Contextualizing selection bias in Mendelian randomization: how bad is it likely to be?
Abstract Background Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and confounders of the risk factor–outcome association. However, the relative importance of selection bias for Mendelian randomizat...
Saved in:
Published in | International journal of epidemiology Vol. 48; no. 3; pp. 691 - 701 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0300-5771 1464-3685 1464-3685 |
DOI | 10.1093/ije/dyy202 |
Cover
Abstract | Abstract
Background
Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and confounders of the risk factor–outcome association. However, the relative importance of selection bias for Mendelian randomization compared with other potential biases is unclear.
Methods
We performed an extensive simulation study to assess the impact of selection bias on a typical Mendelian randomization investigation. We considered inverse probability weighting as a potential method for reducing selection bias. Finally, we investigated whether selection bias may explain a recently reported finding that lipoprotein(a) is not a causal risk factor for cardiovascular mortality in individuals with previous coronary heart disease.
Results
Selection bias had a severe impact on bias and Type 1 error rates in our simulation study, but only when selection effects were large. For moderate effects of the risk factor on selection, bias was generally small and Type 1 error rate inflation was not considerable. Inverse probability weighting ameliorated bias when the selection model was correctly specified, but increased bias when selection bias was moderate and the model was misspecified. In the example of lipoprotein(a), strong genetic associations and strong confounder effects on selection mean the reported null effect on cardiovascular mortality could plausibly be explained by selection bias.
Conclusions
Selection bias can adversely affect Mendelian randomization investigations, but its impact is likely to be less than other biases. Selection bias is substantial when the effects of the risk factor and confounders on selection are particularly large. |
---|---|
AbstractList | Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and confounders of the risk factor-outcome association. However, the relative importance of selection bias for Mendelian randomization compared with other potential biases is unclear.
We performed an extensive simulation study to assess the impact of selection bias on a typical Mendelian randomization investigation. We considered inverse probability weighting as a potential method for reducing selection bias. Finally, we investigated whether selection bias may explain a recently reported finding that lipoprotein(a) is not a causal risk factor for cardiovascular mortality in individuals with previous coronary heart disease.
Selection bias had a severe impact on bias and Type 1 error rates in our simulation study, but only when selection effects were large. For moderate effects of the risk factor on selection, bias was generally small and Type 1 error rate inflation was not considerable. Inverse probability weighting ameliorated bias when the selection model was correctly specified, but increased bias when selection bias was moderate and the model was misspecified. In the example of lipoprotein(a), strong genetic associations and strong confounder effects on selection mean the reported null effect on cardiovascular mortality could plausibly be explained by selection bias.
Selection bias can adversely affect Mendelian randomization investigations, but its impact is likely to be less than other biases. Selection bias is substantial when the effects of the risk factor and confounders on selection are particularly large. Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and confounders of the risk factor-outcome association. However, the relative importance of selection bias for Mendelian randomization compared with other potential biases is unclear.BACKGROUNDSelection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and confounders of the risk factor-outcome association. However, the relative importance of selection bias for Mendelian randomization compared with other potential biases is unclear.We performed an extensive simulation study to assess the impact of selection bias on a typical Mendelian randomization investigation. We considered inverse probability weighting as a potential method for reducing selection bias. Finally, we investigated whether selection bias may explain a recently reported finding that lipoprotein(a) is not a causal risk factor for cardiovascular mortality in individuals with previous coronary heart disease.METHODSWe performed an extensive simulation study to assess the impact of selection bias on a typical Mendelian randomization investigation. We considered inverse probability weighting as a potential method for reducing selection bias. Finally, we investigated whether selection bias may explain a recently reported finding that lipoprotein(a) is not a causal risk factor for cardiovascular mortality in individuals with previous coronary heart disease.Selection bias had a severe impact on bias and Type 1 error rates in our simulation study, but only when selection effects were large. For moderate effects of the risk factor on selection, bias was generally small and Type 1 error rate inflation was not considerable. Inverse probability weighting ameliorated bias when the selection model was correctly specified, but increased bias when selection bias was moderate and the model was misspecified. In the example of lipoprotein(a), strong genetic associations and strong confounder effects on selection mean the reported null effect on cardiovascular mortality could plausibly be explained by selection bias.RESULTSSelection bias had a severe impact on bias and Type 1 error rates in our simulation study, but only when selection effects were large. For moderate effects of the risk factor on selection, bias was generally small and Type 1 error rate inflation was not considerable. Inverse probability weighting ameliorated bias when the selection model was correctly specified, but increased bias when selection bias was moderate and the model was misspecified. In the example of lipoprotein(a), strong genetic associations and strong confounder effects on selection mean the reported null effect on cardiovascular mortality could plausibly be explained by selection bias.Selection bias can adversely affect Mendelian randomization investigations, but its impact is likely to be less than other biases. Selection bias is substantial when the effects of the risk factor and confounders on selection are particularly large.CONCLUSIONSSelection bias can adversely affect Mendelian randomization investigations, but its impact is likely to be less than other biases. Selection bias is substantial when the effects of the risk factor and confounders on selection are particularly large. Abstract Background Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and confounders of the risk factor–outcome association. However, the relative importance of selection bias for Mendelian randomization compared with other potential biases is unclear. Methods We performed an extensive simulation study to assess the impact of selection bias on a typical Mendelian randomization investigation. We considered inverse probability weighting as a potential method for reducing selection bias. Finally, we investigated whether selection bias may explain a recently reported finding that lipoprotein(a) is not a causal risk factor for cardiovascular mortality in individuals with previous coronary heart disease. Results Selection bias had a severe impact on bias and Type 1 error rates in our simulation study, but only when selection effects were large. For moderate effects of the risk factor on selection, bias was generally small and Type 1 error rate inflation was not considerable. Inverse probability weighting ameliorated bias when the selection model was correctly specified, but increased bias when selection bias was moderate and the model was misspecified. In the example of lipoprotein(a), strong genetic associations and strong confounder effects on selection mean the reported null effect on cardiovascular mortality could plausibly be explained by selection bias. Conclusions Selection bias can adversely affect Mendelian randomization investigations, but its impact is likely to be less than other biases. Selection bias is substantial when the effects of the risk factor and confounders on selection are particularly large. |
Author | Burgess, Stephen Gkatzionis, Apostolos |
AuthorAffiliation | 1 MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK 2 Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK |
AuthorAffiliation_xml | – name: 1 MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK – name: 2 Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK |
Author_xml | – sequence: 1 givenname: Apostolos surname: Gkatzionis fullname: Gkatzionis, Apostolos organization: MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK – sequence: 2 givenname: Stephen orcidid: 0000-0001-5365-8760 surname: Burgess fullname: Burgess, Stephen email: sb452@medschl.cam.ac.uk organization: MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30325422$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuFDEQRS0URCaBDR-AvEFCSEPKj7bHLEBoxEsKYgNsLXe7OnHw2EPbDUy-HodJECDEpmpRp-4t1T0iByknJOQ-gycMjDgJF3jidzsO_BZZMKnkUqhVd0AWIACWndbskByVcgHApJTmDjkUIHgnOV-QT-ucKn6vs4vhMqQzWjDiUENOtA-u0JDoO0weY3CJTi75vAmX7mr-lJ7nb7R3noaGVRrDZ4w7WjPt8fldcnt0seC9635MPr56-WH9Znn6_vXb9YvT5SBhVVtVpjPoe60VAjODcEaPfGDCOz2OHnoGvm-nAuMdG3tlVisp1Cg9aKO1FMfk2V53O_cb9AOmOrlot1PYuGlnswv2z0kK5_Ysf7VKdUYq0QQeXQtM-cuMpdpNKAPG6BLmuVjOOOhOGK4a-uB3r18mN89sAOyBYcqlTDjaIdSfv2rWIVoG9iov2_Ky-7zayuO_Vm5U_wk_3MN53v6P-wGK7aU3 |
CitedBy_id | crossref_primary_10_1038_s43856_021_00061_9 crossref_primary_10_1093_ntr_ntae089 crossref_primary_10_1016_j_ehb_2022_101154 crossref_primary_10_1136_egastro_2023_100042 crossref_primary_10_1186_s12916_021_02193_0 crossref_primary_10_1007_s10552_022_01562_1 crossref_primary_10_1186_s12916_020_01703_w crossref_primary_10_1038_s41467_020_17002_0 crossref_primary_10_1186_s12885_021_09067_x crossref_primary_10_3233_JPD_223188 crossref_primary_10_1001_jamapsychiatry_2025_0033 crossref_primary_10_1002_acr_24884 crossref_primary_10_1177_0272989X241232607 crossref_primary_10_1093_eurheartj_ehab248 crossref_primary_10_3389_fonc_2021_681396 crossref_primary_10_1111_jcpe_14029 crossref_primary_10_1038_s41598_021_01291_6 crossref_primary_10_1093_gerona_glz240 crossref_primary_10_3389_fnagi_2022_847583 crossref_primary_10_1016_j_bbi_2022_05_006 crossref_primary_10_1017_S0033291724000321 crossref_primary_10_1038_s41467_019_13855_2 crossref_primary_10_1016_j_clnu_2020_03_009 crossref_primary_10_1161_JAHA_120_016771 crossref_primary_10_1002_jcsm_13174 crossref_primary_10_1186_s12874_024_02153_1 crossref_primary_10_1002_ana_25918 crossref_primary_10_12688_wellcomeopenres_15555_1 crossref_primary_10_1371_journal_pgen_1011246 crossref_primary_10_1002_alz_12743 crossref_primary_10_1214_22_AOS2247 crossref_primary_10_12688_wellcomeopenres_15555_3 crossref_primary_10_12688_wellcomeopenres_15555_2 crossref_primary_10_1371_journal_pmed_1003413 crossref_primary_10_7326_M21_3324 crossref_primary_10_2337_dc21_1284 crossref_primary_10_1016_j_eclinm_2020_100488 crossref_primary_10_1016_j_neuroimage_2022_119385 crossref_primary_10_1038_s41380_024_02878_x crossref_primary_10_1097_MD_0000000000040141 crossref_primary_10_3389_fgene_2020_610852 crossref_primary_10_1007_s12672_025_02159_1 crossref_primary_10_1002_cam4_7051 crossref_primary_10_1167_iovs_63_6_29 crossref_primary_10_1136_bmj_l1855 crossref_primary_10_1016_j_ebiom_2022_104154 crossref_primary_10_1016_j_neurobiolaging_2021_02_010 crossref_primary_10_4048_jbc_2021_24_e53 crossref_primary_10_1186_s13059_022_02703_0 crossref_primary_10_3390_nu17010038 crossref_primary_10_1007_s40273_022_01183_1 crossref_primary_10_1371_journal_pmed_1004090 crossref_primary_10_1007_s40471_020_00233_6 crossref_primary_10_1007_s00535_024_02155_2 crossref_primary_10_1017_S0033291723001290 crossref_primary_10_1136_bmj_l1042 crossref_primary_10_1038_s41698_020_00131_6 crossref_primary_10_1016_j_jalz_2019_09_086 crossref_primary_10_1017_S0033291720000951 crossref_primary_10_1093_ije_dyae046 crossref_primary_10_1038_s41576_021_00387_z crossref_primary_10_1002_sim_10173 crossref_primary_10_3233_JPD_213188 crossref_primary_10_1093_eurjpc_zwab005 crossref_primary_10_12688_wellcomeopenres_15628_3 crossref_primary_10_1038_s41598_022_05415_4 crossref_primary_10_1038_s41380_024_02446_3 crossref_primary_10_12688_wellcomeopenres_15628_1 crossref_primary_10_12688_wellcomeopenres_15628_2 crossref_primary_10_1371_journal_pcbi_1009238 crossref_primary_10_3390_nu15122703 crossref_primary_10_12688_wellcomeopenres_15334_2 crossref_primary_10_1007_s10654_024_01097_6 crossref_primary_10_3389_fnut_2022_1025212 crossref_primary_10_1038_s41366_021_00942_y crossref_primary_10_1093_ije_dyz250 crossref_primary_10_3389_fgene_2021_729326 crossref_primary_10_1016_j_ijcard_2021_02_027 crossref_primary_10_1093_brain_awac392 crossref_primary_10_1126_sciadv_abj8969 crossref_primary_10_2147_NSS_S495411 crossref_primary_10_1136_bmjopen_2023_081399 crossref_primary_10_1016_j_ajhg_2022_12_017 crossref_primary_10_3389_fgene_2021_569323 crossref_primary_10_1371_journal_pgen_1010596 crossref_primary_10_1038_s41398_022_02141_3 crossref_primary_10_1093_jamia_ocae098 crossref_primary_10_1186_s13561_021_00314_2 crossref_primary_10_1007_s10654_022_00879_0 crossref_primary_10_1007_s00198_019_05118_z crossref_primary_10_1093_aje_kwab103 crossref_primary_10_1161_CIRCRESAHA_122_319950 crossref_primary_10_1093_ije_dyad027 crossref_primary_10_1002_oby_24056 crossref_primary_10_71079_ASIDE_IM_03222516 crossref_primary_10_1002_path_5421 crossref_primary_10_1093_ije_dyad028 crossref_primary_10_3389_fcvm_2021_809717 crossref_primary_10_1016_j_clnu_2020_12_042 crossref_primary_10_1371_journal_pgen_1010107 crossref_primary_10_1136_bmj_2022_072148 crossref_primary_10_1038_s41431_022_01038_5 crossref_primary_10_1093_ije_dyz152 crossref_primary_10_1038_s41467_024_46796_6 crossref_primary_10_1101_cshperspect_a040501 crossref_primary_10_1093_hmg_ddac153 crossref_primary_10_12688_wellcomeopenres_16752_1 crossref_primary_10_1093_ije_dyab014 crossref_primary_10_1161_STROKEAHA_120_032617 crossref_primary_10_1093_ije_dyaa288 crossref_primary_10_1038_s41467_021_26280_1 crossref_primary_10_1038_s10038_020_00837_2 crossref_primary_10_1038_s41562_024_01919_3 crossref_primary_10_1186_s12916_023_03078_0 crossref_primary_10_1007_s10654_022_00874_5 crossref_primary_10_1136_jnnp_2023_332293 crossref_primary_10_1371_journal_pgen_1010290 crossref_primary_10_1016_S2589_7500_19_30028_7 |
Cites_doi | 10.1093/ije/dyp334 10.1136/bmj.e7325 10.1093/ije/dyv080 10.1002/gepi.21758 10.1161/CIRCGENETICS.116.001616 10.1136/jech.2004.029496 10.1177/0962280210395740 10.1136/bmj.39167.407616.DB 10.1177/0962280206077743 10.1038/srep18422 10.1093/ije/dyg070 10.1080/01621459.1996.10476902 10.1371/journal.pmed.0050052 10.1093/ije/dyx131 10.1214/ss/1009211805 10.1172/JCI115855 10.1093/aje/kwj062 10.1201/b18084 10.1097/EDE.0000000000000639 10.1016/j.jclinepi.2015.09.016 10.1371/journal.pone.0018174 10.1056/NEJMoa0902604 10.1093/aje/kwu284 10.1097/01.ede.0000222409.00878.37 10.1158/1055-9965.EPI-05-0196 10.1002/gepi.21965 10.1001/jama.2009.801 10.1097/01.ede.0000135174.63482.43 10.1002/sim.5871 10.1097/01.EDE.0000042804.12056.6C 10.1016/S2213-8587(17)30096-7 10.1371/journal.pmed.1002314 10.1093/ije/dyx206 10.1097/EDE.0b013e3181f74493 10.1093/ije/dyr036 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. 2018 The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. 2018 – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/ije/dyy202 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
DocumentTitleAlternate | Special theme: Mendelian randomization |
EISSN | 1464-3685 |
EndPage | 701 |
ExternalDocumentID | PMC6659463 30325422 10_1093_ije_dyy202 10.1093/ije/dyy202 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Royal Society grantid: 204623/Z/16/Z funderid: 10.13039/501100000288 – fundername: UK Medical Research Council – fundername: Wellcome Trust funderid: 10.13039/100004440 – fundername: Core Medical Research Council Biostatistics Unit Funding Code grantid: MC_UU_00002/7 – fundername: Medical Research Council Methodology Research Panel grantid: RG88311 – fundername: Wellcome Trust – fundername: Medical Research Council grantid: MR/N027493/1 – fundername: Wellcome Trust grantid: 204623/Z/16/Z – fundername: Medical Research Council grantid: RG88311 – fundername: British Heart Foundation grantid: RG/13/13/30194 – fundername: Medical Research Council grantid: MC_UU_00002/7 – fundername: Medical Research Council grantid: MR/L003120/1 – fundername: ; – fundername: ; grantid: MC_UU_00002/7 – fundername: ; grantid: RG88311 – fundername: ; ; grantid: 204623/Z/16/Z – fundername: ; ; |
GroupedDBID | --- -E4 .2P .I3 .ZR 0R~ 18M 1TH 29J 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D A8Z AABZA AACZT AAJKP AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP ABDFA ABEHJ ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABNHQ ABNKS ABOCM ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABYLZ ABZBJ ACGFO ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ACVHY ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFCKW AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGQZG AGSYK AHMBA AHMMS AHXPO AIAGR AIJHB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AMHCJ APIBT APWMN ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM BWUDY C45 CDBKE CNZYI CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS EE~ EJD EMOBN F5P F9B FLUFQ FOEOM FOTVD FQBLK FTKQU GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z M49 N9A NGC NOMLY NOYVH NPJNY NU- O9- OAWHX OBS OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO SV3 TEORI TJX TOX TR2 W2D W8F WH7 WOQ X7H YAYTL YKOAZ YSK YXANX ZKX ~91 AAYXX AGORE AHGBF AJBYB CITATION CGR CUY CVF ECM EIF NPM 7X8 ESTFP 5PM AAJQQ |
ID | FETCH-LOGICAL-c408t-c46959edb776e019c3a97f2c13da7ffd0b10db25401251fb6988436f4d0797743 |
IEDL.DBID | TOX |
ISSN | 0300-5771 1464-3685 |
IngestDate | Thu Aug 21 13:15:07 EDT 2025 Mon Sep 08 10:37:05 EDT 2025 Mon Jul 21 06:08:10 EDT 2025 Thu Apr 24 22:54:53 EDT 2025 Tue Jul 01 01:59:00 EDT 2025 Wed Apr 02 07:04:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | selection bias collider bias instrumental variables inverse probability weighting causal inference |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-c46959edb776e019c3a97f2c13da7ffd0b10db25401251fb6988436f4d0797743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5365-8760 |
OpenAccessLink | https://dx.doi.org/10.1093/ije/dyy202 |
PMID | 30325422 |
PQID | 2120753926 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6659463 proquest_miscellaneous_2120753926 pubmed_primary_30325422 crossref_citationtrail_10_1093_ije_dyy202 crossref_primary_10_1093_ije_dyy202 oup_primary_10_1093_ije_dyy202 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | International journal of epidemiology |
PublicationTitleAlternate | Int J Epidemiol |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Guo (2019072608002272900_dyy202-B17) 2017; 46 Hu (2019072608002272900_dyy202-B36) 2017; 10 Cole (2019072608002272900_dyy202-B8) 2010; 39 Noyce (2019072608002272900_dyy202-B20) 2017; 14 Burgess (2019072608002272900_dyy202-B34) 2013; 32 Zewinger (2019072608002272900_dyy202-B18) 2017; 5 Davey Smith (2019072608002272900_dyy202-B1) 2003; 32 Burgess (2019072608002272900_dyy202-B24) 2011; 40 Lee (2019072608002272900_dyy202-B29) 2011; 6 Greenland (2019072608002272900_dyy202-B33) 1999; 14 Hernán (2019072608002272900_dyy202-B7) 2004; 15 Seaman (2019072608002272900_dyy202-B27) 2013; 22 Gail (2019072608002272900_dyy202-B5) 2005 Cho (2019072608002272900_dyy202-B22) 2016; 5 Chen (2019072608002272900_dyy202-B23) 2008; 5 Didelez (2019072608002272900_dyy202-B4) 2007; 16 Nitsch (2019072608002272900_dyy202-B13) 2006; 163 Swanson (2019072608002272900_dyy202-B10) 2015; 181 Munafò (2019072608002272900_dyy202-B9) 2018; 47 Hernán (2019072608002272900_dyy202-B37) 2006; 17 Lewis (2019072608002272900_dyy202-B21) 2005; 14 Burgess (2019072608002272900_dyy202-B38) 2012; 345 VanderWeele (2019072608002272900_dyy202-B14) 2011; 22 Vansteelandt (2019072608002272900_dyy202-B19) 2017 Hernán (2019072608002272900_dyy202-B28) 2006; 60 Burgess (2019072608002272900_dyy202-B35) 2013; 37 Bowden (2019072608002272900_dyy202-B26) 2016; 40 Hughes (2019072608002272900_dyy202-B12) 2017 Kamstrup (2019072608002272900_dyy202-B32) 2009; 301 Boerwinkle (2019072608002272900_dyy202-B30) 1992; 90 Canan (2019072608002272900_dyy202-B11) 2017; 28 Angrist (2019072608002272900_dyy202-B3) 1996; 91 Gaziano (2019072608002272900_dyy202-B16) 2016; 70 Watts (2019072608002272900_dyy202-B15) 2007; 334 Bowden (2019072608002272900_dyy202-B25) 2015; 44 Burgess (2019072608002272900_dyy202-B2) 2015 Greenland (2019072608002272900_dyy202-B6) 2003; 14 Clarke (2019072608002272900_dyy202-B31) 2009; 361 |
References_xml | – volume: 39 start-page: 417 year: 2010 ident: 2019072608002272900_dyy202-B8 article-title: Illustrating bias due to conditioning on a collider publication-title: Int J Epidemiol doi: 10.1093/ije/dyp334 – volume: 345 start-page: e7325. year: 2012 ident: 2019072608002272900_dyy202-B38 article-title: Use of Mendelian randomisation to assess potential benefit of clinical intervention publication-title: BMJ doi: 10.1136/bmj.e7325 – volume: 44 start-page: 512 year: 2015 ident: 2019072608002272900_dyy202-B25 article-title: Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression publication-title: Int J Epidemiol doi: 10.1093/ije/dyv080 – volume: 37 start-page: 658 year: 2013 ident: 2019072608002272900_dyy202-B35 article-title: Mendelian randomization analysis with multiple genetic variants using summarized data publication-title: Genet Epidemiol doi: 10.1002/gepi.21758 – volume: 10 start-page: e001616. year: 2017 ident: 2019072608002272900_dyy202-B36 article-title: Impact of selection bias on estimation of subsequent event risk publication-title: Circ Cardiovasc Genet doi: 10.1161/CIRCGENETICS.116.001616 – volume: 60 start-page: 578 year: 2006 ident: 2019072608002272900_dyy202-B28 article-title: Estimating causal effects from epidemiological data publication-title: J Epidemiol Community Health doi: 10.1136/jech.2004.029496 – year: 2017 ident: 2019072608002272900_dyy202-B19 article-title: Survivor bias in Mendelian randomization analysis publication-title: Biostatistics – start-page: 192237 year: 2017 ident: 2019072608002272900_dyy202-B12 article-title: Selection bias in instrumental variable analyses publication-title: bioRxiv – volume: 22 start-page: 278 year: 2013 ident: 2019072608002272900_dyy202-B27 article-title: Review of inverse probability weighting for dealing with missing data publication-title: Stat Methods Med Res doi: 10.1177/0962280210395740 – volume: 334 start-page: 659. year: 2007 ident: 2019072608002272900_dyy202-B15 article-title: UK Biobank gets 10% response rate as it starts recruiting volunteers publication-title: BMJ doi: 10.1136/bmj.39167.407616.DB – volume: 16 start-page: 309 year: 2007 ident: 2019072608002272900_dyy202-B4 article-title: Mendelian randomization as an instrumental variable approach to causal inference publication-title: Stat Methods Med Res doi: 10.1177/0962280206077743 – volume: 5 start-page: 18422. year: 2016 ident: 2019072608002272900_dyy202-B22 article-title: Alcohol intake and cardiovascular risk factors: a Mendelian randomisation study publication-title: Sci Rep doi: 10.1038/srep18422 – volume: 32 start-page: 1 year: 2003 ident: 2019072608002272900_dyy202-B1 article-title: Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? publication-title: Int J Epidemiol doi: 10.1093/ije/dyg070 – volume: 91 start-page: 444 year: 1996 ident: 2019072608002272900_dyy202-B3 article-title: Identification of causal effects using instrumental variables publication-title: J Am Stat Assoc doi: 10.1080/01621459.1996.10476902 – volume: 5 start-page: e52. year: 2008 ident: 2019072608002272900_dyy202-B23 article-title: Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach publication-title: PLoS Med doi: 10.1371/journal.pmed.0050052 – volume: 46 start-page: 1814 year: 2017 ident: 2019072608002272900_dyy202-B17 article-title: Body mass index and breast cancer survival: a Mendelian randomisation analysis publication-title: Int J Epidemiol doi: 10.1093/ije/dyx131 – volume: 14 start-page: 29 year: 1999 ident: 2019072608002272900_dyy202-B33 article-title: Confounding and collapsibility in causal inference publication-title: Stat Sci doi: 10.1214/ss/1009211805 – volume: 90 start-page: 52 year: 1992 ident: 2019072608002272900_dyy202-B30 article-title: Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations publication-title: J Clin Invest doi: 10.1172/JCI115855 – volume: 163 start-page: 397 year: 2006 ident: 2019072608002272900_dyy202-B13 article-title: Limits to causal inference based on Mendelian randomization: a comparison with randomized controlled trials publication-title: Am J Epidemiol doi: 10.1093/aje/kwj062 – volume-title: Mendelian Randomization: Methods for Using Genetic Variants in Causal Estimation year: 2015 ident: 2019072608002272900_dyy202-B2 doi: 10.1201/b18084 – volume: 28 start-page: 396 year: 2017 ident: 2019072608002272900_dyy202-B11 article-title: Instrumental variable analyses and selection bias publication-title: Epidemiology doi: 10.1097/EDE.0000000000000639 – volume: 70 start-page: 214 year: 2016 ident: 2019072608002272900_dyy202-B16 article-title: Million Veteran Program: a mega-biobank to study genetic influences on health and disease publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2015.09.016 – volume: 6 start-page: e18174 year: 2011 ident: 2019072608002272900_dyy202-B29 article-title: Weight trimming and propensity score weighting publication-title: PLoS One doi: 10.1371/journal.pone.0018174 – volume: 361 start-page: 2518 year: 2009 ident: 2019072608002272900_dyy202-B31 article-title: Genetic variants associated with Lp(a) lipoprotein level and coronary disease publication-title: N Engl J Med doi: 10.1056/NEJMoa0902604 – volume: 181 start-page: 191 year: 2015 ident: 2019072608002272900_dyy202-B10 article-title: Selecting on treatment: a pervasive form of bias in instrumental variable analyses publication-title: Am J Epidemiol doi: 10.1093/aje/kwu284 – volume: 17 start-page: 360 year: 2006 ident: 2019072608002272900_dyy202-B37 article-title: Instruments for causal inference: an epidemiologist’s dream? publication-title: Epidemiology doi: 10.1097/01.ede.0000222409.00878.37 – volume: 14 start-page: 1967 year: 2005 ident: 2019072608002272900_dyy202-B21 article-title: Alcohol, ALDH2, and esophageal cancer: a meta-analysis which illustrates the potentials and limitations of a Mendelian randomization approach publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-05-0196 – volume: 40 start-page: 304 year: 2016 ident: 2019072608002272900_dyy202-B26 article-title: Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator publication-title: Genet Epidemiol doi: 10.1002/gepi.21965 – volume: 301 start-page: 2331 year: 2009 ident: 2019072608002272900_dyy202-B32 article-title: Genetically elevated lipoprotein(a) and increased risk of myocardial infarction publication-title: J Am Med Assoc doi: 10.1001/jama.2009.801 – start-page: 4869 volume-title: Encyclopedia of Biostatistics year: 2005 ident: 2019072608002272900_dyy202-B5 – volume: 15 start-page: 615 year: 2004 ident: 2019072608002272900_dyy202-B7 article-title: A structural approach to selection bias publication-title: Epidemiology doi: 10.1097/01.ede.0000135174.63482.43 – volume: 32 start-page: 4726 year: 2013 ident: 2019072608002272900_dyy202-B34 article-title: Identifying the odds ratio estimated by a two-stage instrumental variable analysis with a logistic regression model publication-title: Stat Med doi: 10.1002/sim.5871 – volume: 14 start-page: 300 year: 2003 ident: 2019072608002272900_dyy202-B6 article-title: Quantifying biases in causal models: classical confounding vs collider-stratification bias publication-title: Epidemiology doi: 10.1097/01.EDE.0000042804.12056.6C – volume: 5 start-page: 534 year: 2017 ident: 2019072608002272900_dyy202-B18 article-title: Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(17)30096-7 – volume: 14 start-page: e1002314. year: 2017 ident: 2019072608002272900_dyy202-B20 article-title: Estimating the causal influence of body mass index on risk of Parkinson disease: a Mendelian randomisation study publication-title: PLoS Med doi: 10.1371/journal.pmed.1002314 – volume: 47 start-page: 226 year: 2018 ident: 2019072608002272900_dyy202-B9 article-title: Collider scope: when selection bias can substantially influence observed associations publication-title: Int J Epidemiol doi: 10.1093/ije/dyx206 – volume: 22 start-page: 42 year: 2011 ident: 2019072608002272900_dyy202-B14 article-title: Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181f74493 – volume: 40 start-page: 755 year: 2011 ident: 2019072608002272900_dyy202-B24 article-title: Avoiding bias from weak instruments in Mendelian randomization studies publication-title: Int J Epidemiol doi: 10.1093/ije/dyr036 |
SSID | ssj0014449 |
Score | 2.6036382 |
Snippet | Abstract
Background
Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the... Selection bias affects Mendelian randomization investigations when selection into the study sample depends on a collider between the genetic variant and... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 691 |
SubjectTerms | Cardiovascular Diseases - genetics Cardiovascular Diseases - mortality Causality Computer Simulation Confounding Factors, Epidemiologic Coronary Disease - epidemiology Coronary Disease - genetics Humans Lipoprotein(a) - genetics Lipoprotein(a) - metabolism Mendelian Randomization Mendelian Randomization Analysis Risk Factors Selection Bias |
Title | Contextualizing selection bias in Mendelian randomization: how bad is it likely to be? |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30325422 https://www.proquest.com/docview/2120753926 https://pubmed.ncbi.nlm.nih.gov/PMC6659463 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JS8QwFA7qQQQRHbdxGSJ68VCmbdKk9SIiLgijlxmZW2mWYnVsxano-Ot9aTqDFdFLL30p4b2k35e8DaEjCr98KZVyFI2IQ0PFnQSQyGEcsEwHkvvKeHR7t-x6QG-GwbAOohn_4sKPSDd71F01mfhVyUhAX7Oa-3fDma-AUktyies6AefetAhpY2gDdhqpbN8Y5c_AyG9Ic7mKVmqKiM-sTdfQnM5baLFXO8FbaNletWGbQbSO7qsKUx8mEST7BCTC46q3DSgciywZ4yzHPXPRbS40MECTKp7r5MsT_FC8Y5EonIFYiUfZkx5NcFlgoU830ODyon9-7dTtEhxJ3bCEJ4uCSCvBOdPA3CRJIp760iMq4WmqXOG5SsCB0DWkJhUsCkNKWEqVyw0LJJtoIS9yvY0wFTKUcHhlqaCwqWkipGDET5VnWl0x2kbHU23Gsq4lblpajGLr0yYxaD62mm-jw5nsi62g8atUB4zyp8DB1F4x7ADj1khyXbyNYwBf4D3A81gbbVn7zb4DAA3T92E0b1h2JmCqazff5NlDVWWbsSCijOz8N7FdtAQkKrLhY3tooXx90_tAVErRQfNXQ69TrdYv4WPoAQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contextualizing+selection+bias+in+Mendelian+randomization%3A+how+bad+is+it+likely+to+be%3F&rft.jtitle=International+journal+of+epidemiology&rft.au=Gkatzionis%2C+Apostolos&rft.au=Burgess%2C+Stephen&rft.date=2019-06-01&rft.eissn=1464-3685&rft.volume=48&rft.issue=3&rft.spage=691&rft_id=info:doi/10.1093%2Fije%2Fdyy202&rft_id=info%3Apmid%2F30325422&rft.externalDocID=30325422 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-5771&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-5771&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-5771&client=summon |