Arabidopsis cell wall composition determines disease resistance specificity and fitness

Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Ar...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 5; pp. 1 - 12
Main Authors Molina, Antonio, Miedes, Eva, Bacete, Laura, Rodríguez, Tinguaro, Mélida, Hugo, Denancé, Nicolas, Sánchez-Vallet, Andrea, Rivière, Marie-Pierre, López, Gemma, Freydier, Amandine, Barlet, Xavier, Pattathil, Sivakumar, Hahn, Michael, Goffner, Deborah
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.02.2021
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2010243118

Cover

Loading…
Abstract Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.
AbstractList Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.
Plant cells are surrounded by an extracellular matrix known as the cell wall. We have analyzed the contribution of the Arabidopsis cell wall to disease resistance to pathogens with different parasitic styles. Here, we demonstrate that plant cell walls are determinants of immune responses since modification of their composition in a set of Arabidopsis cell wall mutants has an impact on their disease resistance and fitness phenotypes. In these genotypes, we identified specific correlations between the amounts of specific wall carbohydrate epitopes and disease resistance/fitness phenotypes through mathematical analyses. These data support the relevant and specific function of plant cell wall composition in plant immune responses and provide the basis for using wall traits in crop breeding programs. Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants ( cwm ) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.
Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.
Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of cell wall mutants ( ) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of plants to the necrotrophic and vascular pathogens negatively impacted fitness traits, such as biomass and seed yield. Enhanced resistance of plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the tested. Pectin-enriched wall fractions isolated from plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to resistance. Cell walls of plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.
Author Denancé, Nicolas
Freydier, Amandine
Molina, Antonio
Rivière, Marie-Pierre
Bacete, Laura
Hahn, Michael
Pattathil, Sivakumar
Mélida, Hugo
Sánchez-Vallet, Andrea
Goffner, Deborah
López, Gemma
Rodríguez, Tinguaro
Miedes, Eva
Barlet, Xavier
Author_xml – sequence: 1
  givenname: Antonio
  surname: Molina
  fullname: Molina, Antonio
– sequence: 2
  givenname: Eva
  surname: Miedes
  fullname: Miedes, Eva
– sequence: 3
  givenname: Laura
  surname: Bacete
  fullname: Bacete, Laura
– sequence: 4
  givenname: Tinguaro
  surname: Rodríguez
  fullname: Rodríguez, Tinguaro
– sequence: 5
  givenname: Hugo
  surname: Mélida
  fullname: Mélida, Hugo
– sequence: 6
  givenname: Nicolas
  surname: Denancé
  fullname: Denancé, Nicolas
– sequence: 7
  givenname: Andrea
  surname: Sánchez-Vallet
  fullname: Sánchez-Vallet, Andrea
– sequence: 8
  givenname: Marie-Pierre
  surname: Rivière
  fullname: Rivière, Marie-Pierre
– sequence: 9
  givenname: Gemma
  surname: López
  fullname: López, Gemma
– sequence: 10
  givenname: Amandine
  surname: Freydier
  fullname: Freydier, Amandine
– sequence: 11
  givenname: Xavier
  surname: Barlet
  fullname: Barlet, Xavier
– sequence: 12
  givenname: Sivakumar
  surname: Pattathil
  fullname: Pattathil, Sivakumar
– sequence: 13
  givenname: Michael
  surname: Hahn
  fullname: Hahn, Michael
– sequence: 14
  givenname: Deborah
  surname: Goffner
  fullname: Goffner, Deborah
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33509925$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-03326624$$DView record in HAL
BookMark eNp9kc1v1DAQxS1URLeFMydQjnBIO2PnyxekVQUUaSUuII6W44ypq8QOdrao_z2OtizQAxdbsn_vjf3eGTvxwRNjLxEuEFpxOXudLjgg8Eogdk_YBkFi2VQSTtgGgLdlV_HqlJ2ldAsAsu7gGTsVogYpeb1h37ZR924Ic3KpMDSOxU-dFxOmOSS3uOCLgRaKk_OUisEl0omKSBlftDdUpJmMs8645b7QfiisWzKZnrOnVo-JXjzs5-zrh_dfrq7L3eePn662u9JU0C1lP_S2EtDbHmU9aJK2txIJrZQS0Q5IYBCo7hoNQ0vCIjS6MlJSQwZ7Eufs3cF33vcTDYb8EvWo5ugmHe9V0E79e-Pdjfoe7lTbNTW2bTZ4ezC4eSS73u7UegZC8Kbh1R1m9s3DsBh-7CktanJpDU17CvukeNWJDmsEyOjrv991dP6dfAYuD4CJIaVI9oggqLVbtXar_nSbFfUjRQ5drxXlj7nxP7pXB91tWkI8juEtQIOtEL8Ag9C1Bg
CitedBy_id crossref_primary_10_3389_fpls_2024_1374194
crossref_primary_10_1016_j_molp_2024_04_003
crossref_primary_10_1111_jipb_13416
crossref_primary_10_1016_j_jafr_2022_100420
crossref_primary_10_3389_fpls_2021_696955
crossref_primary_10_1007_s00299_023_03074_x
crossref_primary_10_1016_j_devcel_2021_03_004
crossref_primary_10_3389_fpls_2024_1401265
crossref_primary_10_3390_ijpb15030056
crossref_primary_10_1093_gigascience_giae036
crossref_primary_10_1007_s11427_022_2278_0
crossref_primary_10_1016_j_biotechadv_2023_108245
crossref_primary_10_1016_j_plantsci_2023_111674
crossref_primary_10_1111_nph_20071
crossref_primary_10_3390_ijms25105256
crossref_primary_10_1111_jac_70012
crossref_primary_10_3390_plants10081712
crossref_primary_10_1111_tpj_16897
crossref_primary_10_1016_j_stress_2025_100783
crossref_primary_10_1038_s41467_021_27479_y
crossref_primary_10_1080_10643389_2023_2267939
crossref_primary_10_1083_jcb_202307066
crossref_primary_10_3390_f13101618
crossref_primary_10_1094_MPMI_11_23_0181_R
crossref_primary_10_1007_s11103_022_01284_7
crossref_primary_10_1016_j_celrep_2024_114179
crossref_primary_10_3390_plants10071407
crossref_primary_10_3390_plants11243539
crossref_primary_10_1016_j_cub_2023_10_048
crossref_primary_10_1093_plphys_kiac041
crossref_primary_10_3390_ijms241814120
crossref_primary_10_1093_plcell_koab225
crossref_primary_10_1093_jxb_erab423
crossref_primary_10_1093_plphys_kiac165
crossref_primary_10_1111_nph_18091
crossref_primary_10_1264_jsme2_ME24038
crossref_primary_10_1007_s10265_022_01409_5
crossref_primary_10_3389_fpls_2021_738949
crossref_primary_10_3389_fpls_2022_969343
crossref_primary_10_3390_ijms23147540
crossref_primary_10_1146_annurev_arplant_102820_095312
crossref_primary_10_3390_plants10020399
crossref_primary_10_1016_j_plaphy_2022_06_030
crossref_primary_10_1016_j_plaphy_2022_10_015
crossref_primary_10_1002_pld3_511
crossref_primary_10_1111_nph_19901
crossref_primary_10_1111_pce_15060
crossref_primary_10_1093_jxb_erae368
crossref_primary_10_1093_jxb_erad310
crossref_primary_10_1016_j_ijbiomac_2024_132696
crossref_primary_10_3389_fpls_2022_1096800
crossref_primary_10_1039_D3AN00897E
crossref_primary_10_1093_plcell_koac040
crossref_primary_10_3390_jof9010052
crossref_primary_10_3390_plants12010184
crossref_primary_10_1099_jgv_0_002023
crossref_primary_10_1093_plphys_kiac312
crossref_primary_10_1093_plphys_kiad524
crossref_primary_10_1016_j_plaphy_2024_109117
crossref_primary_10_1038_s41564_023_01555_z
crossref_primary_10_1016_j_jare_2025_02_023
crossref_primary_10_1016_j_molp_2021_07_013
crossref_primary_10_3390_ijms241512261
crossref_primary_10_1007_s10658_024_02970_6
crossref_primary_10_1038_s41598_022_14606_y
crossref_primary_10_1007_s12298_023_01327_3
crossref_primary_10_1093_plphys_kiac387
crossref_primary_10_3389_fgene_2023_1163464
crossref_primary_10_1042_EBC20210087
crossref_primary_10_1016_j_pbi_2024_102630
crossref_primary_10_1007_s11103_023_01345_5
crossref_primary_10_1186_s12870_024_05399_5
crossref_primary_10_7717_peerj_11586
crossref_primary_10_1093_pcp_pcab168
crossref_primary_10_1111_tpj_15881
crossref_primary_10_3390_plants10081514
crossref_primary_10_3389_fpls_2022_931979
crossref_primary_10_1002_bies_202400171
crossref_primary_10_1080_07060661_2022_2091663
crossref_primary_10_1093_fqsafe_fyab028
crossref_primary_10_1080_07388551_2024_2370341
crossref_primary_10_2139_ssrn_4098740
crossref_primary_10_3389_fpls_2022_1064628
crossref_primary_10_3390_ijms25084549
crossref_primary_10_1093_plcell_koad325
crossref_primary_10_1016_j_saa_2024_125127
crossref_primary_10_1016_j_stress_2024_100692
crossref_primary_10_1093_jxb_erad362
crossref_primary_10_1111_pce_14973
crossref_primary_10_1016_j_stress_2024_100698
crossref_primary_10_1038_s41467_024_45246_7
crossref_primary_10_3390_horticulturae9010112
crossref_primary_10_3389_fpls_2022_872218
crossref_primary_10_1093_aob_mcab086
crossref_primary_10_3390_ijms23052435
crossref_primary_10_1016_j_pbi_2022_102313
crossref_primary_10_1093_jxb_erad237
crossref_primary_10_1093_jxb_erae442
crossref_primary_10_3390_biology10101070
crossref_primary_10_3389_fpls_2022_1116506
crossref_primary_10_3390_foods12020403
crossref_primary_10_1093_jxb_erad080
crossref_primary_10_1007_s11103_023_01391_z
crossref_primary_10_3390_agriculture12091416
Cites_doi 10.1104/pp.16.01680
10.1038/s41477-019-0502-0
10.1111/j.1469-8137.2005.01496.x
10.1016/j.tplants.2020.02.002
10.1186/s12870-019-1934-4
10.3390/plants9050574
10.1073/pnas.1619033114
10.3389/fpls.2016.00984
10.1093/jxb/erm008
10.1111/j.1365-313X.2007.03369.x
10.1016/j.it.2018.09.006
10.1111/tpj.13660
10.1105/tpc.016097
10.1104/pp.110.171843
10.1038/srep30251
10.1111/tpj.13807
10.1094/MPMI-08-18-0217-FI
10.1016/j.pbi.2017.04.021
10.1093/jxb/erp245
10.3389/fpls.2020.01210
10.1104/pp.105.064337
10.1111/jipb.12346
10.1104/pp.17.00737
10.3389/fpls.2014.00178
10.1094/MPMI-07-10-0157
10.1007/978-3-642-03524-1_12
10.1104/pp.68.5.1161
10.1371/journal.ppat.1001011
10.1371/journal.pgen.1006832
10.1105/tpc.106.047720
10.1094/MPMI-10-12-0236-R
10.1126/science.1102765
10.1016/j.copbio.2012.11.004
10.1104/pp.106.090803
10.3389/fpls.2014.00228
10.1016/j.pbi.2017.08.010
10.1093/mp/ssr082
10.1111/pbi.12393
10.1111/tpj.13755
10.1186/s13068-019-1426-7
10.1016/j.pbi.2008.04.001
10.1007/978-1-4939-6859-6_2
10.1111/mpp.12090
10.1094/MPMI-12-19-0341-R
10.7554/eLife.13568
10.1094/MPMI-10-13-0313-IA
10.1105/tpc.15.00404
10.1146/annurev-phyto-081211-172955
10.1038/nri.2016.77
10.1038/msb.2011.66
10.3389/fpls.2018.01725
10.1104/pp.107.4.1129
10.1111/nph.15007
10.1046/j.1365-313X.2003.01726.x
10.1104/pp.107.109686
10.1104/pp.112.212431
10.1111/tpj.12027
10.1104/pp.109.151985
10.1104/pp.113.214460
10.1111/j.1365-313X.2004.02264.x
10.3389/fpls.2017.00192
10.1073/pnas.1900317116
10.1146/annurev-arplant-042811-105449
10.1371/journal.pgen.1002046
10.3389/fpls.2014.00358
10.1094/MPMI-8-0863
10.1093/nar/29.9.e45
10.4161/psb.6.8.15793
10.1007/s00425-008-0860-8
10.1126/science.1086716
10.1105/tpc.003509
10.1111/j.1365-313X.2008.03503.x
10.1105/tpc.002022
10.1111/j.1365-313X.2005.02440.x
10.1104/pp.16.01185
10.1016/j.tplants.2014.04.009
10.3389/fpls.2013.00155
10.1016/j.tplants.2014.09.003
10.1016/j.phytochem.2014.11.008
10.1105/tpc.106.048058
10.1038/nrm1746
10.1111/mpp.12811
10.1094/MPMI-01-11-0021
10.1111/nph.15258
10.3389/fpls.2012.00012
10.1105/tpc.105.031542
10.1094/MPMI.1998.11.7.659
10.1038/s41598-018-21741-y
10.1146/annurev-cellbio-092910-154055
10.1073/pnas.1914422117
10.1038/nbt.4067
ContentType Journal Article
Copyright Copyright © 2021 the Author(s). Published by PNAS.
Attribution
Copyright © 2021 the Author(s). Published by PNAS. 2021
Copyright_xml – notice: Copyright © 2021 the Author(s). Published by PNAS.
– notice: Attribution
– notice: Copyright © 2021 the Author(s). Published by PNAS. 2021
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOI 10.1073/pnas.2010243118
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef



PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12
ExternalDocumentID PMC7865177
oai_HAL_hal_03326624v1
33509925
10_1073_pnas_2010243118
27006173
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: DBI-0421683
– fundername: European Commission (EC)
  grantid: SignWALLINg-624721
– fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR‐07‐GPLA‐014
– fundername: National Science Foundation (NSF)
  grantid: IOS 0923992
– fundername: Ministerio de Economía y Competitividad (MINECO)
  grantid: BIO2015-64077-R
– fundername: Severo Ochoa Program, Agencia Estatal de Investigación (Spain)
  grantid: SEV-2016-0672
– fundername: Ministerio de Ciencia y Tecnología (MICYT)
  grantid: RTI2018-096975-B-I00
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
RHF
VQA
YIF
YIN
7X8
1XC
UMC
VOOES
5PM
ID FETCH-LOGICAL-c408t-bdbf430bfb195dae9fbf91e1f99911fd1e0c10e586a0d7e3f106a4c99e6ec1be3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:28:02 EDT 2025
Fri May 09 12:24:39 EDT 2025
Fri Jul 11 12:24:36 EDT 2025
Wed Feb 19 02:28:45 EST 2025
Thu Apr 24 23:01:12 EDT 2025
Tue Jul 01 03:40:41 EDT 2025
Thu May 29 08:53:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords immunity
disease resistance
glycomics
cell wall
fitness
Language English
License Copyright © 2021 the Author(s). Published by PNAS.
Attribution: http://creativecommons.org/licenses/by
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-bdbf430bfb195dae9fbf91e1f99911fd1e0c10e586a0d7e3f106a4c99e6ec1be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
3Present address: Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
7Present address: EVOTEC ID (Lyon), 69007 Lyon, France.
8Present address: International Research Unit Centre National de la Recherche Scientifique 3189 Environnement, Santé, Sociétés, Faculté de Médecine secteur Nord, 13344 Marseille Cedex 15, France.
5Present address: Groupe d'Etude et de contrôle des Variétés Et des Semences, Station Nationale des Essais de Semences, Laboratoire de Pathologie, 49071 Beaucouzé Cedex, France.
1A.M. and E.M. contributed equally to this work.
Edited by Jeffery L. Dangl, University of North Carolina, Chapel Hill, NC, and approved December 21, 2020 (received for review May 28, 2020)
Author contributions: A.M., M.H., and D.G. designed research; A.M., E.M., L.B., H.M., N.D., A.S.-V., M.-P.R., G.L., A.F., X.B., and S.P. performed research; A.M., M.H., and D.G. contributed new reagents/analytic tools; E.M., L.B., T.R., H.M., and N.D. analyzed data; A.M., L.B., and H.M. wrote the paper; E.M. and H.M. designed some figures; L.B. designed figures; and T.R. generated mathematical models.
4Present address: Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain.
6Present address: French Agency for Food, Environmental and Occupational Health and Safety, Honeybee Pathology Unit, 06902 Sophia-Antipolis, France.
ORCID 0000-0003-3137-7938
0000-0002-3668-9503
0000-0003-0173-3970
0000-0003-0504-9797
0000-0002-9899-6859
0000-0003-3171-8181
0000-0003-2899-1494
0000-0003-4989-2348
0000-0003-1792-0113
0000-0003-2136-5191
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7865177
PMID 33509925
PQID 2483815100
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7865177
hal_primary_oai_HAL_hal_03326624v1
proquest_miscellaneous_2483815100
pubmed_primary_33509925
crossref_primary_10_1073_pnas_2010243118
crossref_citationtrail_10_1073_pnas_2010243118
jstor_primary_27006173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-02
PublicationDateYYYYMMDD 2021-02-02
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
Bacete L. (e_1_3_4_89_2) 2017
Engelsdorf T. (e_1_3_4_75_2) 2017; 68
e_1_3_4_72_2
e_1_3_4_93_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_91_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
Parker J. E. (e_1_3_4_56_2) 1996; 8
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_73_2
Zang H. (e_1_3_4_88_2) 2019; 20
e_1_3_4_52_2
e_1_3_4_90_2
e_1_3_4_50_2
e_1_3_4_92_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_9_2
  doi: 10.1104/pp.16.01680
– ident: e_1_3_4_19_2
  doi: 10.1038/s41477-019-0502-0
– ident: e_1_3_4_38_2
  doi: 10.1111/j.1469-8137.2005.01496.x
– ident: e_1_3_4_59_2
  doi: 10.1016/j.tplants.2020.02.002
– ident: e_1_3_4_11_2
  doi: 10.1186/s12870-019-1934-4
– ident: e_1_3_4_21_2
  doi: 10.3390/plants9050574
– ident: e_1_3_4_54_2
  doi: 10.1073/pnas.1619033114
– ident: e_1_3_4_27_2
  doi: 10.3389/fpls.2016.00984
– ident: e_1_3_4_48_2
  doi: 10.1093/jxb/erm008
– ident: e_1_3_4_77_2
  doi: 10.1111/j.1365-313X.2007.03369.x
– ident: e_1_3_4_7_2
  doi: 10.1016/j.it.2018.09.006
– ident: e_1_3_4_31_2
  doi: 10.1111/tpj.13660
– ident: e_1_3_4_70_2
  doi: 10.1105/tpc.016097
– ident: e_1_3_4_30_2
  doi: 10.1104/pp.110.171843
– ident: e_1_3_4_68_2
  doi: 10.1038/srep30251
– ident: e_1_3_4_6_2
  doi: 10.1111/tpj.13807
– ident: e_1_3_4_90_2
  doi: 10.1094/MPMI-08-18-0217-FI
– ident: e_1_3_4_3_2
  doi: 10.1016/j.pbi.2017.04.021
– ident: e_1_3_4_15_2
  doi: 10.1093/jxb/erp245
– ident: e_1_3_4_51_2
  doi: 10.3389/fpls.2020.01210
– ident: e_1_3_4_22_2
  doi: 10.1104/pp.105.064337
– ident: e_1_3_4_92_2
  doi: 10.1111/jipb.12346
– ident: e_1_3_4_62_2
  doi: 10.1104/pp.17.00737
– ident: e_1_3_4_24_2
  doi: 10.3389/fpls.2014.00178
– ident: e_1_3_4_34_2
  doi: 10.1094/MPMI-07-10-0157
– ident: e_1_3_4_41_2
  doi: 10.1007/978-3-642-03524-1_12
– ident: e_1_3_4_50_2
  doi: 10.1104/pp.68.5.1161
– ident: e_1_3_4_76_2
  doi: 10.1371/journal.ppat.1001011
– ident: e_1_3_4_64_2
  doi: 10.1371/journal.pgen.1006832
– ident: e_1_3_4_53_2
  doi: 10.1105/tpc.106.047720
– ident: e_1_3_4_43_2
  doi: 10.1094/MPMI-10-12-0236-R
– ident: e_1_3_4_16_2
  doi: 10.1126/science.1102765
– ident: e_1_3_4_84_2
  doi: 10.1016/j.copbio.2012.11.004
– ident: e_1_3_4_32_2
  doi: 10.1104/pp.106.090803
– ident: e_1_3_4_23_2
  doi: 10.3389/fpls.2014.00228
– ident: e_1_3_4_25_2
  doi: 10.1016/j.pbi.2017.08.010
– ident: e_1_3_4_39_2
  doi: 10.1093/mp/ssr082
– ident: e_1_3_4_46_2
  doi: 10.1111/pbi.12393
– ident: e_1_3_4_47_2
  doi: 10.1111/tpj.13755
– ident: e_1_3_4_86_2
  doi: 10.1186/s13068-019-1426-7
– ident: e_1_3_4_17_2
  doi: 10.1016/j.pbi.2008.04.001
– start-page: 13
  volume-title: Plant Pattern Recognition Receptors
  year: 2017
  ident: e_1_3_4_89_2
  doi: 10.1007/978-1-4939-6859-6_2
– ident: e_1_3_4_36_2
  doi: 10.1111/mpp.12090
– ident: e_1_3_4_20_2
  doi: 10.1094/MPMI-12-19-0341-R
– ident: e_1_3_4_65_2
  doi: 10.7554/eLife.13568
– ident: e_1_3_4_79_2
  doi: 10.1094/MPMI-10-13-0313-IA
– ident: e_1_3_4_8_2
  doi: 10.1105/tpc.15.00404
– ident: e_1_3_4_81_2
  doi: 10.1146/annurev-phyto-081211-172955
– ident: e_1_3_4_1_2
  doi: 10.1038/nri.2016.77
– ident: e_1_3_4_42_2
  doi: 10.1038/msb.2011.66
– ident: e_1_3_4_49_2
  doi: 10.3389/fpls.2018.01725
– ident: e_1_3_4_13_2
  doi: 10.1104/pp.107.4.1129
– ident: e_1_3_4_63_2
  doi: 10.1111/nph.15007
– ident: e_1_3_4_87_2
  doi: 10.1046/j.1365-313X.2003.01726.x
– ident: e_1_3_4_33_2
  doi: 10.1104/pp.107.109686
– ident: e_1_3_4_66_2
  doi: 10.1104/pp.112.212431
– ident: e_1_3_4_57_2
  doi: 10.1111/tpj.12027
– ident: e_1_3_4_61_2
  doi: 10.1104/pp.109.151985
– ident: e_1_3_4_69_2
  doi: 10.1104/pp.113.214460
– ident: e_1_3_4_73_2
  doi: 10.1111/j.1365-313X.2004.02264.x
– ident: e_1_3_4_82_2
  doi: 10.3389/fpls.2017.00192
– ident: e_1_3_4_10_2
  doi: 10.1073/pnas.1900317116
– ident: e_1_3_4_18_2
  doi: 10.1146/annurev-arplant-042811-105449
– ident: e_1_3_4_67_2
  doi: 10.1371/journal.pgen.1002046
– ident: e_1_3_4_5_2
  doi: 10.3389/fpls.2014.00358
– ident: e_1_3_4_55_2
  doi: 10.1094/MPMI-8-0863
– ident: e_1_3_4_93_2
  doi: 10.1093/nar/29.9.e45
– ident: e_1_3_4_60_2
  doi: 10.4161/psb.6.8.15793
– ident: e_1_3_4_91_2
  doi: 10.1007/s00425-008-0860-8
– ident: e_1_3_4_71_2
  doi: 10.1126/science.1086716
– ident: e_1_3_4_72_2
  doi: 10.1105/tpc.003509
– ident: e_1_3_4_80_2
  doi: 10.1111/j.1365-313X.2008.03503.x
– ident: e_1_3_4_28_2
  doi: 10.1105/tpc.002022
– ident: e_1_3_4_40_2
  doi: 10.1111/j.1365-313X.2005.02440.x
– ident: e_1_3_4_37_2
  doi: 10.1104/pp.16.01185
– volume: 68
  start-page: 701
  year: 2017
  ident: e_1_3_4_75_2
  article-title: Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants
  publication-title: J. Exp. Bot.
– ident: e_1_3_4_78_2
  doi: 10.1016/j.tplants.2014.04.009
– ident: e_1_3_4_4_2
  doi: 10.3389/fpls.2013.00155
– ident: e_1_3_4_58_2
  doi: 10.1016/j.tplants.2014.09.003
– ident: e_1_3_4_26_2
  doi: 10.1016/j.phytochem.2014.11.008
– ident: e_1_3_4_29_2
  doi: 10.1105/tpc.106.048058
– ident: e_1_3_4_14_2
  doi: 10.1038/nrm1746
– volume: 20
  start-page: 1067
  year: 2019
  ident: e_1_3_4_88_2
  article-title: Mannan oligosaccharides trigger multiple defence responses in rice and tobacco as a novel danger-associated molecular pattern
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12811
– ident: e_1_3_4_35_2
  doi: 10.1094/MPMI-01-11-0021
– ident: e_1_3_4_44_2
  doi: 10.1111/nph.15258
– ident: e_1_3_4_45_2
  doi: 10.3389/fpls.2012.00012
– ident: e_1_3_4_52_2
  doi: 10.1105/tpc.105.031542
– ident: e_1_3_4_74_2
  doi: 10.1094/MPMI.1998.11.7.659
– ident: e_1_3_4_83_2
  doi: 10.1038/s41598-018-21741-y
– ident: e_1_3_4_2_2
  doi: 10.1146/annurev-cellbio-092910-154055
– ident: e_1_3_4_12_2
  doi: 10.1073/pnas.1914422117
– volume: 8
  start-page: 2033
  year: 1996
  ident: e_1_3_4_56_2
  article-title: Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes
  publication-title: Plant Cell
– ident: e_1_3_4_85_2
  doi: 10.1038/nbt.4067
SSID ssj0009580
Score 2.624214
Snippet Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in...
Plant cells are surrounded by an extracellular matrix known as the cell wall. We have analyzed the contribution of the Arabidopsis cell wall to disease...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Biological Sciences
Biotechnology
Botanics
Cellular Biology
Life Sciences
Vegetal Biology
Title Arabidopsis cell wall composition determines disease resistance specificity and fitness
URI https://www.jstor.org/stable/27006173
https://www.ncbi.nlm.nih.gov/pubmed/33509925
https://www.proquest.com/docview/2483815100
https://hal.inrae.fr/hal-03326624
https://pubmed.ncbi.nlm.nih.gov/PMC7865177
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6IaG9IAYMwk0G8TBUZdiJc3usuE2IVRPqRN8i23FYJUiqNh0Sv57j2E7SsknAS1TZcRLlOz35bJ_zHYReFVSkPOOZLwOifKYU8bOEU1_yoKSsFEXKde7w2TQ-vWCf5tF8NNoMs0sacSJ_XZtX8j-oQhvgqrNk_wHZ7qLQAL8BXzgCwnD8K4wnKy4WRb3UoiJ6BX78U2806yhxG4o1Lmy0i1q7rZgxzK81Z2y1ZXXxeS0h0RgVpnLRVC4iwxLW8-4Dt3bhBFO3fjjps1Gsi1iP_fH5tK9tfNaWBLIiBeA96q4DmK_NhLjqlwS4VKZan87W7pq_1IXZz3_3bWPWu2cLvci6qodLFgFto5yNz1XGzQJL8WNmCoV2frh3xG6r-w__Dg5JFyWu-LqNyguA_phRA7SXP1q4wxC4UGayqncktV3XHroVwOxCF774OKcDreaUOBWoJHyzc7cDdNuN3-Iye5c6ktYEtV43XdmNuh3QmNlddMfOP_DEGNMhGqnqHjp08OFjK0P--j76OrAurK0La-vCA-vCvXVha124ty48sC4M1oWtdT1AFx_ez96e-rYMhy8ZSRtfFKJkIRGloFlUcJWVosyooqWeW9CyoIpISlSUxpwUiQpLSmLOZJapWEkqVHiE9qu6Uo8QJiKVaRZJngEPT1iRKhZzFQkJrFemQeShE_dCc2k16nWplO95GyuRhLkGI-_B8NBxN2Bp5FluPvUlINSdpWXVTyefc91GQpjExAG7oh46agHsTtNxGUDyQw-9cIjm4ID1W-eVqjdwB5YC64VPG_HQQ4NwN9oZioeSLey3nmK7p1pctiLvSRpHNEke33jNJ-ig_289RfvNaqOeAUFuxPPWnH8Dk92_aw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabidopsis+cell+wall+composition+determines+disease+resistance+specificity+and+fitness&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Molina%2C+Antonio&rft.au=Miedes%2C+Eva&rft.au=Bacete%2C+Laura&rft.au=Rodr%C3%ADguez%2C+Tinguaro&rft.date=2021-02-02&rft.eissn=1091-6490&rft.volume=118&rft.issue=5&rft_id=info:doi/10.1073%2Fpnas.2010243118&rft_id=info%3Apmid%2F33509925&rft.externalDocID=33509925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon