Near Real-Time Three Axis Head Pose Estimation Without Training

Head pose estimation methods evaluate the amount of head rotation according to two or three axes, aiming at optimizing the face acquisition process, or extracting neutral-pose frames from a video sequence. Most approaches to pose estimation exploits machine-learning techniques requiring a training p...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 64256 - 64265
Main Authors Abate, Andrea F., Barra, Paola, Bisogni, Carmen, Nappi, Michele, Ricciardi, Stefano
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Head pose estimation methods evaluate the amount of head rotation according to two or three axes, aiming at optimizing the face acquisition process, or extracting neutral-pose frames from a video sequence. Most approaches to pose estimation exploits machine-learning techniques requiring a training phase on a large number of positive and negative examples. In this paper, a novel pose estimation method that exploits a quad-tree-based representation of facial features is described. The locations of a set of landmarks detected over the face image guide its subdivision into smaller and smaller quadrants based on the presence or lack of landmarks within each quadrant. The proposed pose descriptor is both effective and efficient, providing accurate yaw, pitch and roll axis estimates almost in real-time, without need for any training or previous knowledge about the subject. The experiments conducted on both the BIWI Kinect Head Pose Database and the challenging automated facial landmarks in the wild dataset, highlight a pose estimate precision exceeding the state-of-the-art with regard to methods not involving training and machine learning approaches.
AbstractList Head pose estimation methods evaluate the amount of head rotation according to two or three axes, aiming at optimizing the face acquisition process, or extracting neutral-pose frames from a video sequence. Most approaches to pose estimation exploits machine-learning techniques requiring a training phase on a large number of positive and negative examples. In this paper, a novel pose estimation method that exploits a quad-tree-based representation of facial features is described. The locations of a set of landmarks detected over the face image guide its subdivision into smaller and smaller quadrants based on the presence or lack of landmarks within each quadrant. The proposed pose descriptor is both effective and efficient, providing accurate yaw, pitch and roll axis estimates almost in real-time, without need for any training or previous knowledge about the subject. The experiments conducted on both the BIWI Kinect Head Pose Database and the challenging automated facial landmarks in the wild dataset, highlight a pose estimate precision exceeding the state-of-the-art with regard to methods not involving training and machine learning approaches.
Author Ricciardi, Stefano
Barra, Paola
Nappi, Michele
Abate, Andrea F.
Bisogni, Carmen
Author_xml – sequence: 1
  givenname: Andrea F.
  surname: Abate
  fullname: Abate, Andrea F.
  organization: Department of Informatics, University of Salerno, Fisciano, Italy
– sequence: 2
  givenname: Paola
  surname: Barra
  fullname: Barra, Paola
  organization: Department of Informatics, University of Salerno, Fisciano, Italy
– sequence: 3
  givenname: Carmen
  surname: Bisogni
  fullname: Bisogni, Carmen
  organization: Department of Informatics, University of Salerno, Fisciano, Italy
– sequence: 4
  givenname: Michele
  orcidid: 0000-0002-2517-2867
  surname: Nappi
  fullname: Nappi, Michele
  organization: Department of Informatics, University of Salerno, Fisciano, Italy
– sequence: 5
  givenname: Stefano
  orcidid: 0000-0003-2123-452X
  surname: Ricciardi
  fullname: Ricciardi, Stefano
  email: stefano.ricciardi@unimol.it
  organization: Department of Biosciences and Territory, University of Molise, Campobasso, Italy
BookMark eNp9kE1LAzEQhoMoqNVf4GXB89Z8bHaTk5RSP0BUbMVjyGZna0q7qUkK-u9N3SriwVwShnlm3jzHaL9zHSB0RvCQECwvRuPxZDodUkzkkEpSFZzsoSNKSpkzzsr9X-9DdBrCAqcjUolXR-jyHrTPnkAv85ldQTZ79QDZ6N2G7AZ0kz26ANkkRLvS0boue7Hx1W1iNvPadrabn6CDVi8DnO7uAXq-mszGN_ndw_XteHSXmwKLmBtCoDZAqKiwZnVREmFkLSoqG2Blw4HVGpuS1AIMb0DquuC8lUQLDlhozAbotp_bOL1Qa5_y-A_ltFVfBefnSvtozRIU4wRoq3ErdFNIaATFoqp5ww2vqEjrB-i8n7X27m0DIaqF2_guxVc0rS0xLwqaumTfZbwLwUOrjI1fEmL6-1IRrLb6Va9fbfWrnf7Esj_sd-L_qbOesgDwQ4iKVFww9gm2z5Ei
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_patcog_2022_108591
crossref_primary_10_1109_ACCESS_2019_2942143
crossref_primary_10_1109_ACCESS_2023_3271997
crossref_primary_10_1109_TIP_2020_2984373
crossref_primary_10_1016_j_patrec_2020_10_003
crossref_primary_10_1109_ACCESS_2019_2962010
crossref_primary_10_1109_ACCESS_2024_3406911
crossref_primary_10_1007_s42979_023_01796_z
crossref_primary_10_1016_j_patcog_2022_109288
crossref_primary_10_1109_THMS_2024_3351138
crossref_primary_10_1109_TBIOM_2021_3122307
crossref_primary_10_1109_TIP_2021_3059409
crossref_primary_10_1049_iet_ipr_2019_1369
crossref_primary_10_1007_s12652_020_02845_8
crossref_primary_10_1109_ACCESS_2021_3120098
crossref_primary_10_1109_JSAC_2023_3345381
crossref_primary_10_1109_ACCESS_2020_3037701
crossref_primary_10_1007_s00521_020_05511_4
crossref_primary_10_3390_s21051841
crossref_primary_10_1007_s00138_021_01234_1
crossref_primary_10_1109_ACCESS_2022_3188715
crossref_primary_10_1007_s10462_024_10936_7
crossref_primary_10_1109_TIV_2023_3272304
crossref_primary_10_1007_s11042_022_13653_x
crossref_primary_10_1007_s41870_023_01174_1
Cites_doi 10.1109/CVPR.2001.990517
10.1109/TPAMI.2017.2781233
10.1007/978-3-319-09912-5_34
10.1109/ICCV.2015.416
10.1109/SSIAI.2016.7459176
10.1016/j.ijleo.2016.09.048
10.1109/ICIP.2015.7351101
10.1109/CVPR.2014.241
10.5244/C.23.76
10.1016/j.patcog.2017.06.009
10.1109/ICIP.2016.7532566
10.1109/TPAMI.2015.2477843
10.1109/ACCESS.2018.2869465
10.1109/ACCESS.2018.2817252
10.1109/CVPR.2015.7299104
10.1109/FG.2017.149
10.1109/CVPR.2008.4587807
10.1145/356924.356930
10.1007/978-3-030-02744-5_12
10.1109/CVPR.2011.5995458
10.1109/ICIP.2015.7351683
10.1109/TPAMI.2008.106
10.1016/j.neucom.2017.05.033
10.1016/j.robot.2018.01.005
10.1109/ICIG.2013.133
10.1109/FG.2017.81
10.1109/TIP.2017.2654165
10.1016/j.cviu.2015.03.008
10.1016/j.patcog.2013.07.019
10.1109/ICCVW.2011.6130513
10.1016/j.gaitpost.2016.04.030
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2917451
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 64265
ExternalDocumentID oai_doaj_org_article_351e2fa0f8ad49ed82087b5d5c57280a
10_1109_ACCESS_2019_2917451
8717583
Genre orig-research
GrantInformation_xml – fundername: COSMOS (COntactlesS Multibiometric mObile System) PRIN (Research Project of National Interest)
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-c11ebce12870a3b4618c9b8729de36d5e3ba0c61b8ec5de9ab455f91a85e08a03
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:28:04 EDT 2025
Sun Jun 29 15:16:09 EDT 2025
Tue Jul 01 02:41:31 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Wed Aug 27 02:46:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c11ebce12870a3b4618c9b8729de36d5e3ba0c61b8ec5de9ab455f91a85e08a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2123-452X
0000-0002-2517-2867
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8717583
PQID 2455605442
PQPubID 4845423
PageCount 10
ParticipantIDs crossref_primary_10_1109_ACCESS_2019_2917451
ieee_primary_8717583
doaj_primary_oai_doaj_org_article_351e2fa0f8ad49ed82087b5d5c57280a
proquest_journals_2455605442
crossref_citationtrail_10_1109_ACCESS_2019_2917451
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
zhu (ref11) 2012
ref14
ref31
ref30
ref33
ref10
fanelli (ref36) 2011
ref2
ref1
ref17
ref16
ref19
ref18
yang (ref15) 2015
barra (ref25) 2018
ref24
ref23
ref26
ref20
ref22
ref21
ruiz (ref12) 2017
ref28
ref27
osadchy (ref3) 2007; 8
(ref32) 0
ref29
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref33
  doi: 10.1109/CVPR.2001.990517
– ident: ref5
  doi: 10.1109/TPAMI.2017.2781233
– start-page: 2879
  year: 2012
  ident: ref11
  article-title: Face detection, pose estimation, and landmark localization in the wild
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– year: 2015
  ident: ref15
  publication-title: Face alignment assisted by head pose estimation
– ident: ref2
  doi: 10.1007/978-3-319-09912-5_34
– ident: ref30
  doi: 10.1109/ICCV.2015.416
– ident: ref16
  doi: 10.1109/SSIAI.2016.7459176
– ident: ref7
  doi: 10.1016/j.ijleo.2016.09.048
– ident: ref21
  doi: 10.1109/ICIP.2015.7351101
– ident: ref34
  doi: 10.1109/CVPR.2014.241
– ident: ref9
  doi: 10.5244/C.23.76
– ident: ref4
  doi: 10.1016/j.patcog.2017.06.009
– ident: ref10
  doi: 10.1109/ICIP.2016.7532566
– year: 2017
  ident: ref12
  publication-title: Fine-grained head pose estimation without keypoints
– ident: ref14
  doi: 10.1109/TPAMI.2015.2477843
– ident: ref8
  doi: 10.1109/ACCESS.2018.2869465
– ident: ref26
  doi: 10.1109/ACCESS.2018.2817252
– ident: ref20
  doi: 10.1109/CVPR.2015.7299104
– year: 0
  ident: ref32
– ident: ref13
  doi: 10.1109/FG.2017.149
– ident: ref27
  doi: 10.1109/CVPR.2008.4587807
– ident: ref35
  doi: 10.1145/356924.356930
– volume: 8
  start-page: 1197
  year: 2007
  ident: ref3
  article-title: Synergistic face detection and pose estimation with energy-based models
  publication-title: J Mach Learn Res
– start-page: 160
  year: 2018
  ident: ref25
  article-title: Fast quadtree-based pose estimation for security applications using face biometrics
  publication-title: Proc 5th Int Conf Netw Syst Secur
  doi: 10.1007/978-3-030-02744-5_12
– ident: ref19
  doi: 10.1109/CVPR.2011.5995458
– ident: ref23
  doi: 10.1109/ICIP.2015.7351683
– ident: ref1
  doi: 10.1109/TPAMI.2008.106
– ident: ref22
  doi: 10.1016/j.neucom.2017.05.033
– ident: ref6
  doi: 10.1016/j.robot.2018.01.005
– ident: ref29
  doi: 10.1109/ICIG.2013.133
– ident: ref18
  doi: 10.1109/FG.2017.81
– ident: ref24
  doi: 10.1109/TIP.2017.2654165
– ident: ref17
  doi: 10.1016/j.cviu.2015.03.008
– ident: ref28
  doi: 10.1016/j.patcog.2013.07.019
– ident: ref37
  doi: 10.1109/ICCVW.2011.6130513
– ident: ref31
  doi: 10.1016/j.gaitpost.2016.04.030
– start-page: 101
  year: 2011
  ident: ref36
  article-title: Real time head pose estimation from consumer depth cameras
  publication-title: Proc Pattern Recognition Symp
SSID ssj0000816957
Score 2.282509
Snippet Head pose estimation methods evaluate the amount of head rotation according to two or three axes, aiming at optimizing the face acquisition process, or...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 64256
SubjectTerms Biometrics
Face
face recognition
Head
Head movement
image analysis
Landmarks
Machine learning
Magnetic heads
Pitch (inclination)
Pose estimation
Quadrants
Real time
Rolling motion
Three axis
Three-dimensional displays
Training
Two dimensional displays
Yaw
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6ykx5EneL8IgeP1jVN0iYnmWMyPAyRid5Ckr7FgWziKvjzfdPGMRH04jWkH3me5P1ok_ch5BwELxz3wfqpKhGFz5KgK5KIMleuUlDZstltMcnHD-L2ST6tSX2FPWFteeAWuD6XDLLKppWypdBQosdShZOl9DIoKzWhEfq8tWSqscGK5VoWscwQS3V_MBziiMJeLn2ZYY4iJPvmipqK_VFi5YddbpzNzQ7ZjlEiHbRvt0s2YL5HttZqB3bJ1QTnKL3HOC8JxzjoFEkBOviYLekYeaN3iyXQES7g9mwifZzVz4v3mk6jJsQ-ebgZTYfjJKohJF6kqk48Y-A8sPBn0nInEFGvncLguASelxK4s6nPmVPgZQnaOiFlpZlVElJlU35AOvPFHA4JxRRQe45twqKHhkpz7XhhNSjrrBDQI9kXMMbHUuFBseLFNClDqk2Lpglomohmj1ysLnptK2X83v06IL7qGspcNw1Ivonkm7_I75Fu4Gt1E8z-MP_hPXLyxZ-JS3JpMoQDczchsqP_ePQx2QzDab_GnJBO_fYOpxif1O6smYqffvDdrw
  priority: 102
  providerName: Directory of Open Access Journals
Title Near Real-Time Three Axis Head Pose Estimation Without Training
URI https://ieeexplore.ieee.org/document/8717583
https://www.proquest.com/docview/2455605442
https://doaj.org/article/351e2fa0f8ad49ed82087b5d5c57280a
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEB7aPtUHra3iaVvy4GP3urtJbpMnuR4th2ApcsW-hfyYxaLcibcH4l_vJJtbWhXxbQlJyOabJDPJzDcAb1HwxnEfdz_VFqLxdRHzihQiTJRrFbY2JG-L68n8Vry_k3c7cDbEwiBicj7DcfxMb_lh5TfxquyclHtSb_ku7JLh1sdqDfcpMYGElk0mFqpKfT6dzegfoveWHtdklQhZPTp8Ekd_Tqryx06cjperZ_BhO7Deq-TLeNO5sf_5G2fj_478AJ5mPZNNe8F4Dju4PIQnD9gHj-DdNUk5-0iaYhEDQdiCYEU2_XG_ZnNCnt2s1sguaQvooxvZp_vu82rTsUXOKvECbq8uF7N5kfMpFF6Uqit8VaHzWMW3TcudIEy8dorU64B8EiRyZ0s_qZxCLwNq64SUra6sklgqW_KXsLdcLfEVMDIitedUJiyd8dhqrh1vrEZlnRUCR1BvJ9r4TDYec158NcnoKLXp0TERHZPRGcHZ0Ohbz7Xx7-oXEcGhaiTKTgU08yavO8NlhXVry1bZIDQGUnhU42SQXsbEXHYERxGtoZMM1AiOt_Jg8qJem5qmg6w_IerXf2_1BvbjAPsbmmPY675v8IR0ls6dJlv_NInsL63b6B4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcgAOvAoiUMAHjt10vbaz9gmFqFWANkIoFb1ZfsyKCpQgspEQv57xrrPiJcRtZdmWd76xZ8aeB8ALlKL2IqTTTzeFrENVpLoihYwT7RuNjYudt8ViMr-Qby7V5R4cDbEwiNg5n-E4fXZv-XEdtumq7JiUe1JvxTW4TnJf8T5aa7hRSSUkjKpzaiFemuPpbEZ_kfy3zLgiu0Qq_ov46bL057Iqf5zFnYA5vQPnu6X1fiWfxtvWj8P337I2_u_a78LtrGmyac8a92APV_fh1k_5Bw_g5YL4nL0nXbFIoSBsScAim3672rA5Yc_erTfITugQ6OMb2Yer9uN627JlrivxAC5OT5azeZErKhRBlrotAufoA_L0uumEl4RKMF6Tgh1RTKJC4V0ZJtxrDCqicZ7o3BjutMJSu1I8hP3VeoWPgJEZaYKgNulIymNjhPGidga1805KHEG1I7QNOd14qnrx2XZmR2lsj45N6NiMzgiOhkFf-mwb_-7-KiE4dE2psrsGorzNO88KxbFqXNloF6XBSCqPrr2KKqhUmsuN4CChNUySgRrB4Y4fbN7WG1sROcj-k7J6_PdRz-HGfHl-Zs9eL94-gZtpsf19zSHst1-3-JQ0mNY_6xj3B3bc6nI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near+Real-Time+Three+Axis+Head+Pose+Estimation+Without+Training&rft.jtitle=IEEE+access&rft.au=Abate%2C+Andrea+F.&rft.au=Barra%2C+Paola&rft.au=Bisogni%2C+Carmen&rft.au=Nappi%2C+Michele&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=64256&rft.epage=64265&rft_id=info:doi/10.1109%2FACCESS.2019.2917451&rft.externalDocID=8717583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon