Speedup Two-Class Supervised Outlier Detection

Outlier detection is an important topic in the community of data mining and machine learning. In two-class supervised outlier detection, it needs to solve a large quadratic programming whose size is twice the number of samples in the training set. Thus, training two-class supervised outlier detectio...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 6; pp. 63923 - 63933
Main Authors Yi, Yugen, Zhou, Wei, Shi, Yanjiao, Dai, Jiangyan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2018.2877701

Cover

Loading…
Abstract Outlier detection is an important topic in the community of data mining and machine learning. In two-class supervised outlier detection, it needs to solve a large quadratic programming whose size is twice the number of samples in the training set. Thus, training two-class supervised outlier detection model is time consuming. In this paper, we show that the result of the two-class supervised outlier detection is determined by minor critical samples which are with nonzero Lagrange multipliers and the critical samples must be located near the boundary of each class. It is much faster to train the two-class supervised outlier detection on the subset which consists of critical samples. We compare three methods which could find boundary samples. The experimental results show that the nearest neighbors distribution is more suitable for finding critical samples for the two-class supervised outlier detection. The two-class supervised novelty detection could become much faster and the performance does not degrade when only critical samples are retained by nearest neighbors' distribution information.
AbstractList Outlier detection is an important topic in the community of data mining and machine learning. In two-class supervised outlier detection, it needs to solve a large quadratic programming whose size is twice the number of samples in the training set. Thus, training two-class supervised outlier detection model is time consuming. In this paper, we show that the result of the two-class supervised outlier detection is determined by minor critical samples which are with nonzero Lagrange multipliers and the critical samples must be located near the boundary of each class. It is much faster to train the two-class supervised outlier detection on the subset which consists of critical samples. We compare three methods which could find boundary samples. The experimental results show that the nearest neighbors distribution is more suitable for finding critical samples for the two-class supervised outlier detection. The two-class supervised novelty detection could become much faster and the performance does not degrade when only critical samples are retained by nearest neighbors' distribution information.
Author Yi, Yugen
Dai, Jiangyan
Shi, Yanjiao
Zhou, Wei
Author_xml – sequence: 1
  givenname: Yugen
  orcidid: 0000-0001-9828-0319
  surname: Yi
  fullname: Yi, Yugen
  organization: School of Software, Jiangxi Normal University, Nanchang, China
– sequence: 2
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  email: zhouweineu@outlook.com
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Yanjiao
  surname: Shi
  fullname: Shi, Yanjiao
  organization: School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, China
– sequence: 4
  givenname: Jiangyan
  orcidid: 0000-0001-5689-5315
  surname: Dai
  fullname: Dai, Jiangyan
  email: daijyan@163.com
  organization: School of Computer Engineering, Weifang University, Weifang, China
BookMark eNp9kEtLxDAUhYMoqOP8AjcF1x3zaNpkKfUJgouO65BJbiRDndSkVfz3tlZFXJhNwuV8556cY7S_CztA6JTgFSFYnl_U9VXTrCgmYkVFVVWY7KEjSkqZM87K_V_vQ7RMaYvHI8YRr47QqukA7NBl67eQ161OKWuGDuKrT2Czh6FvPcTsEnowvQ-7E3TgdJtg-XUv0OP11bq-ze8fbu7qi_vcFFj0uaGYkkJsLANiNXOC08JI4VwlqMSCOymlsRtW2cKISggox4gUjK0K4RgFtkB3s68Nequ66J91fFdBe_U5CPFJ6dh704ICyoiQnFAOZYFBy9KNy0sD2mDmbDl6nc1eXQwvA6RebcMQd2N8RQvOJZWFmFRyVpkYUorglPG9nv7cR-1bRbCa2lZz22pqW321PbLsD_ud-H_qdKY8APwQguNRQNgH87GK4A
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_eswa_2021_116476
crossref_primary_10_1007_s11042_021_11671_9
crossref_primary_10_1007_s13042_020_01196_2
crossref_primary_10_1109_ACCESS_2019_2909967
crossref_primary_10_1016_j_knosys_2022_109950
crossref_primary_10_1155_2021_5978495
crossref_primary_10_1016_j_is_2019_101446
crossref_primary_10_1109_ACCESS_2022_3161481
crossref_primary_10_1007_s13042_019_00939_0
crossref_primary_10_1109_TKDE_2024_3365548
crossref_primary_10_1007_s11042_020_09628_5
Cites_doi 10.1016/j.ins.2016.12.019
10.1016/j.patcog.2013.06.005
10.3390/s150202774
10.1007/s00500-015-1757-7
10.1016/j.asoc.2013.12.009
10.1016/j.asoc.2014.06.042
10.1109/TPAMI.2013.226
10.1162/089976601750264965
10.1016/j.jbi.2012.08.004
10.1109/TNNLS.2017.2734812
10.1145/2542049
10.1023/B:MACH.0000008084.60811.49
10.24963/ijcai.2017/323
10.1109/TNN.2006.884673
10.1109/SBRN.2000.889732
10.1016/j.neucom.2007.09.008
10.1016/j.knosys.2018.02.018
10.1016/j.neucom.2016.09.076
10.1109/CIDM.2013.6597229
10.1016/j.patrec.2007.04.017
10.1109/SURV.2013.050113.00191
10.1109/TPAMI.2014.2327984
10.1016/j.patrec.2011.04.013
10.1007/s10107-004-0559-y
10.1109/ACCESS.2018.2840086
10.1145/1541880.1541882
10.1016/j.neucom.2013.07.002
10.1109/TKDE.2013.108
10.1145/342009.335388
10.1007/s10489-013-0502-0
10.1016/j.neucom.2018.01.083
10.1145/1401890.1401946
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2877701
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 63933
ExternalDocumentID oai_doaj_org_article_e231895125e640ea96f0216ceac03fd6
10_1109_ACCESS_2018_2877701
8502871
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61602221; 61602222; 61806126; 41661083; 61762050
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangxi Province
  grantid: 20171BAB212009
  funderid: 10.13039/501100004479
– fundername: Science and Technology Research Project of Jiangxi Provincial Department of Education
  grantid: GJJ160333
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-c202148bd3e1da3f8524c98ff7829085f999cdb37d4c8788e62162ecd748f32e3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:29:51 EDT 2025
Sun Jun 29 12:53:51 EDT 2025
Tue Jul 01 02:17:54 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Wed Aug 27 02:51:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c202148bd3e1da3f8524c98ff7829085f999cdb37d4c8788e62162ecd748f32e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5689-5315
0000-0001-9828-0319
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8502871
PQID 2455929486
PQPubID 4845423
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2018_2877701
crossref_primary_10_1109_ACCESS_2018_2877701
doaj_primary_oai_doaj_org_article_e231895125e640ea96f0216ceac03fd6
proquest_journals_2455929486
ieee_primary_8502871
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180000
2018-00-00
20180101
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 20180000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref36
zhu (ref15) 2018; 29
ref30
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
krawczyk (ref27) 2018
koggalage (ref14) 2004; 2
ref24
ref23
ref26
ref25
ref20
duin (ref22) 2004
hsieh (ref31) 2014
hauskrecht (ref4) 2013; 46
ref28
halvaiee (ref3) 2014; 24
ref8
ref7
ref9
duda (ref39) 2012
frank (ref21) 2010; 213
zhou (ref33) 2014
ref6
zhang (ref29) 2016
ref5
ref40
References_xml – ident: ref11
  doi: 10.1016/j.ins.2016.12.019
– volume: 2
  start-page: 57
  year: 2004
  ident: ref14
  article-title: Reducing the number of training samples for fast support vector machine classification
  publication-title: Neural Inform Process Lett Rev
– ident: ref40
  doi: 10.1016/j.patcog.2013.06.005
– ident: ref5
  doi: 10.3390/s150202774
– year: 2004
  ident: ref22
  publication-title: PRTOOLS A Matlab Toolbox for Pattern Recognition
– ident: ref19
  doi: 10.1007/s00500-015-1757-7
– ident: ref13
  doi: 10.1016/j.asoc.2013.12.009
– volume: 24
  start-page: 40
  year: 2014
  ident: ref3
  article-title: A novel model for credit card fraud detection using artificial immune systems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.06.042
– ident: ref34
  doi: 10.1109/TPAMI.2013.226
– ident: ref7
  doi: 10.1162/089976601750264965
– year: 2016
  ident: ref29
  publication-title: Scaling up sparse support vector machines by simultaneous feature and sample reduction
– volume: 46
  start-page: 47
  year: 2013
  ident: ref4
  article-title: Outlier detection for patient monitoring and alerting
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2012.08.004
– volume: 29
  start-page: 3610
  year: 2018
  ident: ref15
  article-title: On selecting effective patterns for fast support vector regression training
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2734812
– start-page: 1242
  year: 2014
  ident: ref33
  article-title: Divide-and-conquer learning by anchoring a conical hull
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref2
  doi: 10.1145/2542049
– start-page: 566
  year: 2014
  ident: ref31
  article-title: A divide-and-conquer solver for kernel support vector machines
  publication-title: Proc Int Conf Mach Learn
– start-page: 1
  year: 2018
  ident: ref27
  article-title: Instance reduction for one-class classification
  publication-title: Knowl Inf Syst
– ident: ref8
  doi: 10.1023/B:MACH.0000008084.60811.49
– ident: ref28
  doi: 10.24963/ijcai.2017/323
– ident: ref38
  doi: 10.1109/TNN.2006.884673
– ident: ref10
  doi: 10.1109/SBRN.2000.889732
– ident: ref12
  doi: 10.1016/j.neucom.2007.09.008
– ident: ref30
  doi: 10.1016/j.knosys.2018.02.018
– ident: ref35
  doi: 10.1016/j.neucom.2016.09.076
– ident: ref9
  doi: 10.1109/CIDM.2013.6597229
– ident: ref16
  doi: 10.1016/j.patrec.2007.04.017
– ident: ref1
  doi: 10.1109/SURV.2013.050113.00191
– year: 2012
  ident: ref39
  publication-title: Pattern Classification
– ident: ref37
  doi: 10.1109/TPAMI.2014.2327984
– ident: ref18
  doi: 10.1016/j.patrec.2011.04.013
– ident: ref20
  doi: 10.1007/s10107-004-0559-y
– volume: 213
  start-page: 2.2
  year: 2010
  ident: ref21
  publication-title: UCI Machine Learning Repository
– ident: ref36
  doi: 10.1109/ACCESS.2018.2840086
– ident: ref6
  doi: 10.1145/1541880.1541882
– ident: ref17
  doi: 10.1016/j.neucom.2013.07.002
– ident: ref25
  doi: 10.1109/TKDE.2013.108
– ident: ref23
  doi: 10.1145/342009.335388
– ident: ref26
  doi: 10.1007/s10489-013-0502-0
– ident: ref32
  doi: 10.1016/j.neucom.2018.01.083
– ident: ref24
  doi: 10.1145/1401890.1401946
SSID ssj0000816957
Score 2.160056
Snippet Outlier detection is an important topic in the community of data mining and machine learning. In two-class supervised outlier detection, it needs to solve a...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 63923
SubjectTerms Anomaly detection
critical sample
Data analysis
Data mining
Lagrange multiplier
Machine learning
nearest neighbors’ distribution
Outliers (statistics)
Performance degradation
Quadratic programming
Static VAr compensators
Supervised outlier detection
Support vector machines
Training
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIhAQRkYSes4jmOPpVBVDDC0lbpZiT8mlFZtIv4-Z8etKiHBwho5H35n371zTu8Qesy45WXOcQKxnCQUOHNSQb6TMF4aoYxmpCuQfWfTBX1b5suDVl-uJqyTB-6AGxogIBxoAMkNo9iUglkIS0yBw8CZ1V5sG2LeQTLlfTBPmciLIDOUYjEcjccwI1fLxQfEieCFNjC7UOQV-0OLlR9-2QebyTk6CywxHnVfd4GOTH2JTg-0A3toMFtD4GnX8fxrlfjWlvGsXbudvzU6_mgbIJeb-MU0vtaqvkKLyet8PE1C84NEUcybRBGnZsYrnZlUl5nlOaFKcGsL9-uT5xaYndJVVmiqOOSxhgEqxChdUG4zYrJrdFyvanODYpNSC8ymYKYsqK1sxWghdGpVpZkgmEWI7HCQKiiDuwYVn9JnCFjIDjzpwJMBvAg97W9ad8IYvw9_dgDvhzpVa38BbC2DreVfto5Qz5ln_xCeY5fwRai_M5cMO3ArCYVciQhYfbf_8eo7dOKm0x2-9NFxs2nNPdCRpnrwK-8bn3_Wbg
  priority: 102
  providerName: Directory of Open Access Journals
Title Speedup Two-Class Supervised Outlier Detection
URI https://ieeexplore.ieee.org/document/8502871
https://www.proquest.com/docview/2455929486
https://doaj.org/article/e231895125e640ea96f0216ceac03fd6
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-QwDLaAExz2wUM7LKAeONLSpmmaHGEAoZV2OQASt6hNnMuimdHQColfj5NmKsSuELeqSirXTuLPifMZ4LiUTjaVzFPy5SzlhJnTluKdVMgGlUEr2JAg-0dc3_NfD9XDGpyMd2EQMSSfYeYfw1m-nZveb5Wdyir3AH8d1ilwG-5qjfspvoCEqupILFTk6vRsOqV_8NlbMmOe9i4Wflk5n8DRH4uq_LMSB_dy9RV-rwQbskr-Zn3XZublHWfjZyX_Bl8izkzOhoHxHdZwtg1bb9gHdyC7XZDr6hfJ3fM8DcUxk9t-4deOJ7TJTd8RPF0mF9iFbK3ZLtxfXd5Nr9NYPiE1PJddapjnQ5OtLbGwTelkxbhR0rnaH57KyhE2NLYta8uNJIWiYIVgaGzNpSsZlnuwMZvP8AckWHBH2KgW2NTcta4VvFa2cKa1QrFcTICt9KpN5Bb3JS4edYgxcqUHY2hvDB2NMYGTsdNioNb4uPm5N9jY1PNihxekaB2nmUaCq5JAI6tQ8BwbJRwpQRhyL3npLAm6440zfiTaZQIHK_PrOIefNOMUbTFF43f__71-wqYXcNiQOYCNbtnjIUGUrj0Kof1RGKGvhdnhNQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB3xcWg5tLQUsZS2OfRIQuI4jnOkC2ihQA8sEjcrsccX0O5qSYTEr2fseKOqrSpuUWRHE8_Y8zwevwH4nksr60KmMflyFnPCzHFD-51YyBorjUawPkH2Wkxu-cVdcbcGh8NdGET0yWeYuEd_lm_munOhsiNZpA7gr8Nm4S7j9re1hoiKKyFRFWWgFsrS6uh4PKa_cPlbMmGO-C6Uflm5H8_SH8qq_LUWewdz9h6uVqL1eSX3Sdc2iX7-g7XxtbJvw7uANKPj3jQ-wBrOPsLWb_yDO5DcLMh5dYto-jSPfXnM6KZbuNXjEU30q2sJoC6jE2x9vtbsE9yenU7HkzgUUIg1T2Uba-YY0WRjcsxMnVtZMK4raW3pjk9lYQkdatPkpeFa0l4YBcsEQ21KLm3OMN-Fjdl8hnsQYcYtoaNSYF1y29hG8LIymdWNERVLxQjYalyVDuzirsjFg_K7jLRSvTKUU4YKyhjB4dBp0ZNr_L_5D6ewoaljxvYvaKBVmGgKCbBKgo2sQMFTrCthaRCEJgeT5taQoDtOOcNHgl5GcLBSvwqz-FExsjKCj2TB-__u9Q3eTKZXl-ry_PrnZ3jrhO3DMwew0S47_EKApW2-ejt9ARrU44g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speedup+Two-Class+Supervised+Outlier+Detection&rft.jtitle=IEEE+access&rft.au=Yi%2C+Yugen&rft.au=Zhou%2C+Wei&rft.au=Shi%2C+Yanjiao&rft.au=Dai%2C+Jiangyan&rft.date=2018&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=6&rft.spage=63923&rft.epage=63933&rft_id=info:doi/10.1109%2FACCESS.2018.2877701&rft.externalDocID=8502871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon