doi: 10.1136/bmj.39167.407616.DB
– volume: 16
  start-page: 309
  year: 2007
  ident: 2019072608002272900_dyy202-B4
  article-title: Mendelian randomization as an instrumental variable approach to causal inference
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280206077743
– volume: 5
  start-page: 18422.
  year: 2016
  ident: 2019072608002272900_dyy202-B22
  article-title: Alcohol intake and cardiovascular risk factors: a Mendelian randomisation study
  publication-title: Sci Rep
  doi: 10.1038/srep18422
– volume: 32
  start-page: 1
  year: 2003
  ident: 2019072608002272900_dyy202-B1
  article-title: Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyg070
– volume: 91
  start-page: 444
  year: 1996
  ident: 2019072608002272900_dyy202-B3
  article-title: Identification of causal effects using instrumental variables
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476902
– volume: 5
  start-page: e52.
  year: 2008
  ident: 2019072608002272900_dyy202-B23
  article-title: Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0050052
– volume: 46
  start-page: 1814
  year: 2017
  ident: 2019072608002272900_dyy202-B17
  article-title: Body mass index and breast cancer survival: a Mendelian randomisation analysis
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyx131
– volume: 14
  start-page: 29
  year: 1999
  ident: 2019072608002272900_dyy202-B33
  article-title: Confounding and collapsibility in causal inference
  publication-title: Stat Sci
  doi: 10.1214/ss/1009211805
– volume: 90
  start-page: 52
  year: 1992
  ident: 2019072608002272900_dyy202-B30
  article-title: Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations
  publication-title: J Clin Invest
  doi: 10.1172/JCI115855
– volume: 163
  start-page: 397
  year: 2006
  ident: 2019072608002272900_dyy202-B13
  article-title: Limits to causal inference based on Mendelian randomization: a comparison with randomized controlled trials
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwj062
– volume-title: Mendelian Randomization: Methods for Using Genetic Variants in Causal Estimation
  year: 2015
  ident: 2019072608002272900_dyy202-B2
  doi: 10.1201/b18084
– volume: 28
  start-page: 396
  year: 2017
  ident: 2019072608002272900_dyy202-B11
  article-title: Instrumental variable analyses and selection bias
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000000639
– volume: 70
  start-page: 214
  year: 2016
  ident: 2019072608002272900_dyy202-B16
  article-title: Million Veteran Program: a mega-biobank to study genetic influences on health and disease
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2015.09.016
– volume: 6
  start-page: e18174
  year: 2011
  ident: 2019072608002272900_dyy202-B29
  article-title: Weight trimming and propensity score weighting
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018174
– volume: 361
  start-page: 2518
  year: 2009
  ident: 2019072608002272900_dyy202-B31
  article-title: Genetic variants associated with Lp(a) lipoprotein level and coronary disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0902604
– volume: 181
  start-page: 191
  year: 2015
  ident: 2019072608002272900_dyy202-B10
  article-title: Selecting on treatment: a pervasive form of bias in instrumental variable analyses
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwu284
– volume: 17
  start-page: 360
  year: 2006
  ident: 2019072608002272900_dyy202-B37
  article-title: Instruments for causal inference: an epidemiologist’s dream?
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000222409.00878.37
– volume: 14
  start-page: 1967
  year: 2005
  ident: 2019072608002272900_dyy202-B21
  article-title: Alcohol, ALDH2, and esophageal cancer: a meta-analysis which illustrates the potentials and limitations of a Mendelian randomization approach
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-05-0196
– volume: 40
  start-page: 304
  year: 2016
  ident: 2019072608002272900_dyy202-B26
  article-title: Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21965
– volume: 301
  start-page: 2331
  year: 2009
  ident: 2019072608002272900_dyy202-B32
  article-title: Genetically elevated lipoprotein(a) and increased risk of myocardial infarction
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.2009.801
– start-page: 4869
  volume-title: Encyclopedia of Biostatistics
  year: 2005
  ident: 2019072608002272900_dyy202-B5
– volume: 15
  start-page: 615
  year: 2004
  ident: 2019072608002272900_dyy202-B7
  article-title: A structural approach to selection bias
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000135174.63482.43
– volume: 32
  start-page: 4726
  year: 2013
  ident: 2019072608002272900_dyy202-B34
  article-title: Identifying the odds ratio estimated by a two-stage instrumental variable analysis with a logistic regression model
  publication-title: Stat Med
  doi: 10.1002/sim.5871
– volume: 14
  start-page: 300
  year: 2003
  ident: 2019072608002272900_dyy202-B6
  article-title: Quantifying biases in causal models: classical confounding vs collider-stratification bias
  publication-title: Epidemiology
  doi: 10.1097/01.EDE.0000042804.12056.6C
– volume: 5
  start-page: 534
  year: 2017
  ident: 2019072608002272900_dyy202-B18
  article-title: Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(17)30096-7
– volume: 14
  start-page: e1002314.
  year: 2017
  ident: 2019072608002272900_dyy202-B20
  article-title: Estimating the causal influence of body mass index on risk of Parkinson disease: a Mendelian randomisation study
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002314
– volume: 47
  start-page: 226
  year: 2018
  ident: 2019072608002272900_dyy202-B9
  article-title: Collider scope: when selection bias can substantially influence observed associations
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyx206
– volume: 22
  start-page: 42
  year: 2011
  ident: 2019072608002272900_dyy202-B14
  article-title: Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181f74493
– volume: 40
  start-page: 755
  year: 2011
  ident: 2019072608002272900_dyy202-B24
  article-title: Avoiding bias from weak instruments in Mendelian randomization studies
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyr036
SSID ssj0014449
Score 2.6036382
Snippet Abstract Background Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the...
Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 691
SubjectTerms Cardiovascular Diseases - genetics
Cardiovascular Diseases - mortality
Causality
Computer Simulation
Confounding Factors, Epidemiologic
Coronary Disease - epidemiology
Coronary Disease - genetics
Humans
Lipoprotein(a) - genetics
Lipoprotein(a) - metabolism
Mendelian Randomization
Mendelian Randomization Analysis
Risk Factors
Selection Bias
Title Contextualizing selection bias in Mendelian randomization: how bad is it likely to be?
URI https://www.ncbi.nlm.nih.gov/pubmed/30325422
https://www.proquest.com/docview/2120753926
https://pubmed.ncbi.nlm.nih.gov/PMC6659463
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JS8QwFA7qQQQRHbdxGSJ68VCmbdKk9SIiLgijlxmZW2mWYnVsxano-Ot9aTqDFdFLL30p4b2k35e8DaEjCr98KZVyFI2IQ0PFnQSQyGEcsEwHkvvKeHR7t-x6QG-GwbAOohn_4sKPSDd71F01mfhVyUhAX7Oa-3fDma-AUktyies6AefetAhpY2gDdhqpbN8Y5c_AyG9Ic7mKVmqKiM-sTdfQnM5baLFXO8FbaNletWGbQbSO7qsKUx8mEST7BCTC46q3DSgciywZ4yzHPXPRbS40MECTKp7r5MsT_FC8Y5EonIFYiUfZkx5NcFlgoU830ODyon9-7dTtEhxJ3bCEJ4uCSCvBOdPA3CRJIp760iMq4WmqXOG5SsCB0DWkJhUsCkNKWEqVyw0LJJtoIS9yvY0wFTKUcHhlqaCwqWkipGDET5VnWl0x2kbHU23Gsq4lblpajGLr0yYxaD62mm-jw5nsi62g8atUB4zyp8DB1F4x7ADj1khyXbyNYwBf4D3A81gbbVn7zb4DAA3T92E0b1h2JmCqazff5NlDVWWbsSCijOz8N7FdtAQkKrLhY3tooXx90_tAVErRQfNXQ69TrdYv4WPoAQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contextualizing+selection+bias+in+Mendelian+randomization%3A+how+bad+is+it+likely+to+be%3F&rft.jtitle=International+journal+of+epidemiology&rft.au=Gkatzionis%2C+Apostolos&rft.au=Burgess%2C+Stephen&rft.date=2019-06-01&rft.eissn=1464-3685&rft.volume=48&rft.issue=3&rft.spage=691&rft_id=info:doi/10.1093%2Fije%2Fdyy202&rft_id=info%3Apmid%2F30325422&rft.externalDocID=30325422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-5771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-5771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-5771&client=summon