Near Real-Time Three Axis Head Pose Estimation Without Training
Head pose estimation methods evaluate the amount of head rotation according to two or three axes, aiming at optimizing the face acquisition process, or extracting neutral-pose frames from a video sequence. Most approaches to pose estimation exploits machine-learning techniques requiring a training p...
Saved in:
Published in | IEEE access Vol. 7; pp. 64256 - 64265 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Head pose estimation methods evaluate the amount of head rotation according to two or three axes, aiming at optimizing the face acquisition process, or extracting neutral-pose frames from a video sequence. Most approaches to pose estimation exploits machine-learning techniques requiring a training phase on a large number of positive and negative examples. In this paper, a novel pose estimation method that exploits a quad-tree-based representation of facial features is described. The locations of a set of landmarks detected over the face image guide its subdivision into smaller and smaller quadrants based on the presence or lack of landmarks within each quadrant. The proposed pose descriptor is both effective and efficient, providing accurate yaw, pitch and roll axis estimates almost in real-time, without need for any training or previous knowledge about the subject. The experiments conducted on both the BIWI Kinect Head Pose Database and the challenging automated facial landmarks in the wild dataset, highlight a pose estimate precision exceeding the state-of-the-art with regard to methods not involving training and machine learning approaches. |
---|---|
AbstractList | Head pose estimation methods evaluate the amount of head rotation according to two or three axes, aiming at optimizing the face acquisition process, or extracting neutral-pose frames from a video sequence. Most approaches to pose estimation exploits machine-learning techniques requiring a training phase on a large number of positive and negative examples. In this paper, a novel pose estimation method that exploits a quad-tree-based representation of facial features is described. The locations of a set of landmarks detected over the face image guide its subdivision into smaller and smaller quadrants based on the presence or lack of landmarks within each quadrant. The proposed pose descriptor is both effective and efficient, providing accurate yaw, pitch and roll axis estimates almost in real-time, without need for any training or previous knowledge about the subject. The experiments conducted on both the BIWI Kinect Head Pose Database and the challenging automated facial landmarks in the wild dataset, highlight a pose estimate precision exceeding the state-of-the-art with regard to methods not involving training and machine learning approaches. |
Author | Ricciardi, Stefano Barra, Paola Nappi, Michele Abate, Andrea F. Bisogni, Carmen |
Author_xml | – sequence: 1 givenname: Andrea F. surname: Abate fullname: Abate, Andrea F. organization: Department of Informatics, University of Salerno, Fisciano, Italy – sequence: 2 givenname: Paola surname: Barra fullname: Barra, Paola organization: Department of Informatics, University of Salerno, Fisciano, Italy – sequence: 3 givenname: Carmen surname: Bisogni fullname: Bisogni, Carmen organization: Department of Informatics, University of Salerno, Fisciano, Italy – sequence: 4 givenname: Michele orcidid: 0000-0002-2517-2867 surname: Nappi fullname: Nappi, Michele organization: Department of Informatics, University of Salerno, Fisciano, Italy – sequence: 5 givenname: Stefano orcidid: 0000-0003-2123-452X surname: Ricciardi fullname: Ricciardi, Stefano email: stefano.ricciardi@unimol.it organization: Department of Biosciences and Territory, University of Molise, Campobasso, Italy |
BookMark | eNp9kE1LAzEQhoMoqNVf4GXB89Z8bHaTk5RSP0BUbMVjyGZna0q7qUkK-u9N3SriwVwShnlm3jzHaL9zHSB0RvCQECwvRuPxZDodUkzkkEpSFZzsoSNKSpkzzsr9X-9DdBrCAqcjUolXR-jyHrTPnkAv85ldQTZ79QDZ6N2G7AZ0kz26ANkkRLvS0boue7Hx1W1iNvPadrabn6CDVi8DnO7uAXq-mszGN_ndw_XteHSXmwKLmBtCoDZAqKiwZnVREmFkLSoqG2Blw4HVGpuS1AIMb0DquuC8lUQLDlhozAbotp_bOL1Qa5_y-A_ltFVfBefnSvtozRIU4wRoq3ErdFNIaATFoqp5ww2vqEjrB-i8n7X27m0DIaqF2_guxVc0rS0xLwqaumTfZbwLwUOrjI1fEmL6-1IRrLb6Va9fbfWrnf7Esj_sd-L_qbOesgDwQ4iKVFww9gm2z5Ei |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_patcog_2022_108591 crossref_primary_10_1109_ACCESS_2019_2942143 crossref_primary_10_1109_ACCESS_2023_3271997 crossref_primary_10_1109_TIP_2020_2984373 crossref_primary_10_1016_j_patrec_2020_10_003 crossref_primary_10_1109_ACCESS_2019_2962010 crossref_primary_10_1109_ACCESS_2024_3406911 crossref_primary_10_1007_s42979_023_01796_z crossref_primary_10_1016_j_patcog_2022_109288 crossref_primary_10_1109_THMS_2024_3351138 crossref_primary_10_1109_TBIOM_2021_3122307 crossref_primary_10_1109_TIP_2021_3059409 crossref_primary_10_1049_iet_ipr_2019_1369 crossref_primary_10_1007_s12652_020_02845_8 crossref_primary_10_1109_ACCESS_2021_3120098 crossref_primary_10_1109_JSAC_2023_3345381 crossref_primary_10_1109_ACCESS_2020_3037701 crossref_primary_10_1007_s00521_020_05511_4 crossref_primary_10_3390_s21051841 crossref_primary_10_1007_s00138_021_01234_1 crossref_primary_10_1109_ACCESS_2022_3188715 crossref_primary_10_1007_s10462_024_10936_7 crossref_primary_10_1109_TIV_2023_3272304 crossref_primary_10_1007_s11042_022_13653_x crossref_primary_10_1007_s41870_023_01174_1 |
Cites_doi | 10.1109/CVPR.2001.990517 10.1109/TPAMI.2017.2781233 10.1007/978-3-319-09912-5_34 10.1109/ICCV.2015.416 10.1109/SSIAI.2016.7459176 10.1016/j.ijleo.2016.09.048 10.1109/ICIP.2015.7351101 10.1109/CVPR.2014.241 10.5244/C.23.76 10.1016/j.patcog.2017.06.009 10.1109/ICIP.2016.7532566 10.1109/TPAMI.2015.2477843 10.1109/ACCESS.2018.2869465 10.1109/ACCESS.2018.2817252 10.1109/CVPR.2015.7299104 10.1109/FG.2017.149 10.1109/CVPR.2008.4587807 10.1145/356924.356930 10.1007/978-3-030-02744-5_12 10.1109/CVPR.2011.5995458 10.1109/ICIP.2015.7351683 10.1109/TPAMI.2008.106 10.1016/j.neucom.2017.05.033 10.1016/j.robot.2018.01.005 10.1109/ICIG.2013.133 10.1109/FG.2017.81 10.1109/TIP.2017.2654165 10.1016/j.cviu.2015.03.008 10.1016/j.patcog.2013.07.019 10.1109/ICCVW.2011.6130513 10.1016/j.gaitpost.2016.04.030 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2917451 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 64265 |
ExternalDocumentID | oai_doaj_org_article_351e2fa0f8ad49ed82087b5d5c57280a 10_1109_ACCESS_2019_2917451 8717583 |
Genre | orig-research |
GrantInformation_xml | – fundername: COSMOS (COntactlesS Multibiometric mObile System) PRIN (Research Project of National Interest) |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-c11ebce12870a3b4618c9b8729de36d5e3ba0c61b8ec5de9ab455f91a85e08a03 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:28:04 EDT 2025 Sun Jun 29 15:16:09 EDT 2025 Tue Jul 01 02:41:31 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Wed Aug 27 02:46:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-c11ebce12870a3b4618c9b8729de36d5e3ba0c61b8ec5de9ab455f91a85e08a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2123-452X 0000-0002-2517-2867 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8717583 |
PQID | 2455605442 |
PQPubID | 4845423 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2019_2917451 ieee_primary_8717583 doaj_primary_oai_doaj_org_article_351e2fa0f8ad49ed82087b5d5c57280a proquest_journals_2455605442 crossref_citationtrail_10_1109_ACCESS_2019_2917451 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref37 zhu (ref11) 2012 ref14 ref31 ref30 ref33 ref10 fanelli (ref36) 2011 ref2 ref1 ref17 ref16 ref19 ref18 yang (ref15) 2015 barra (ref25) 2018 ref24 ref23 ref26 ref20 ref22 ref21 ruiz (ref12) 2017 ref28 ref27 osadchy (ref3) 2007; 8 (ref32) 0 ref29 ref8 ref7 ref9 ref4 ref6 ref5 |
References_xml | – ident: ref33 doi: 10.1109/CVPR.2001.990517 – ident: ref5 doi: 10.1109/TPAMI.2017.2781233 – start-page: 2879 year: 2012 ident: ref11 article-title: Face detection, pose estimation, and landmark localization in the wild publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – year: 2015 ident: ref15 publication-title: Face alignment assisted by head pose estimation – ident: ref2 doi: 10.1007/978-3-319-09912-5_34 – ident: ref30 doi: 10.1109/ICCV.2015.416 – ident: ref16 doi: 10.1109/SSIAI.2016.7459176 – ident: ref7 doi: 10.1016/j.ijleo.2016.09.048 – ident: ref21 doi: 10.1109/ICIP.2015.7351101 – ident: ref34 doi: 10.1109/CVPR.2014.241 – ident: ref9 doi: 10.5244/C.23.76 – ident: ref4 doi: 10.1016/j.patcog.2017.06.009 – ident: ref10 doi: 10.1109/ICIP.2016.7532566 – year: 2017 ident: ref12 publication-title: Fine-grained head pose estimation without keypoints – ident: ref14 doi: 10.1109/TPAMI.2015.2477843 – ident: ref8 doi: 10.1109/ACCESS.2018.2869465 – ident: ref26 doi: 10.1109/ACCESS.2018.2817252 – ident: ref20 doi: 10.1109/CVPR.2015.7299104 – year: 0 ident: ref32 – ident: ref13 doi: 10.1109/FG.2017.149 – ident: ref27 doi: 10.1109/CVPR.2008.4587807 – ident: ref35 doi: 10.1145/356924.356930 – volume: 8 start-page: 1197 year: 2007 ident: ref3 article-title: Synergistic face detection and pose estimation with energy-based models publication-title: J Mach Learn Res – start-page: 160 year: 2018 ident: ref25 article-title: Fast quadtree-based pose estimation for security applications using face biometrics publication-title: Proc 5th Int Conf Netw Syst Secur doi: 10.1007/978-3-030-02744-5_12 – ident: ref19 doi: 10.1109/CVPR.2011.5995458 – ident: ref23 doi: 10.1109/ICIP.2015.7351683 – ident: ref1 doi: 10.1109/TPAMI.2008.106 – ident: ref22 doi: 10.1016/j.neucom.2017.05.033 – ident: ref6 doi: 10.1016/j.robot.2018.01.005 – ident: ref29 doi: 10.1109/ICIG.2013.133 – ident: ref18 doi: 10.1109/FG.2017.81 – ident: ref24 doi: 10.1109/TIP.2017.2654165 – ident: ref17 doi: 10.1016/j.cviu.2015.03.008 – ident: ref28 doi: 10.1016/j.patcog.2013.07.019 – ident: ref37 doi: 10.1109/ICCVW.2011.6130513 – ident: ref31 doi: 10.1016/j.gaitpost.2016.04.030 – start-page: 101 year: 2011 ident: ref36 article-title: Real time head pose estimation from consumer depth cameras publication-title: Proc Pattern Recognition Symp |
SSID | ssj0000816957 |
Score | 2.282509 |
Snippet | Head pose estimation methods evaluate the amount of head rotation according to two or three axes, aiming at optimizing the face acquisition process, or... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 64256 |
SubjectTerms | Biometrics Face face recognition Head Head movement image analysis Landmarks Machine learning Magnetic heads Pitch (inclination) Pose estimation Quadrants Real time Rolling motion Three axis Three-dimensional displays Training Two dimensional displays Yaw |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6ykx5EneL8IgeP1jVN0iYnmWMyPAyRid5Ckr7FgWziKvjzfdPGMRH04jWkH3me5P1ok_ch5BwELxz3wfqpKhGFz5KgK5KIMleuUlDZstltMcnHD-L2ST6tSX2FPWFteeAWuD6XDLLKppWypdBQosdShZOl9DIoKzWhEfq8tWSqscGK5VoWscwQS3V_MBziiMJeLn2ZYY4iJPvmipqK_VFi5YddbpzNzQ7ZjlEiHbRvt0s2YL5HttZqB3bJ1QTnKL3HOC8JxzjoFEkBOviYLekYeaN3iyXQES7g9mwifZzVz4v3mk6jJsQ-ebgZTYfjJKohJF6kqk48Y-A8sPBn0nInEFGvncLguASelxK4s6nPmVPgZQnaOiFlpZlVElJlU35AOvPFHA4JxRRQe45twqKHhkpz7XhhNSjrrBDQI9kXMMbHUuFBseLFNClDqk2Lpglomohmj1ysLnptK2X83v06IL7qGspcNw1Ivonkm7_I75Fu4Gt1E8z-MP_hPXLyxZ-JS3JpMoQDczchsqP_ePQx2QzDab_GnJBO_fYOpxif1O6smYqffvDdrw priority: 102 providerName: Directory of Open Access Journals |
Title | Near Real-Time Three Axis Head Pose Estimation Without Training |
URI | https://ieeexplore.ieee.org/document/8717583 https://www.proquest.com/docview/2455605442 https://doaj.org/article/351e2fa0f8ad49ed82087b5d5c57280a |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEB7aPtUHra3iaVvy4GP3urtJbpMnuR4th2ApcsW-hfyYxaLcibcH4l_vJJtbWhXxbQlJyOabJDPJzDcAb1HwxnEfdz_VFqLxdRHzihQiTJRrFbY2JG-L68n8Vry_k3c7cDbEwiBicj7DcfxMb_lh5TfxquyclHtSb_ku7JLh1sdqDfcpMYGElk0mFqpKfT6dzegfoveWHtdklQhZPTp8Ekd_Tqryx06cjperZ_BhO7Deq-TLeNO5sf_5G2fj_478AJ5mPZNNe8F4Dju4PIQnD9gHj-DdNUk5-0iaYhEDQdiCYEU2_XG_ZnNCnt2s1sguaQvooxvZp_vu82rTsUXOKvECbq8uF7N5kfMpFF6Uqit8VaHzWMW3TcudIEy8dorU64B8EiRyZ0s_qZxCLwNq64SUra6sklgqW_KXsLdcLfEVMDIitedUJiyd8dhqrh1vrEZlnRUCR1BvJ9r4TDYec158NcnoKLXp0TERHZPRGcHZ0Ohbz7Xx7-oXEcGhaiTKTgU08yavO8NlhXVry1bZIDQGUnhU42SQXsbEXHYERxGtoZMM1AiOt_Jg8qJem5qmg6w_IerXf2_1BvbjAPsbmmPY675v8IR0ls6dJlv_NInsL63b6B4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcgAOvAoiUMAHjt10vbaz9gmFqFWANkIoFb1ZfsyKCpQgspEQv57xrrPiJcRtZdmWd76xZ8aeB8ALlKL2IqTTTzeFrENVpLoihYwT7RuNjYudt8ViMr-Qby7V5R4cDbEwiNg5n-E4fXZv-XEdtumq7JiUe1JvxTW4TnJf8T5aa7hRSSUkjKpzaiFemuPpbEZ_kfy3zLgiu0Qq_ov46bL057Iqf5zFnYA5vQPnu6X1fiWfxtvWj8P337I2_u_a78LtrGmyac8a92APV_fh1k_5Bw_g5YL4nL0nXbFIoSBsScAim3672rA5Yc_erTfITugQ6OMb2Yer9uN627JlrivxAC5OT5azeZErKhRBlrotAufoA_L0uumEl4RKMF6Tgh1RTKJC4V0ZJtxrDCqicZ7o3BjutMJSu1I8hP3VeoWPgJEZaYKgNulIymNjhPGidga1805KHEG1I7QNOd14qnrx2XZmR2lsj45N6NiMzgiOhkFf-mwb_-7-KiE4dE2psrsGorzNO88KxbFqXNloF6XBSCqPrr2KKqhUmsuN4CChNUySgRrB4Y4fbN7WG1sROcj-k7J6_PdRz-HGfHl-Zs9eL94-gZtpsf19zSHst1-3-JQ0mNY_6xj3B3bc6nI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near+Real-Time+Three+Axis+Head+Pose+Estimation+Without+Training&rft.jtitle=IEEE+access&rft.au=Abate%2C+Andrea+F.&rft.au=Barra%2C+Paola&rft.au=Bisogni%2C+Carmen&rft.au=Nappi%2C+Michele&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=64256&rft.epage=64265&rft_id=info:doi/10.1109%2FACCESS.2019.2917451&rft.externalDocID=8717583 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |