Arabidopsis cell wall composition determines disease resistance specificity and fitness
Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Ar...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 118; no. 5; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
02.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2010243118 |
Cover
Loading…
Abstract | Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs. |
---|---|
AbstractList | Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs. Plant cells are surrounded by an extracellular matrix known as the cell wall. We have analyzed the contribution of the Arabidopsis cell wall to disease resistance to pathogens with different parasitic styles. Here, we demonstrate that plant cell walls are determinants of immune responses since modification of their composition in a set of Arabidopsis cell wall mutants has an impact on their disease resistance and fitness phenotypes. In these genotypes, we identified specific correlations between the amounts of specific wall carbohydrate epitopes and disease resistance/fitness phenotypes through mathematical analyses. These data support the relevant and specific function of plant cell wall composition in plant immune responses and provide the basis for using wall traits in crop breeding programs. Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants ( cwm ) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs. Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs. Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of cell wall mutants ( ) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of plants to the necrotrophic and vascular pathogens negatively impacted fitness traits, such as biomass and seed yield. Enhanced resistance of plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the tested. Pectin-enriched wall fractions isolated from plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to resistance. Cell walls of plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs. |
Author | Denancé, Nicolas Freydier, Amandine Molina, Antonio Rivière, Marie-Pierre Bacete, Laura Hahn, Michael Pattathil, Sivakumar Mélida, Hugo Sánchez-Vallet, Andrea Goffner, Deborah López, Gemma Rodríguez, Tinguaro Miedes, Eva Barlet, Xavier |
Author_xml | – sequence: 1 givenname: Antonio surname: Molina fullname: Molina, Antonio – sequence: 2 givenname: Eva surname: Miedes fullname: Miedes, Eva – sequence: 3 givenname: Laura surname: Bacete fullname: Bacete, Laura – sequence: 4 givenname: Tinguaro surname: Rodríguez fullname: Rodríguez, Tinguaro – sequence: 5 givenname: Hugo surname: Mélida fullname: Mélida, Hugo – sequence: 6 givenname: Nicolas surname: Denancé fullname: Denancé, Nicolas – sequence: 7 givenname: Andrea surname: Sánchez-Vallet fullname: Sánchez-Vallet, Andrea – sequence: 8 givenname: Marie-Pierre surname: Rivière fullname: Rivière, Marie-Pierre – sequence: 9 givenname: Gemma surname: López fullname: López, Gemma – sequence: 10 givenname: Amandine surname: Freydier fullname: Freydier, Amandine – sequence: 11 givenname: Xavier surname: Barlet fullname: Barlet, Xavier – sequence: 12 givenname: Sivakumar surname: Pattathil fullname: Pattathil, Sivakumar – sequence: 13 givenname: Michael surname: Hahn fullname: Hahn, Michael – sequence: 14 givenname: Deborah surname: Goffner fullname: Goffner, Deborah |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33509925$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-03326624$$DView record in HAL |
BookMark | eNp9kc1v1DAQxS1URLeFMydQjnBIO2PnyxekVQUUaSUuII6W44ypq8QOdrao_z2OtizQAxdbsn_vjf3eGTvxwRNjLxEuEFpxOXudLjgg8Eogdk_YBkFi2VQSTtgGgLdlV_HqlJ2ldAsAsu7gGTsVogYpeb1h37ZR924Ic3KpMDSOxU-dFxOmOSS3uOCLgRaKk_OUisEl0omKSBlftDdUpJmMs8645b7QfiisWzKZnrOnVo-JXjzs5-zrh_dfrq7L3eePn662u9JU0C1lP_S2EtDbHmU9aJK2txIJrZQS0Q5IYBCo7hoNQ0vCIjS6MlJSQwZ7Eufs3cF33vcTDYb8EvWo5ugmHe9V0E79e-Pdjfoe7lTbNTW2bTZ4ezC4eSS73u7UegZC8Kbh1R1m9s3DsBh-7CktanJpDU17CvukeNWJDmsEyOjrv991dP6dfAYuD4CJIaVI9oggqLVbtXar_nSbFfUjRQ5drxXlj7nxP7pXB91tWkI8juEtQIOtEL8Ag9C1Bg |
CitedBy_id | crossref_primary_10_3389_fpls_2024_1374194 crossref_primary_10_1016_j_molp_2024_04_003 crossref_primary_10_1111_jipb_13416 crossref_primary_10_1016_j_jafr_2022_100420 crossref_primary_10_3389_fpls_2021_696955 crossref_primary_10_1007_s00299_023_03074_x crossref_primary_10_1016_j_devcel_2021_03_004 crossref_primary_10_3389_fpls_2024_1401265 crossref_primary_10_3390_ijpb15030056 crossref_primary_10_1093_gigascience_giae036 crossref_primary_10_1007_s11427_022_2278_0 crossref_primary_10_1016_j_biotechadv_2023_108245 crossref_primary_10_1016_j_plantsci_2023_111674 crossref_primary_10_1111_nph_20071 crossref_primary_10_3390_ijms25105256 crossref_primary_10_1111_jac_70012 crossref_primary_10_3390_plants10081712 crossref_primary_10_1111_tpj_16897 crossref_primary_10_1016_j_stress_2025_100783 crossref_primary_10_1038_s41467_021_27479_y crossref_primary_10_1080_10643389_2023_2267939 crossref_primary_10_1083_jcb_202307066 crossref_primary_10_3390_f13101618 crossref_primary_10_1094_MPMI_11_23_0181_R crossref_primary_10_1007_s11103_022_01284_7 crossref_primary_10_1016_j_celrep_2024_114179 crossref_primary_10_3390_plants10071407 crossref_primary_10_3390_plants11243539 crossref_primary_10_1016_j_cub_2023_10_048 crossref_primary_10_1093_plphys_kiac041 crossref_primary_10_3390_ijms241814120 crossref_primary_10_1093_plcell_koab225 crossref_primary_10_1093_jxb_erab423 crossref_primary_10_1093_plphys_kiac165 crossref_primary_10_1111_nph_18091 crossref_primary_10_1264_jsme2_ME24038 crossref_primary_10_1007_s10265_022_01409_5 crossref_primary_10_3389_fpls_2021_738949 crossref_primary_10_3389_fpls_2022_969343 crossref_primary_10_3390_ijms23147540 crossref_primary_10_1146_annurev_arplant_102820_095312 crossref_primary_10_3390_plants10020399 crossref_primary_10_1016_j_plaphy_2022_06_030 crossref_primary_10_1016_j_plaphy_2022_10_015 crossref_primary_10_1002_pld3_511 crossref_primary_10_1111_nph_19901 crossref_primary_10_1111_pce_15060 crossref_primary_10_1093_jxb_erae368 crossref_primary_10_1093_jxb_erad310 crossref_primary_10_1016_j_ijbiomac_2024_132696 crossref_primary_10_3389_fpls_2022_1096800 crossref_primary_10_1039_D3AN00897E crossref_primary_10_1093_plcell_koac040 crossref_primary_10_3390_jof9010052 crossref_primary_10_3390_plants12010184 crossref_primary_10_1099_jgv_0_002023 crossref_primary_10_1093_plphys_kiac312 crossref_primary_10_1093_plphys_kiad524 crossref_primary_10_1016_j_plaphy_2024_109117 crossref_primary_10_1038_s41564_023_01555_z crossref_primary_10_1016_j_jare_2025_02_023 crossref_primary_10_1016_j_molp_2021_07_013 crossref_primary_10_3390_ijms241512261 crossref_primary_10_1007_s10658_024_02970_6 crossref_primary_10_1038_s41598_022_14606_y crossref_primary_10_1007_s12298_023_01327_3 crossref_primary_10_1093_plphys_kiac387 crossref_primary_10_3389_fgene_2023_1163464 crossref_primary_10_1042_EBC20210087 crossref_primary_10_1016_j_pbi_2024_102630 crossref_primary_10_1007_s11103_023_01345_5 crossref_primary_10_1186_s12870_024_05399_5 crossref_primary_10_7717_peerj_11586 crossref_primary_10_1093_pcp_pcab168 crossref_primary_10_1111_tpj_15881 crossref_primary_10_3390_plants10081514 crossref_primary_10_3389_fpls_2022_931979 crossref_primary_10_1002_bies_202400171 crossref_primary_10_1080_07060661_2022_2091663 crossref_primary_10_1093_fqsafe_fyab028 crossref_primary_10_1080_07388551_2024_2370341 crossref_primary_10_2139_ssrn_4098740 crossref_primary_10_3389_fpls_2022_1064628 crossref_primary_10_3390_ijms25084549 crossref_primary_10_1093_plcell_koad325 crossref_primary_10_1016_j_saa_2024_125127 crossref_primary_10_1016_j_stress_2024_100692 crossref_primary_10_1093_jxb_erad362 crossref_primary_10_1111_pce_14973 crossref_primary_10_1016_j_stress_2024_100698 crossref_primary_10_1038_s41467_024_45246_7 crossref_primary_10_3390_horticulturae9010112 crossref_primary_10_3389_fpls_2022_872218 crossref_primary_10_1093_aob_mcab086 crossref_primary_10_3390_ijms23052435 crossref_primary_10_1016_j_pbi_2022_102313 crossref_primary_10_1093_jxb_erad237 crossref_primary_10_1093_jxb_erae442 crossref_primary_10_3390_biology10101070 crossref_primary_10_3389_fpls_2022_1116506 crossref_primary_10_3390_foods12020403 crossref_primary_10_1093_jxb_erad080 crossref_primary_10_1007_s11103_023_01391_z crossref_primary_10_3390_agriculture12091416 |
Cites_doi | 10.1104/pp.16.01680 10.1038/s41477-019-0502-0 10.1111/j.1469-8137.2005.01496.x 10.1016/j.tplants.2020.02.002 10.1186/s12870-019-1934-4 10.3390/plants9050574 10.1073/pnas.1619033114 10.3389/fpls.2016.00984 10.1093/jxb/erm008 10.1111/j.1365-313X.2007.03369.x 10.1016/j.it.2018.09.006 10.1111/tpj.13660 10.1105/tpc.016097 10.1104/pp.110.171843 10.1038/srep30251 10.1111/tpj.13807 10.1094/MPMI-08-18-0217-FI 10.1016/j.pbi.2017.04.021 10.1093/jxb/erp245 10.3389/fpls.2020.01210 10.1104/pp.105.064337 10.1111/jipb.12346 10.1104/pp.17.00737 10.3389/fpls.2014.00178 10.1094/MPMI-07-10-0157 10.1007/978-3-642-03524-1_12 10.1104/pp.68.5.1161 10.1371/journal.ppat.1001011 10.1371/journal.pgen.1006832 10.1105/tpc.106.047720 10.1094/MPMI-10-12-0236-R 10.1126/science.1102765 10.1016/j.copbio.2012.11.004 10.1104/pp.106.090803 10.3389/fpls.2014.00228 10.1016/j.pbi.2017.08.010 10.1093/mp/ssr082 10.1111/pbi.12393 10.1111/tpj.13755 10.1186/s13068-019-1426-7 10.1016/j.pbi.2008.04.001 10.1007/978-1-4939-6859-6_2 10.1111/mpp.12090 10.1094/MPMI-12-19-0341-R 10.7554/eLife.13568 10.1094/MPMI-10-13-0313-IA 10.1105/tpc.15.00404 10.1146/annurev-phyto-081211-172955 10.1038/nri.2016.77 10.1038/msb.2011.66 10.3389/fpls.2018.01725 10.1104/pp.107.4.1129 10.1111/nph.15007 10.1046/j.1365-313X.2003.01726.x 10.1104/pp.107.109686 10.1104/pp.112.212431 10.1111/tpj.12027 10.1104/pp.109.151985 10.1104/pp.113.214460 10.1111/j.1365-313X.2004.02264.x 10.3389/fpls.2017.00192 10.1073/pnas.1900317116 10.1146/annurev-arplant-042811-105449 10.1371/journal.pgen.1002046 10.3389/fpls.2014.00358 10.1094/MPMI-8-0863 10.1093/nar/29.9.e45 10.4161/psb.6.8.15793 10.1007/s00425-008-0860-8 10.1126/science.1086716 10.1105/tpc.003509 10.1111/j.1365-313X.2008.03503.x 10.1105/tpc.002022 10.1111/j.1365-313X.2005.02440.x 10.1104/pp.16.01185 10.1016/j.tplants.2014.04.009 10.3389/fpls.2013.00155 10.1016/j.tplants.2014.09.003 10.1016/j.phytochem.2014.11.008 10.1105/tpc.106.048058 10.1038/nrm1746 10.1111/mpp.12811 10.1094/MPMI-01-11-0021 10.1111/nph.15258 10.3389/fpls.2012.00012 10.1105/tpc.105.031542 10.1094/MPMI.1998.11.7.659 10.1038/s41598-018-21741-y 10.1146/annurev-cellbio-092910-154055 10.1073/pnas.1914422117 10.1038/nbt.4067 |
ContentType | Journal Article |
Copyright | Copyright © 2021 the Author(s). Published by PNAS. Attribution Copyright © 2021 the Author(s). Published by PNAS. 2021 |
Copyright_xml | – notice: Copyright © 2021 the Author(s). Published by PNAS. – notice: Attribution – notice: Copyright © 2021 the Author(s). Published by PNAS. 2021 |
DBID | AAYXX CITATION NPM 7X8 1XC VOOES 5PM |
DOI | 10.1073/pnas.2010243118 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 12 |
ExternalDocumentID | PMC7865177 oai_HAL_hal_03326624v1 33509925 10_1073_pnas_2010243118 27006173 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: DBI-0421683 – fundername: European Commission (EC) grantid: SignWALLINg-624721 – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR‐07‐GPLA‐014 – fundername: National Science Foundation (NSF) grantid: IOS 0923992 – fundername: Ministerio de Economía y Competitividad (MINECO) grantid: BIO2015-64077-R – fundername: Severo Ochoa Program, Agencia Estatal de Investigación (Spain) grantid: SEV-2016-0672 – fundername: Ministerio de Ciencia y Tecnología (MICYT) grantid: RTI2018-096975-B-I00 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM RHF VQA YIF YIN 7X8 1XC UMC VOOES 5PM |
ID | FETCH-LOGICAL-c408t-bdbf430bfb195dae9fbf91e1f99911fd1e0c10e586a0d7e3f106a4c99e6ec1be3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:28:02 EDT 2025 Fri May 09 12:24:39 EDT 2025 Fri Jul 11 12:24:36 EDT 2025 Wed Feb 19 02:28:45 EST 2025 Thu Apr 24 23:01:12 EDT 2025 Tue Jul 01 03:40:41 EDT 2025 Thu May 29 08:53:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | immunity disease resistance glycomics cell wall fitness |
Language | English |
License | Copyright © 2021 the Author(s). Published by PNAS. Attribution: http://creativecommons.org/licenses/by This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c408t-bdbf430bfb195dae9fbf91e1f99911fd1e0c10e586a0d7e3f106a4c99e6ec1be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 3Present address: Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway. 7Present address: EVOTEC ID (Lyon), 69007 Lyon, France. 8Present address: International Research Unit Centre National de la Recherche Scientifique 3189 Environnement, Santé, Sociétés, Faculté de Médecine secteur Nord, 13344 Marseille Cedex 15, France. 5Present address: Groupe d'Etude et de contrôle des Variétés Et des Semences, Station Nationale des Essais de Semences, Laboratoire de Pathologie, 49071 Beaucouzé Cedex, France. 1A.M. and E.M. contributed equally to this work. Edited by Jeffery L. Dangl, University of North Carolina, Chapel Hill, NC, and approved December 21, 2020 (received for review May 28, 2020) Author contributions: A.M., M.H., and D.G. designed research; A.M., E.M., L.B., H.M., N.D., A.S.-V., M.-P.R., G.L., A.F., X.B., and S.P. performed research; A.M., M.H., and D.G. contributed new reagents/analytic tools; E.M., L.B., T.R., H.M., and N.D. analyzed data; A.M., L.B., and H.M. wrote the paper; E.M. and H.M. designed some figures; L.B. designed figures; and T.R. generated mathematical models. 4Present address: Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain. 6Present address: French Agency for Food, Environmental and Occupational Health and Safety, Honeybee Pathology Unit, 06902 Sophia-Antipolis, France. |
ORCID | 0000-0003-3137-7938 0000-0002-3668-9503 0000-0003-0173-3970 0000-0003-0504-9797 0000-0002-9899-6859 0000-0003-3171-8181 0000-0003-2899-1494 0000-0003-4989-2348 0000-0003-1792-0113 0000-0003-2136-5191 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7865177 |
PMID | 33509925 |
PQID | 2483815100 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7865177 hal_primary_oai_HAL_hal_03326624v1 proquest_miscellaneous_2483815100 pubmed_primary_33509925 crossref_primary_10_1073_pnas_2010243118 crossref_citationtrail_10_1073_pnas_2010243118 jstor_primary_27006173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-02 |
PublicationDateYYYYMMDD | 2021-02-02 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2021 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 Bacete L. (e_1_3_4_89_2) 2017 Engelsdorf T. (e_1_3_4_75_2) 2017; 68 e_1_3_4_72_2 e_1_3_4_93_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_91_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 Parker J. E. (e_1_3_4_56_2) 1996; 8 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 Zang H. (e_1_3_4_88_2) 2019; 20 e_1_3_4_52_2 e_1_3_4_90_2 e_1_3_4_50_2 e_1_3_4_92_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_9_2 doi: 10.1104/pp.16.01680 – ident: e_1_3_4_19_2 doi: 10.1038/s41477-019-0502-0 – ident: e_1_3_4_38_2 doi: 10.1111/j.1469-8137.2005.01496.x – ident: e_1_3_4_59_2 doi: 10.1016/j.tplants.2020.02.002 – ident: e_1_3_4_11_2 doi: 10.1186/s12870-019-1934-4 – ident: e_1_3_4_21_2 doi: 10.3390/plants9050574 – ident: e_1_3_4_54_2 doi: 10.1073/pnas.1619033114 – ident: e_1_3_4_27_2 doi: 10.3389/fpls.2016.00984 – ident: e_1_3_4_48_2 doi: 10.1093/jxb/erm008 – ident: e_1_3_4_77_2 doi: 10.1111/j.1365-313X.2007.03369.x – ident: e_1_3_4_7_2 doi: 10.1016/j.it.2018.09.006 – ident: e_1_3_4_31_2 doi: 10.1111/tpj.13660 – ident: e_1_3_4_70_2 doi: 10.1105/tpc.016097 – ident: e_1_3_4_30_2 doi: 10.1104/pp.110.171843 – ident: e_1_3_4_68_2 doi: 10.1038/srep30251 – ident: e_1_3_4_6_2 doi: 10.1111/tpj.13807 – ident: e_1_3_4_90_2 doi: 10.1094/MPMI-08-18-0217-FI – ident: e_1_3_4_3_2 doi: 10.1016/j.pbi.2017.04.021 – ident: e_1_3_4_15_2 doi: 10.1093/jxb/erp245 – ident: e_1_3_4_51_2 doi: 10.3389/fpls.2020.01210 – ident: e_1_3_4_22_2 doi: 10.1104/pp.105.064337 – ident: e_1_3_4_92_2 doi: 10.1111/jipb.12346 – ident: e_1_3_4_62_2 doi: 10.1104/pp.17.00737 – ident: e_1_3_4_24_2 doi: 10.3389/fpls.2014.00178 – ident: e_1_3_4_34_2 doi: 10.1094/MPMI-07-10-0157 – ident: e_1_3_4_41_2 doi: 10.1007/978-3-642-03524-1_12 – ident: e_1_3_4_50_2 doi: 10.1104/pp.68.5.1161 – ident: e_1_3_4_76_2 doi: 10.1371/journal.ppat.1001011 – ident: e_1_3_4_64_2 doi: 10.1371/journal.pgen.1006832 – ident: e_1_3_4_53_2 doi: 10.1105/tpc.106.047720 – ident: e_1_3_4_43_2 doi: 10.1094/MPMI-10-12-0236-R – ident: e_1_3_4_16_2 doi: 10.1126/science.1102765 – ident: e_1_3_4_84_2 doi: 10.1016/j.copbio.2012.11.004 – ident: e_1_3_4_32_2 doi: 10.1104/pp.106.090803 – ident: e_1_3_4_23_2 doi: 10.3389/fpls.2014.00228 – ident: e_1_3_4_25_2 doi: 10.1016/j.pbi.2017.08.010 – ident: e_1_3_4_39_2 doi: 10.1093/mp/ssr082 – ident: e_1_3_4_46_2 doi: 10.1111/pbi.12393 – ident: e_1_3_4_47_2 doi: 10.1111/tpj.13755 – ident: e_1_3_4_86_2 doi: 10.1186/s13068-019-1426-7 – ident: e_1_3_4_17_2 doi: 10.1016/j.pbi.2008.04.001 – start-page: 13 volume-title: Plant Pattern Recognition Receptors year: 2017 ident: e_1_3_4_89_2 doi: 10.1007/978-1-4939-6859-6_2 – ident: e_1_3_4_36_2 doi: 10.1111/mpp.12090 – ident: e_1_3_4_20_2 doi: 10.1094/MPMI-12-19-0341-R – ident: e_1_3_4_65_2 doi: 10.7554/eLife.13568 – ident: e_1_3_4_79_2 doi: 10.1094/MPMI-10-13-0313-IA – ident: e_1_3_4_8_2 doi: 10.1105/tpc.15.00404 – ident: e_1_3_4_81_2 doi: 10.1146/annurev-phyto-081211-172955 – ident: e_1_3_4_1_2 doi: 10.1038/nri.2016.77 – ident: e_1_3_4_42_2 doi: 10.1038/msb.2011.66 – ident: e_1_3_4_49_2 doi: 10.3389/fpls.2018.01725 – ident: e_1_3_4_13_2 doi: 10.1104/pp.107.4.1129 – ident: e_1_3_4_63_2 doi: 10.1111/nph.15007 – ident: e_1_3_4_87_2 doi: 10.1046/j.1365-313X.2003.01726.x – ident: e_1_3_4_33_2 doi: 10.1104/pp.107.109686 – ident: e_1_3_4_66_2 doi: 10.1104/pp.112.212431 – ident: e_1_3_4_57_2 doi: 10.1111/tpj.12027 – ident: e_1_3_4_61_2 doi: 10.1104/pp.109.151985 – ident: e_1_3_4_69_2 doi: 10.1104/pp.113.214460 – ident: e_1_3_4_73_2 doi: 10.1111/j.1365-313X.2004.02264.x – ident: e_1_3_4_82_2 doi: 10.3389/fpls.2017.00192 – ident: e_1_3_4_10_2 doi: 10.1073/pnas.1900317116 – ident: e_1_3_4_18_2 doi: 10.1146/annurev-arplant-042811-105449 – ident: e_1_3_4_67_2 doi: 10.1371/journal.pgen.1002046 – ident: e_1_3_4_5_2 doi: 10.3389/fpls.2014.00358 – ident: e_1_3_4_55_2 doi: 10.1094/MPMI-8-0863 – ident: e_1_3_4_93_2 doi: 10.1093/nar/29.9.e45 – ident: e_1_3_4_60_2 doi: 10.4161/psb.6.8.15793 – ident: e_1_3_4_91_2 doi: 10.1007/s00425-008-0860-8 – ident: e_1_3_4_71_2 doi: 10.1126/science.1086716 – ident: e_1_3_4_72_2 doi: 10.1105/tpc.003509 – ident: e_1_3_4_80_2 doi: 10.1111/j.1365-313X.2008.03503.x – ident: e_1_3_4_28_2 doi: 10.1105/tpc.002022 – ident: e_1_3_4_40_2 doi: 10.1111/j.1365-313X.2005.02440.x – ident: e_1_3_4_37_2 doi: 10.1104/pp.16.01185 – volume: 68 start-page: 701 year: 2017 ident: e_1_3_4_75_2 article-title: Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants publication-title: J. Exp. Bot. – ident: e_1_3_4_78_2 doi: 10.1016/j.tplants.2014.04.009 – ident: e_1_3_4_4_2 doi: 10.3389/fpls.2013.00155 – ident: e_1_3_4_58_2 doi: 10.1016/j.tplants.2014.09.003 – ident: e_1_3_4_26_2 doi: 10.1016/j.phytochem.2014.11.008 – ident: e_1_3_4_29_2 doi: 10.1105/tpc.106.048058 – ident: e_1_3_4_14_2 doi: 10.1038/nrm1746 – volume: 20 start-page: 1067 year: 2019 ident: e_1_3_4_88_2 article-title: Mannan oligosaccharides trigger multiple defence responses in rice and tobacco as a novel danger-associated molecular pattern publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12811 – ident: e_1_3_4_35_2 doi: 10.1094/MPMI-01-11-0021 – ident: e_1_3_4_44_2 doi: 10.1111/nph.15258 – ident: e_1_3_4_45_2 doi: 10.3389/fpls.2012.00012 – ident: e_1_3_4_52_2 doi: 10.1105/tpc.105.031542 – ident: e_1_3_4_74_2 doi: 10.1094/MPMI.1998.11.7.659 – ident: e_1_3_4_83_2 doi: 10.1038/s41598-018-21741-y – ident: e_1_3_4_2_2 doi: 10.1146/annurev-cellbio-092910-154055 – ident: e_1_3_4_12_2 doi: 10.1073/pnas.1914422117 – volume: 8 start-page: 2033 year: 1996 ident: e_1_3_4_56_2 article-title: Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes publication-title: Plant Cell – ident: e_1_3_4_85_2 doi: 10.1038/nbt.4067 |
SSID | ssj0009580 |
Score | 2.624214 |
Snippet | Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in... Plant cells are surrounded by an extracellular matrix known as the cell wall. We have analyzed the contribution of the Arabidopsis cell wall to disease... |
SourceID | pubmedcentral hal proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Biological Sciences Biotechnology Botanics Cellular Biology Life Sciences Vegetal Biology |
Title | Arabidopsis cell wall composition determines disease resistance specificity and fitness |
URI | https://www.jstor.org/stable/27006173 https://www.ncbi.nlm.nih.gov/pubmed/33509925 https://www.proquest.com/docview/2483815100 https://hal.inrae.fr/hal-03326624 https://pubmed.ncbi.nlm.nih.gov/PMC7865177 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6IaG9IAYMwk0G8TBUZdiJc3usuE2IVRPqRN8i23FYJUiqNh0Sv57j2E7SsknAS1TZcRLlOz35bJ_zHYReFVSkPOOZLwOifKYU8bOEU1_yoKSsFEXKde7w2TQ-vWCf5tF8NNoMs0sacSJ_XZtX8j-oQhvgqrNk_wHZ7qLQAL8BXzgCwnD8K4wnKy4WRb3UoiJ6BX78U2806yhxG4o1Lmy0i1q7rZgxzK81Z2y1ZXXxeS0h0RgVpnLRVC4iwxLW8-4Dt3bhBFO3fjjps1Gsi1iP_fH5tK9tfNaWBLIiBeA96q4DmK_NhLjqlwS4VKZan87W7pq_1IXZz3_3bWPWu2cLvci6qodLFgFto5yNz1XGzQJL8WNmCoV2frh3xG6r-w__Dg5JFyWu-LqNyguA_phRA7SXP1q4wxC4UGayqncktV3XHroVwOxCF774OKcDreaUOBWoJHyzc7cDdNuN3-Iye5c6ktYEtV43XdmNuh3QmNlddMfOP_DEGNMhGqnqHjp08OFjK0P--j76OrAurK0La-vCA-vCvXVha124ty48sC4M1oWtdT1AFx_ez96e-rYMhy8ZSRtfFKJkIRGloFlUcJWVosyooqWeW9CyoIpISlSUxpwUiQpLSmLOZJapWEkqVHiE9qu6Uo8QJiKVaRZJngEPT1iRKhZzFQkJrFemQeShE_dCc2k16nWplO95GyuRhLkGI-_B8NBxN2Bp5FluPvUlINSdpWXVTyefc91GQpjExAG7oh46agHsTtNxGUDyQw-9cIjm4ID1W-eVqjdwB5YC64VPG_HQQ4NwN9oZioeSLey3nmK7p1pctiLvSRpHNEke33jNJ-ig_289RfvNaqOeAUFuxPPWnH8Dk92_aw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabidopsis+cell+wall+composition+determines+disease+resistance+specificity+and+fitness&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Molina%2C+Antonio&rft.au=Miedes%2C+Eva&rft.au=Bacete%2C+Laura&rft.au=Rodr%C3%ADguez%2C+Tinguaro&rft.date=2021-02-02&rft.eissn=1091-6490&rft.volume=118&rft.issue=5&rft_id=info:doi/10.1073%2Fpnas.2010243118&rft_id=info%3Apmid%2F33509925&rft.externalDocID=33509925 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |