The potential distribution of bioenergy crops in Europe under present and future climate
We have derived maps of the potential distribution of 26 promising bioenergy crops in Europe, based on simple rules for suitable climatic conditions and elevation. Crops suitable for temperate and Mediterranean climates were selected from four groups: oilseeds (e.g. oilseed rape, sunflower), starch...
Saved in:
Published in | Biomass & bioenergy Vol. 30; no. 3; pp. 183 - 197 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.03.2006
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have derived maps of the potential distribution of 26 promising bioenergy crops in Europe, based on simple rules for suitable climatic conditions and elevation. Crops suitable for temperate and Mediterranean climates were selected from four groups: oilseeds (e.g. oilseed rape, sunflower), starch crops (e.g. potatoes), cereals (e.g. barley) and solid biofuel crops (e.g. sorghum, Miscanthus). The impact of climate change under different scenarios and GCMs on the potential future distribution of these crops was determined, based on predicted future climatic conditions. Climate scenarios based on four IPCC SRES emission scenarios, A1FI, A2, B1 and B2, implemented by four global climate models, HadCM3, CSIRO2, PCM and CGCM2, were used. The potential distribution of temperate oilseeds, cereals, starch crops and solid biofuels is predicted to increase in northern Europe by the 2080s, due to increasing temperatures, and decrease in southern Europe (e.g. Spain, Portugal, southern France, Italy, and Greece) due to increased drought. Mediterranean oil and solid biofuel crops, currently restricted to southern Europe, are predicted to extend further north due to higher summer temperatures. Effects become more pronounced with time and are greatest under the A1FI scenario and for models predicting the greatest climate forcing. Different climate models produce different regional patterns. All models predict that bioenergy crop production in Spain is especially vulnerable to climate change, with many temperate crops predicted to decline dramatically by the 2080s. The choice of bioenergy crops in southern Europe will be severely reduced in future unless measures are taken to adapt to climate change. |
---|---|
AbstractList | We have derived maps of the potential distribution of 26 promising bioenergy crops in Europe, based on simple rules for suitable climatic conditions and elevation. Crops suitable for temperate and Mediterranean climates were selected from four groups: oilseeds (e.g. oilseed rape, sunflower), starch crops (e.g. potatoes), cereals (e.g. barley) and solid biofuel crops (e.g. sorghum, Miscanthus). The impact of climate change under different scenarios and GCMs on the potential future distribution of these crops was determined, based on predicted future climatic conditions. Climate scenarios based on four IPCC SRES emission scenarios, A1FI, A2, B1 and B2, implemented by four global climate models, HadCM3, CSIRO2, PCM and CGCM2, were used. The potential distribution of temperate oilseeds, cereals, starch crops and solid biofuels is predicted to increase in northern Europe by the 2080s, due to increasing temperatures, and decrease in southern Europe (e.g. Spain, Portugal, southern France, Italy, and Greece) due to increased drought. Mediterranean oil and solid biofuel crops, currently restricted to southern Europe, are predicted to extend further north due to higher summer temperatures. Effects become more pronounced with time and are greatest under the A1FI scenario and for models predicting the greatest climate forcing. Different climate models produce different regional patterns. All models predict that bioenergy crop production in Spain is especially vulnerable to climate change, with many temperate crops predicted to decline dramatically by the 2080s. The choice of bioenergy crops in southern Europe will be severely reduced in future unless measures are taken to adapt to climate change. |
Author | Wattenbach, Martin Glendining, Margaret J. House, Jo I. Tuck, Gill Smith, Pete |
Author_xml | – sequence: 1 givenname: Gill surname: Tuck fullname: Tuck, Gill email: gill.tuck@bbsrc.ac.uk organization: Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK – sequence: 2 givenname: Margaret J. surname: Glendining fullname: Glendining, Margaret J. organization: Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK – sequence: 3 givenname: Pete surname: Smith fullname: Smith, Pete organization: School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, UK – sequence: 4 givenname: Jo I. surname: House fullname: House, Jo I. organization: Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK – sequence: 5 givenname: Martin surname: Wattenbach fullname: Wattenbach, Martin organization: School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17546473$$DView record in Pascal Francis |
BookMark | eNqFkF1LwzAUhoNMcJv-BcmNl61Jm34EvFDG_ICBNxO8C2l6ohldWpJU2L83ZYrgzS7CCYf3eUmeBZrZ3gJC15SklNDydpc2pt_HA2lGSJFSmhLKz9Cc1lWeZJzwGZoTXtKEFzm7QAvvd4RQRhido_ftJ-ChD2CDkR1ujQ_ONGMwvcW9xlOrBfdxwMr1g8fG4vUYb4BH24LDgwMfUSxti_UYRgdYdWYvA1yicy07D1c_c4neHtfb1XOyeX16WT1sEsVIHZJGlbVSSlY0k0ByVsuiIWXDlKRtphk0TRMXutacalKolhdMlVUhIeNZxuoiX6KbY-8gvZKddtIq48Xg4ivcQdCqYCWr8pgrj7n4Ee8d6L8IEZNHsRO_HsXkUVAqoscI3v0DlQlyEhScNN1p_P6IQ5TwZcAJrwxYBa1xoIJoe3Oq4hsKGpds |
CitedBy_id | crossref_primary_10_1017_S0021859617000727 crossref_primary_10_1007_s10658_010_9739_1 crossref_primary_10_3390_agronomy9050237 crossref_primary_10_1111_j_1365_2486_2009_02000_x crossref_primary_10_1016_j_agee_2011_05_026 crossref_primary_10_1016_j_biombioe_2012_06_035 crossref_primary_10_1177_0270467609349048 crossref_primary_10_1016_j_agee_2015_01_013 crossref_primary_10_1016_j_enpol_2009_08_016 crossref_primary_10_3390_agronomy9090528 crossref_primary_10_1007_s12892_012_0023_0 crossref_primary_10_1111_j_1365_2494_2010_00778_x crossref_primary_10_1016_j_apenergy_2019_01_214 crossref_primary_10_1111_gcb_12180 crossref_primary_10_1016_j_biombioe_2014_01_052 crossref_primary_10_1111_j_1439_037X_2011_00478_x crossref_primary_10_1016_j_funeco_2011_04_003 crossref_primary_10_1038_s41560_020_0664_z crossref_primary_10_1111_j_1365_2486_2007_01357_x crossref_primary_10_1111_j_1757_1707_2010_01056_x crossref_primary_10_1007_s10973_007_8852_7 crossref_primary_10_1016_j_tplants_2008_06_001 crossref_primary_10_1016_j_ecolind_2018_02_053 crossref_primary_10_1007_s10584_018_2265_4 crossref_primary_10_1016_j_agrformet_2016_12_017 crossref_primary_10_1080_01496395_2018_1553985 crossref_primary_10_1007_s00170_016_9010_9 crossref_primary_10_1111_gcbb_12945 crossref_primary_10_1007_s10098_016_1314_9 crossref_primary_10_1016_j_rser_2010_09_050 crossref_primary_10_1029_2020EF001478 crossref_primary_10_1111_j_1365_2664_2008_01474_x crossref_primary_10_1016_j_energy_2011_09_009 crossref_primary_10_1016_j_renene_2017_07_098 crossref_primary_10_1016_j_jenvman_2015_03_020 crossref_primary_10_1016_j_scitotenv_2014_01_097 crossref_primary_10_1016_j_agrformet_2019_03_023 crossref_primary_10_1038_s41598_023_42132_y crossref_primary_10_1111_j_1439_037X_2011_00502_x crossref_primary_10_61927_igmin276 crossref_primary_10_1016_j_eja_2019_125924 crossref_primary_10_1016_j_landusepol_2013_05_010 crossref_primary_10_1016_j_agsy_2021_103083 crossref_primary_10_1007_s10113_010_0173_x crossref_primary_10_1016_j_biombioe_2015_04_015 crossref_primary_10_1093_aob_mcy223 crossref_primary_10_1371_journal_pone_0207124 crossref_primary_10_1002_bbb_2602 crossref_primary_10_3390_agronomy12092212 crossref_primary_10_1061__ASCE_IR_1943_4774_0000210 crossref_primary_10_1016_j_crm_2014_05_001 crossref_primary_10_1111_j_1757_1707_2009_01012_x crossref_primary_10_1016_j_indcrop_2015_06_054 crossref_primary_10_1111_grs_12085 crossref_primary_10_1016_j_foodres_2021_110769 crossref_primary_10_1029_2018JG004680 crossref_primary_10_1016_j_jenvman_2022_114794 crossref_primary_10_1111_j_1461_0248_2008_01231_x crossref_primary_10_3389_fpls_2018_00342 crossref_primary_10_1111_ppl_12379 crossref_primary_10_1016_j_biombioe_2010_02_012 crossref_primary_10_3390_agriculture9090194 crossref_primary_10_1080_17565529_2015_1034234 crossref_primary_10_1007_s40430_020_02463_7 crossref_primary_10_1111_gcbb_12123 crossref_primary_10_1111_gcbb_12640 crossref_primary_10_3390_su151411296 crossref_primary_10_1016_j_indcrop_2020_112396 crossref_primary_10_1128_msystems_00092_20 crossref_primary_10_1007_s11367_010_0170_9 crossref_primary_10_1111_j_1744_7348_2008_00304_x crossref_primary_10_1016_j_eja_2022_126576 crossref_primary_10_1007_s11104_010_0443_x crossref_primary_10_1051_ocl_2016052 crossref_primary_10_1016_j_chemosphere_2019_124827 crossref_primary_10_1016_j_agrformet_2012_05_004 crossref_primary_10_3390_atmos10060305 crossref_primary_10_3390_su2123747 crossref_primary_10_1016_j_biombioe_2010_08_001 crossref_primary_10_4028_www_scientific_net_AMR_955_959_3777 crossref_primary_10_1016_j_apenergy_2014_01_098 crossref_primary_10_1080_03650340_2015_1093622 crossref_primary_10_1007_s10113_006_0020_2 crossref_primary_10_3390_en12163123 crossref_primary_10_1016_j_eja_2016_09_015 crossref_primary_10_1111_j_1757_1707_2010_01058_x crossref_primary_10_3390_agronomy10081194 crossref_primary_10_1002_2017EF000629 crossref_primary_10_1002_bbb_1654 crossref_primary_10_1080_15435075_2016_1206017 crossref_primary_10_1111_j_1466_8238_2010_00573_x crossref_primary_10_3390_en11123372 crossref_primary_10_1002_bbb_1419 crossref_primary_10_1002_bbb_242 crossref_primary_10_1016_j_apgeog_2011_08_013 crossref_primary_10_1016_j_agee_2005_11_027 crossref_primary_10_1111_gcbb_13033 crossref_primary_10_1016_j_eja_2021_126341 crossref_primary_10_1016_j_indcrop_2016_09_005 crossref_primary_10_1016_j_rser_2012_10_019 crossref_primary_10_1021_ef2018622 crossref_primary_10_1016_j_jclepro_2017_05_064 crossref_primary_10_1051_cagri_2017028 crossref_primary_10_1016_j_soilbio_2008_04_001 crossref_primary_10_1055_s_2007_965247 crossref_primary_10_1111_jen_13204 crossref_primary_10_4081_ija_2012_e22 crossref_primary_10_3390_agronomy9100605 crossref_primary_10_32615_ps_2024_025 crossref_primary_10_1016_j_ecolmodel_2022_110115 crossref_primary_10_5010_JPB_2007_34_2_103 crossref_primary_10_1111_j_1757_1707_2009_01007_x crossref_primary_10_1007_s12155_014_9462_4 crossref_primary_10_1007_s13593_015_0344_8 crossref_primary_10_1016_j_rser_2016_07_072 crossref_primary_10_3390_f9030103 crossref_primary_10_3390_pr9101755 crossref_primary_10_1080_09640568_2011_603958 crossref_primary_10_1007_s12155_014_9422_z crossref_primary_10_1111_gcb_15313 crossref_primary_10_1111_pbi_12279 crossref_primary_10_1016_j_agee_2012_07_014 crossref_primary_10_1111_j_1757_1707_2011_01125_x crossref_primary_10_1243_09576509JPE1010 crossref_primary_10_1016_j_fcr_2011_03_008 crossref_primary_10_1007_s11367_013_0680_3 crossref_primary_10_1016_j_agee_2008_03_010 crossref_primary_10_1080_15435075_2013_871722 crossref_primary_10_1016_j_biombioe_2009_10_019 crossref_primary_10_1016_j_landusepol_2009_09_012 crossref_primary_10_3389_ffgc_2024_1379741 crossref_primary_10_3390_su10103428 crossref_primary_10_5423_PPJ_OA_05_2019_0140 crossref_primary_10_1111_pce_13001 crossref_primary_10_1002_bbb_64 crossref_primary_10_1016_j_biombioe_2011_02_009 crossref_primary_10_1016_j_scitotenv_2009_05_002 crossref_primary_10_1016_j_indcrop_2019_06_002 crossref_primary_10_1016_j_still_2015_06_006 crossref_primary_10_1016_j_agsy_2017_05_009 crossref_primary_10_1016_j_renene_2014_11_081 crossref_primary_10_1111_gcbb_12054 crossref_primary_10_1111_gcbb_12571 crossref_primary_10_3390_en12101928 crossref_primary_10_1016_j_biombioe_2011_01_032 crossref_primary_10_1139_cjps_2020_0220 crossref_primary_10_1016_j_apenergy_2013_11_011 crossref_primary_10_1371_journal_pone_0111587 crossref_primary_10_1051_ocl_2021016 crossref_primary_10_1016_j_rser_2013_05_035 crossref_primary_10_1080_19440049_2012_700953 crossref_primary_10_1051_ocl_2016004 crossref_primary_10_1051_agro_2008030 crossref_primary_10_1016_j_biombioe_2012_02_011 crossref_primary_10_1080_03650340_2010_498011 crossref_primary_10_1088_1748_9326_8_4_044003 crossref_primary_10_1093_aob_mcz006 crossref_primary_10_1098_rstb_2010_0158 crossref_primary_10_1016_j_biortech_2008_03_036 crossref_primary_10_1080_14693062_2012_728790 crossref_primary_10_1007_s11627_009_9221_y crossref_primary_10_1016_j_envsoft_2016_07_014 crossref_primary_10_1186_s13705_015_0042_z crossref_primary_10_1016_j_biombioe_2008_09_003 crossref_primary_10_1016_j_scitotenv_2011_04_016 crossref_primary_10_1016_j_egypro_2017_08_063 crossref_primary_10_1007_s00606_013_0956_x crossref_primary_10_1111_j_1757_1707_2009_01002_x |
Cites_doi | 10.1071/PP9800387 10.1016/S0961-9534(02)00103-4 10.1016/S0956-7135(02)00106-8 10.1016/j.agee.2004.12.002 10.1111/j.1529-8817.2003.00749.x |
ContentType | Journal Article |
Copyright | 2005 Elsevier Ltd 2006 INIST-CNRS |
Copyright_xml | – notice: 2005 Elsevier Ltd – notice: 2006 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.biombioe.2005.11.019 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1873-2909 |
EndPage | 197 |
ExternalDocumentID | 17546473 10_1016_j_biombioe_2005_11_019 S0961953405001959 |
GeographicLocations | Europe |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SES SEW SPC SPCBC SSA SSG SSJ SSR SSZ T5K VH1 WUQ ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c408t-bc68ccca712ae0348a5b06b4ca1d2f4ebbb5b0f8f91f05cd954c675ae29224853 |
IEDL.DBID | .~1 |
ISSN | 0961-9534 |
IngestDate | Mon Jul 21 09:13:40 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Tue Jul 01 01:49:20 EDT 2025 Fri Feb 23 02:34:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Climate change Biofuel crops Modelling Bioenergy crops Europe GIS mapping Oilseed Biofuel Starch crop Modeling Sunflower oil Geographic information system Cereal Climate modification |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-bc68ccca712ae0348a5b06b4ca1d2f4ebbb5b0f8f91f05cd954c675ae29224853 |
PageCount | 15 |
ParticipantIDs | pascalfrancis_primary_17546473 crossref_primary_10_1016_j_biombioe_2005_11_019 crossref_citationtrail_10_1016_j_biombioe_2005_11_019 elsevier_sciencedirect_doi_10_1016_j_biombioe_2005_11_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-03-00 |
PublicationDateYYYYMMDD | 2006-03-01 |
PublicationDate_xml | – month: 03 year: 2006 text: 2006-03-00 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Biomass & bioenergy |
PublicationYear | 2006 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Parry (bib8) 2000 Anon. Non-food crops. Farmers Weekly 2003;14–20 November 2003. p. 65–9. Russell, Wilson (bib16) 1994 Clifton-Brown, Stampfl, Jones (bib20) 2004; 10 Fick, Loomis, Williams (bib17) 1975 Bassam (bib18) 1996 FAO. FAO yearbook production 2001, vol. 55. Rome: Food and Agricultural Organization of the United Nations; 2002. Nakicenovic, Alcamo, Davis, de Vries, Fenhann, Gaffin (bib6) 2000 FAO. ECOCROP: The crop environmental requirements database and the crop environmental response database Mitchell TD, Carter TR, Jones PD, Hulme M, New M. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100) Working Paper 55:25. Norwich: Tyndall Centre for Climate Change Research, University of East Anglia; 2004. Bassam (bib10) 1998 DG Research of the European Commission; 2004. 2003. Rounsevell, Ewert, Reginster, Leemans, Carter (bib4) 2005; 107 International Institute for Applied Systems Analysis; 2002. IENICA. Interactive European Network for Industrial crops and their application IIASA. Global agro-ecological assessment for agriculture in the 21st century IPCC. Climate change: the scientific basis. Cambridge, UK: Cambridge University Press; 2001. BioBase. European Energy Crops InterNetwork Wardlaw, Sofield, Cartwright (bib21) 1980; 7 Cannell (bib1) 2003; 24 UK-DTI. New and renewable energy. Prospects for the 21st century. London: UK Department of Trade and Industry; 2001. Funded by DG XII (Science, Research and Development) of the European Commission; 2004. Russell (bib15) 1990 Smith, Powlson (bib7) 2003 European Commission. Energy for the future: renewable sources of energy. White Paper for Community Strategy and Action Plan (COM(97)). Luxembourg: Office for Official Publications of the European Communities; 1997. 10.1016/j.biombioe.2005.11.019_bib2 10.1016/j.biombioe.2005.11.019_bib3 Bassam (10.1016/j.biombioe.2005.11.019_bib10) 1998 10.1016/j.biombioe.2005.11.019_bib11 Russell (10.1016/j.biombioe.2005.11.019_bib15) 1990 10.1016/j.biombioe.2005.11.019_bib22 Nakicenovic (10.1016/j.biombioe.2005.11.019_bib6) 2000 10.1016/j.biombioe.2005.11.019_bib13 10.1016/j.biombioe.2005.11.019_bib12 10.1016/j.biombioe.2005.11.019_bib14 Smith (10.1016/j.biombioe.2005.11.019_bib7) 2003 10.1016/j.biombioe.2005.11.019_bib19 Rounsevell (10.1016/j.biombioe.2005.11.019_bib4) 2005; 107 Cannell (10.1016/j.biombioe.2005.11.019_bib1) 2003; 24 Wardlaw (10.1016/j.biombioe.2005.11.019_bib21) 1980; 7 Bassam (10.1016/j.biombioe.2005.11.019_bib18) 1996 10.1016/j.biombioe.2005.11.019_bib9 10.1016/j.biombioe.2005.11.019_bib5 Parry (10.1016/j.biombioe.2005.11.019_bib8) 2000 Russell (10.1016/j.biombioe.2005.11.019_bib16) 1994 Fick (10.1016/j.biombioe.2005.11.019_bib17) 1975 Clifton-Brown (10.1016/j.biombioe.2005.11.019_bib20) 2004; 10 |
References_xml | – start-page: 241 year: 2003 end-page: 254 ident: bib7 article-title: Sustainability of soil management practices—a global perspective publication-title: Soil biological fertility—a key to sustainable land use in agriculture – reference: . Funded by DG XII (Science, Research and Development) of the European Commission; 2004. – year: 2000 ident: bib8 article-title: Assessment of potential effects and adaptations for climate change in Europe: the Europe ACACIA Project – reference: European Commission. Energy for the future: renewable sources of energy. White Paper for Community Strategy and Action Plan (COM(97)). Luxembourg: Office for Official Publications of the European Communities; 1997. – reference: IIASA. Global agro-ecological assessment for agriculture in the 21st century – volume: 7 start-page: 387 year: 1980 end-page: 400 ident: bib21 article-title: Factors limiting the rate of dry matter accumulation in the grain of wheat grown at high temperature publication-title: Australian Journal of Plant Physiology – reference: FAO. FAO yearbook production 2001, vol. 55. Rome: Food and Agricultural Organization of the United Nations; 2002. – reference: UK-DTI. New and renewable energy. Prospects for the 21st century. London: UK Department of Trade and Industry; 2001. – year: 1998 ident: bib10 article-title: Energy plant species: their use and impact on environment and development – reference: IPCC. Climate change: the scientific basis. Cambridge, UK: Cambridge University Press; 2001. – reference: IENICA. Interactive European Network for Industrial crops and their application – reference: : International Institute for Applied Systems Analysis; 2002. – year: 1996 ident: bib18 article-title: Renewable energy: potential energy crops for Europe and the Mediterranean region – volume: 24 start-page: 97 year: 2003 end-page: 116 ident: bib1 article-title: Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK publication-title: Biomass and Bioenergy – year: 1994 ident: bib16 article-title: An agro-pedo-climatological knowledge base of wheat in Europe – year: 2000 ident: bib6 article-title: Special report on emissions scenarios – volume: 107 start-page: 117 year: 2005 end-page: 135 ident: bib4 article-title: Future scenarios of European agricultural land use. II: estimating changes in cropland and grassland publication-title: Agriculture, Ecosystem and Environment – reference: BioBase. European Energy Crops InterNetwork – year: 1990 ident: bib15 article-title: EUR 13040-Barley knowledge base – reference: Anon. Non-food crops. Farmers Weekly 2003;14–20 November 2003. p. 65–9. – reference: ; 2003. – reference: Mitchell TD, Carter TR, Jones PD, Hulme M, New M. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100) Working Paper 55:25. Norwich: Tyndall Centre for Climate Change Research, University of East Anglia; 2004. – start-page: 374 year: 1975 ident: bib17 article-title: Sugar beet publication-title: Crop physiology-some case histories – volume: 10 start-page: 509 year: 2004 end-page: 518 ident: bib20 publication-title: Global Change Biology – reference: FAO. ECOCROP: The crop environmental requirements database and the crop environmental response database – reference: : DG Research of the European Commission; 2004. – year: 1998 ident: 10.1016/j.biombioe.2005.11.019_bib10 – start-page: 241 year: 2003 ident: 10.1016/j.biombioe.2005.11.019_bib7 article-title: Sustainability of soil management practices—a global perspective – year: 2000 ident: 10.1016/j.biombioe.2005.11.019_bib8 – year: 1996 ident: 10.1016/j.biombioe.2005.11.019_bib18 – ident: 10.1016/j.biombioe.2005.11.019_bib2 – year: 2000 ident: 10.1016/j.biombioe.2005.11.019_bib6 – volume: 7 start-page: 387 year: 1980 ident: 10.1016/j.biombioe.2005.11.019_bib21 article-title: Factors limiting the rate of dry matter accumulation in the grain of wheat grown at high temperature publication-title: Australian Journal of Plant Physiology doi: 10.1071/PP9800387 – ident: 10.1016/j.biombioe.2005.11.019_bib3 – ident: 10.1016/j.biombioe.2005.11.019_bib5 – year: 1994 ident: 10.1016/j.biombioe.2005.11.019_bib16 – ident: 10.1016/j.biombioe.2005.11.019_bib22 – volume: 24 start-page: 97 issue: 2 year: 2003 ident: 10.1016/j.biombioe.2005.11.019_bib1 article-title: Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK publication-title: Biomass and Bioenergy doi: 10.1016/S0961-9534(02)00103-4 – ident: 10.1016/j.biombioe.2005.11.019_bib9 – ident: 10.1016/j.biombioe.2005.11.019_bib11 – ident: 10.1016/j.biombioe.2005.11.019_bib13 doi: 10.1016/S0956-7135(02)00106-8 – volume: 107 start-page: 117 issue: 2 year: 2005 ident: 10.1016/j.biombioe.2005.11.019_bib4 article-title: Future scenarios of European agricultural land use. II: estimating changes in cropland and grassland publication-title: Agriculture, Ecosystem and Environment doi: 10.1016/j.agee.2004.12.002 – start-page: 374 year: 1975 ident: 10.1016/j.biombioe.2005.11.019_bib17 article-title: Sugar beet – year: 1990 ident: 10.1016/j.biombioe.2005.11.019_bib15 – ident: 10.1016/j.biombioe.2005.11.019_bib19 – ident: 10.1016/j.biombioe.2005.11.019_bib12 – volume: 10 start-page: 509 year: 2004 ident: 10.1016/j.biombioe.2005.11.019_bib20 article-title: Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions publication-title: Global Change Biology doi: 10.1111/j.1529-8817.2003.00749.x – ident: 10.1016/j.biombioe.2005.11.019_bib14 |
SSID | ssj0014041 |
Score | 2.2848442 |
Snippet | We have derived maps of the potential distribution of 26 promising bioenergy crops in Europe, based on simple rules for suitable climatic conditions and... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 183 |
SubjectTerms | Applied sciences Bioenergy crops Biofuel crops Biomass Climate change Energy Europe Exact sciences and technology GIS mapping Modelling Natural energy |
Title | The potential distribution of bioenergy crops in Europe under present and future climate |
URI | https://dx.doi.org/10.1016/j.biombioe.2005.11.019 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DL4qITofzY-TgtS5tk34cx9iYCruosFvJV2FjdGWbV_9232taN0HYwUMvadKEvNd8vt_vR8ijkdaEka88EXLlcRlbLwmZ8pQKpDZ5LJmu2D6n0eSDv8zErEWGDRYGwyrrsd-N6dVoXaf0697sl_N5_w3FSlKogokK9YYgPs5j9PKnr58wD2SPqVTzIDNeVfI9lPDiCSHu8Fh3toJsnsi48_cEdVbKDXRb7vQu9iah8QU5r1ePdOAaeElatmiT0z1OwTbpjHbQNcha_7ubKzIDj6DlaovhQfDCIGNuLXZFVznFBlY4QIqiXhs6L6g7qacIM1vT0uGUqCwMdUQkVC_nsN611-RjPHofTrxaV8HTnCVbT-ko0WC52A-kZSFPpFAsUlxL3wQ5t0opSMiTPPVzJrRJBdewr5A2SANkQAs75KhYFfaGUBvJGKwam0BplPxNcthimiSRvvSZYVGXiKYzM12TjqP2xTJrossWWWMEVMQUsCPJwAhd0v8pVzrajYMl0sZW2S8HymBuOFi298u4uypjwSMeh7f_-PgdOXHHNhi3dk-OtutP-wALma3qVZ7aI8eD59fJ9BuBO_aO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T9xAEB4RKBIUIUKCICRki6Q0t7Z3_ShSoAA6HqEJSNc5-7J0CPks7hCi4U_xBzPjXcMhRaJAFG7W3odmxrOvme8D-G6Vs2kW60imQkdC5S4qUq4jrRNlbJ0rbjq0z9NseC6ORnK0APd9LgyFVQbf7316561DySBIc9COx4M_RFZSYhdcdllvZYisPHa3N7hvm_483EMl_0iSg_2zX8MoUAtERvBiFmmTFQYHn8eJcjwVhZKaZ1oYFdukFk5rjQV1UZdxzaWxpRQGl9bKJWVCIGAptvsGlgS6C6JN2Ll7iCshuJqOpg9HR3ejYi4t-WKHcurxcf4wh-BDCeLn_zPi-1ZNUU-1J9iYm_UOVmElLFfZrpfIB1hwzRosz4EYrsH6_mOuHH4anMX0I4zQBFk7mVE8Er6wBNEb2LXYpGY0wC7xkBGL2JSNG-avBhjltV2x1idGMdVY5pFPmLkc4wLbfYLzV5H2Oiw2k8ZtAHOZytGMcptoQxzDRY17WlsUKlYxtzzbBNkLszIB5ZzINi6rPpztouqVQBScErdAFSphEwYP9VqP8_FsjbLXVfXEYiucjJ6tu_1EuY9d5lJkIk8_v6Dxb_B2ePb7pDo5PD3egnf-zIiC5r7A4uzq2n3FVdRMb3dWy-Dva_8m_wD7sjNh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+potential+distribution+of+bioenergy+crops+in+Europe+under+present+and+future+climate&rft.jtitle=Biomass+%26+bioenergy&rft.au=Tuck%2C+Gill&rft.au=Glendining%2C+Margaret+J.&rft.au=Smith%2C+Pete&rft.au=House%2C+Jo+I.&rft.date=2006-03-01&rft.issn=0961-9534&rft.volume=30&rft.issue=3&rft.spage=183&rft.epage=197&rft_id=info:doi/10.1016%2Fj.biombioe.2005.11.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biombioe_2005_11_019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon |