Speedup Two-Class Supervised Outlier Detection
Outlier detection is an important topic in the community of data mining and machine learning. In two-class supervised outlier detection, it needs to solve a large quadratic programming whose size is twice the number of samples in the training set. Thus, training two-class supervised outlier detectio...
Saved in:
Published in | IEEE access Vol. 6; pp. 63923 - 63933 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2018.2877701 |
Cover
Loading…
Abstract | Outlier detection is an important topic in the community of data mining and machine learning. In two-class supervised outlier detection, it needs to solve a large quadratic programming whose size is twice the number of samples in the training set. Thus, training two-class supervised outlier detection model is time consuming. In this paper, we show that the result of the two-class supervised outlier detection is determined by minor critical samples which are with nonzero Lagrange multipliers and the critical samples must be located near the boundary of each class. It is much faster to train the two-class supervised outlier detection on the subset which consists of critical samples. We compare three methods which could find boundary samples. The experimental results show that the nearest neighbors distribution is more suitable for finding critical samples for the two-class supervised outlier detection. The two-class supervised novelty detection could become much faster and the performance does not degrade when only critical samples are retained by nearest neighbors' distribution information. |
---|---|
AbstractList | Outlier detection is an important topic in the community of data mining and machine learning. In two-class supervised outlier detection, it needs to solve a large quadratic programming whose size is twice the number of samples in the training set. Thus, training two-class supervised outlier detection model is time consuming. In this paper, we show that the result of the two-class supervised outlier detection is determined by minor critical samples which are with nonzero Lagrange multipliers and the critical samples must be located near the boundary of each class. It is much faster to train the two-class supervised outlier detection on the subset which consists of critical samples. We compare three methods which could find boundary samples. The experimental results show that the nearest neighbors distribution is more suitable for finding critical samples for the two-class supervised outlier detection. The two-class supervised novelty detection could become much faster and the performance does not degrade when only critical samples are retained by nearest neighbors' distribution information. |
Author | Yi, Yugen Dai, Jiangyan Shi, Yanjiao Zhou, Wei |
Author_xml | – sequence: 1 givenname: Yugen orcidid: 0000-0001-9828-0319 surname: Yi fullname: Yi, Yugen organization: School of Software, Jiangxi Normal University, Nanchang, China – sequence: 2 givenname: Wei surname: Zhou fullname: Zhou, Wei email: zhouweineu@outlook.com organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 3 givenname: Yanjiao surname: Shi fullname: Shi, Yanjiao organization: School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, China – sequence: 4 givenname: Jiangyan orcidid: 0000-0001-5689-5315 surname: Dai fullname: Dai, Jiangyan email: daijyan@163.com organization: School of Computer Engineering, Weifang University, Weifang, China |
BookMark | eNp9kEtLxDAUhYMoqOP8AjcF1x3zaNpkKfUJgouO65BJbiRDndSkVfz3tlZFXJhNwuV8556cY7S_CztA6JTgFSFYnl_U9VXTrCgmYkVFVVWY7KEjSkqZM87K_V_vQ7RMaYvHI8YRr47QqukA7NBl67eQ161OKWuGDuKrT2Czh6FvPcTsEnowvQ-7E3TgdJtg-XUv0OP11bq-ze8fbu7qi_vcFFj0uaGYkkJsLANiNXOC08JI4VwlqMSCOymlsRtW2cKISggox4gUjK0K4RgFtkB3s68Nequ66J91fFdBe_U5CPFJ6dh704ICyoiQnFAOZYFBy9KNy0sD2mDmbDl6nc1eXQwvA6RebcMQd2N8RQvOJZWFmFRyVpkYUorglPG9nv7cR-1bRbCa2lZz22pqW321PbLsD_ud-H_qdKY8APwQguNRQNgH87GK4A |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_eswa_2021_116476 crossref_primary_10_1007_s11042_021_11671_9 crossref_primary_10_1007_s13042_020_01196_2 crossref_primary_10_1109_ACCESS_2019_2909967 crossref_primary_10_1016_j_knosys_2022_109950 crossref_primary_10_1155_2021_5978495 crossref_primary_10_1016_j_is_2019_101446 crossref_primary_10_1109_ACCESS_2022_3161481 crossref_primary_10_1007_s13042_019_00939_0 crossref_primary_10_1109_TKDE_2024_3365548 crossref_primary_10_1007_s11042_020_09628_5 |
Cites_doi | 10.1016/j.ins.2016.12.019 10.1016/j.patcog.2013.06.005 10.3390/s150202774 10.1007/s00500-015-1757-7 10.1016/j.asoc.2013.12.009 10.1016/j.asoc.2014.06.042 10.1109/TPAMI.2013.226 10.1162/089976601750264965 10.1016/j.jbi.2012.08.004 10.1109/TNNLS.2017.2734812 10.1145/2542049 10.1023/B:MACH.0000008084.60811.49 10.24963/ijcai.2017/323 10.1109/TNN.2006.884673 10.1109/SBRN.2000.889732 10.1016/j.neucom.2007.09.008 10.1016/j.knosys.2018.02.018 10.1016/j.neucom.2016.09.076 10.1109/CIDM.2013.6597229 10.1016/j.patrec.2007.04.017 10.1109/SURV.2013.050113.00191 10.1109/TPAMI.2014.2327984 10.1016/j.patrec.2011.04.013 10.1007/s10107-004-0559-y 10.1109/ACCESS.2018.2840086 10.1145/1541880.1541882 10.1016/j.neucom.2013.07.002 10.1109/TKDE.2013.108 10.1145/342009.335388 10.1007/s10489-013-0502-0 10.1016/j.neucom.2018.01.083 10.1145/1401890.1401946 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2018.2877701 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 63933 |
ExternalDocumentID | oai_doaj_org_article_e231895125e640ea96f0216ceac03fd6 10_1109_ACCESS_2018_2877701 8502871 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61602221; 61602222; 61806126; 41661083; 61762050 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangxi Province grantid: 20171BAB212009 funderid: 10.13039/501100004479 – fundername: Science and Technology Research Project of Jiangxi Provincial Department of Education grantid: GJJ160333 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-c202148bd3e1da3f8524c98ff7829085f999cdb37d4c8788e62162ecd748f32e3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:29:51 EDT 2025 Sun Jun 29 12:53:51 EDT 2025 Tue Jul 01 02:17:54 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Wed Aug 27 02:51:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-c202148bd3e1da3f8524c98ff7829085f999cdb37d4c8788e62162ecd748f32e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5689-5315 0000-0001-9828-0319 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8502871 |
PQID | 2455929486 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2018_2877701 crossref_primary_10_1109_ACCESS_2018_2877701 doaj_primary_oai_doaj_org_article_e231895125e640ea96f0216ceac03fd6 proquest_journals_2455929486 ieee_primary_8502871 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180000 2018-00-00 20180101 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 20180000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref36 zhu (ref15) 2018; 29 ref30 ref11 ref32 ref10 ref2 ref1 ref17 ref38 ref16 ref19 ref18 krawczyk (ref27) 2018 koggalage (ref14) 2004; 2 ref24 ref23 ref26 ref25 ref20 duin (ref22) 2004 hsieh (ref31) 2014 hauskrecht (ref4) 2013; 46 ref28 halvaiee (ref3) 2014; 24 ref8 ref7 ref9 duda (ref39) 2012 frank (ref21) 2010; 213 zhou (ref33) 2014 ref6 zhang (ref29) 2016 ref5 ref40 |
References_xml | – ident: ref11 doi: 10.1016/j.ins.2016.12.019 – volume: 2 start-page: 57 year: 2004 ident: ref14 article-title: Reducing the number of training samples for fast support vector machine classification publication-title: Neural Inform Process Lett Rev – ident: ref40 doi: 10.1016/j.patcog.2013.06.005 – ident: ref5 doi: 10.3390/s150202774 – year: 2004 ident: ref22 publication-title: PRTOOLS A Matlab Toolbox for Pattern Recognition – ident: ref19 doi: 10.1007/s00500-015-1757-7 – ident: ref13 doi: 10.1016/j.asoc.2013.12.009 – volume: 24 start-page: 40 year: 2014 ident: ref3 article-title: A novel model for credit card fraud detection using artificial immune systems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.06.042 – ident: ref34 doi: 10.1109/TPAMI.2013.226 – ident: ref7 doi: 10.1162/089976601750264965 – year: 2016 ident: ref29 publication-title: Scaling up sparse support vector machines by simultaneous feature and sample reduction – volume: 46 start-page: 47 year: 2013 ident: ref4 article-title: Outlier detection for patient monitoring and alerting publication-title: J Biomed Inform doi: 10.1016/j.jbi.2012.08.004 – volume: 29 start-page: 3610 year: 2018 ident: ref15 article-title: On selecting effective patterns for fast support vector regression training publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2734812 – start-page: 1242 year: 2014 ident: ref33 article-title: Divide-and-conquer learning by anchoring a conical hull publication-title: Proc Adv Neural Inf Process Syst – ident: ref2 doi: 10.1145/2542049 – start-page: 566 year: 2014 ident: ref31 article-title: A divide-and-conquer solver for kernel support vector machines publication-title: Proc Int Conf Mach Learn – start-page: 1 year: 2018 ident: ref27 article-title: Instance reduction for one-class classification publication-title: Knowl Inf Syst – ident: ref8 doi: 10.1023/B:MACH.0000008084.60811.49 – ident: ref28 doi: 10.24963/ijcai.2017/323 – ident: ref38 doi: 10.1109/TNN.2006.884673 – ident: ref10 doi: 10.1109/SBRN.2000.889732 – ident: ref12 doi: 10.1016/j.neucom.2007.09.008 – ident: ref30 doi: 10.1016/j.knosys.2018.02.018 – ident: ref35 doi: 10.1016/j.neucom.2016.09.076 – ident: ref9 doi: 10.1109/CIDM.2013.6597229 – ident: ref16 doi: 10.1016/j.patrec.2007.04.017 – ident: ref1 doi: 10.1109/SURV.2013.050113.00191 – year: 2012 ident: ref39 publication-title: Pattern Classification – ident: ref37 doi: 10.1109/TPAMI.2014.2327984 – ident: ref18 doi: 10.1016/j.patrec.2011.04.013 – ident: ref20 doi: 10.1007/s10107-004-0559-y – volume: 213 start-page: 2.2 year: 2010 ident: ref21 publication-title: UCI Machine Learning Repository – ident: ref36 doi: 10.1109/ACCESS.2018.2840086 – ident: ref6 doi: 10.1145/1541880.1541882 – ident: ref17 doi: 10.1016/j.neucom.2013.07.002 – ident: ref25 doi: 10.1109/TKDE.2013.108 – ident: ref23 doi: 10.1145/342009.335388 – ident: ref26 doi: 10.1007/s10489-013-0502-0 – ident: ref32 doi: 10.1016/j.neucom.2018.01.083 – ident: ref24 doi: 10.1145/1401890.1401946 |
SSID | ssj0000816957 |
Score | 2.160056 |
Snippet | Outlier detection is an important topic in the community of data mining and machine learning. In two-class supervised outlier detection, it needs to solve a... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 63923 |
SubjectTerms | Anomaly detection critical sample Data analysis Data mining Lagrange multiplier Machine learning nearest neighbors’ distribution Outliers (statistics) Performance degradation Quadratic programming Static VAr compensators Supervised outlier detection Support vector machines Training |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIhAQRkYSes4jmOPpVBVDDC0lbpZiT8mlFZtIv4-Z8etKiHBwho5H35n371zTu8Qesy45WXOcQKxnCQUOHNSQb6TMF4aoYxmpCuQfWfTBX1b5suDVl-uJqyTB-6AGxogIBxoAMkNo9iUglkIS0yBw8CZ1V5sG2LeQTLlfTBPmciLIDOUYjEcjccwI1fLxQfEieCFNjC7UOQV-0OLlR9-2QebyTk6CywxHnVfd4GOTH2JTg-0A3toMFtD4GnX8fxrlfjWlvGsXbudvzU6_mgbIJeb-MU0vtaqvkKLyet8PE1C84NEUcybRBGnZsYrnZlUl5nlOaFKcGsL9-uT5xaYndJVVmiqOOSxhgEqxChdUG4zYrJrdFyvanODYpNSC8ymYKYsqK1sxWghdGpVpZkgmEWI7HCQKiiDuwYVn9JnCFjIDjzpwJMBvAg97W9ad8IYvw9_dgDvhzpVa38BbC2DreVfto5Qz5ln_xCeY5fwRai_M5cMO3ArCYVciQhYfbf_8eo7dOKm0x2-9NFxs2nNPdCRpnrwK-8bn3_Wbg priority: 102 providerName: Directory of Open Access Journals |
Title | Speedup Two-Class Supervised Outlier Detection |
URI | https://ieeexplore.ieee.org/document/8502871 https://www.proquest.com/docview/2455929486 https://doaj.org/article/e231895125e640ea96f0216ceac03fd6 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-QwDLaAExz2wUM7LKAeONLSpmmaHGEAoZV2OQASt6hNnMuimdHQColfj5NmKsSuELeqSirXTuLPifMZ4LiUTjaVzFPy5SzlhJnTluKdVMgGlUEr2JAg-0dc3_NfD9XDGpyMd2EQMSSfYeYfw1m-nZveb5Wdyir3AH8d1ilwG-5qjfspvoCEqupILFTk6vRsOqV_8NlbMmOe9i4Wflk5n8DRH4uq_LMSB_dy9RV-rwQbskr-Zn3XZublHWfjZyX_Bl8izkzOhoHxHdZwtg1bb9gHdyC7XZDr6hfJ3fM8DcUxk9t-4deOJ7TJTd8RPF0mF9iFbK3ZLtxfXd5Nr9NYPiE1PJddapjnQ5OtLbGwTelkxbhR0rnaH57KyhE2NLYta8uNJIWiYIVgaGzNpSsZlnuwMZvP8AckWHBH2KgW2NTcta4VvFa2cKa1QrFcTICt9KpN5Bb3JS4edYgxcqUHY2hvDB2NMYGTsdNioNb4uPm5N9jY1PNihxekaB2nmUaCq5JAI6tQ8BwbJRwpQRhyL3npLAm6440zfiTaZQIHK_PrOIefNOMUbTFF43f__71-wqYXcNiQOYCNbtnjIUGUrj0Kof1RGKGvhdnhNQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB3xcWg5tLQUsZS2OfRIQuI4jnOkC2ihQA8sEjcrsccX0O5qSYTEr2fseKOqrSpuUWRHE8_Y8zwevwH4nksr60KmMflyFnPCzHFD-51YyBorjUawPkH2Wkxu-cVdcbcGh8NdGET0yWeYuEd_lm_munOhsiNZpA7gr8Nm4S7j9re1hoiKKyFRFWWgFsrS6uh4PKa_cPlbMmGO-C6Uflm5H8_SH8qq_LUWewdz9h6uVqL1eSX3Sdc2iX7-g7XxtbJvw7uANKPj3jQ-wBrOPsLWb_yDO5DcLMh5dYto-jSPfXnM6KZbuNXjEU30q2sJoC6jE2x9vtbsE9yenU7HkzgUUIg1T2Uba-YY0WRjcsxMnVtZMK4raW3pjk9lYQkdatPkpeFa0l4YBcsEQ21KLm3OMN-Fjdl8hnsQYcYtoaNSYF1y29hG8LIymdWNERVLxQjYalyVDuzirsjFg_K7jLRSvTKUU4YKyhjB4dBp0ZNr_L_5D6ewoaljxvYvaKBVmGgKCbBKgo2sQMFTrCthaRCEJgeT5taQoDtOOcNHgl5GcLBSvwqz-FExsjKCj2TB-__u9Q3eTKZXl-ry_PrnZ3jrhO3DMwew0S47_EKApW2-ejt9ARrU44g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speedup+Two-Class+Supervised+Outlier+Detection&rft.jtitle=IEEE+access&rft.au=Yi%2C+Yugen&rft.au=Zhou%2C+Wei&rft.au=Shi%2C+Yanjiao&rft.au=Dai%2C+Jiangyan&rft.date=2018&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=6&rft.spage=63923&rft.epage=63933&rft_id=info:doi/10.1109%2FACCESS.2018.2877701&rft.externalDocID=8502871 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |