FaultNet: A Deep Convolutional Neural Network for Bearing Fault Classification

The increased presence of advanced sensors on the production floors has led to the collection of datasets that can provide significant insights into machine health. An important and reliable indicator of machine health, vibration signal data can provide us a greater understanding of different faults...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 25189 - 25199
Main Authors Magar, Rishikesh, Ghule, Lalit, Li, Junhan, Zhao, Yang, Farimani, Amir Barati
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increased presence of advanced sensors on the production floors has led to the collection of datasets that can provide significant insights into machine health. An important and reliable indicator of machine health, vibration signal data can provide us a greater understanding of different faults occurring in mechanical systems. In this work, we analyze vibration signal data of mechanical systems with bearings by combining different signal processing methods and coupling them with machine learning techniques to classify different types of bearing faults. We also highlight the importance of using different signal processing methods and their effect on accuracy for bearing fault detection. Apart from the traditional machine learning algorithms we also propose a convolutional neural network FaultNet which can effectively determine the type of bearing fault with a high degree of accuracy. The distinguishing factor of this work is the idea of channels proposed to extract more information from the signal, we have stacked the 'Mean' and 'Median' channels to raw signal to extract more useful features to classify the signals with greater accuracy.
AbstractList The increased presence of advanced sensors on the production floors has led to the collection of datasets that can provide significant insights into machine health. An important and reliable indicator of machine health, vibration signal data can provide us a greater understanding of different faults occurring in mechanical systems. In this work, we analyze vibration signal data of mechanical systems with bearings by combining different signal processing methods and coupling them with machine learning techniques to classify different types of bearing faults. We also highlight the importance of using different signal processing methods and their effect on accuracy for bearing fault detection. Apart from the traditional machine learning algorithms we also propose a convolutional neural network FaultNet which can effectively determine the type of bearing fault with a high degree of accuracy. The distinguishing factor of this work is the idea of channels proposed to extract more information from the signal, we have stacked the ‘Mean’ and ‘Median’ channels to raw signal to extract more useful features to classify the signals with greater accuracy.
Author Farimani, Amir Barati
Ghule, Lalit
Magar, Rishikesh
Li, Junhan
Zhao, Yang
Author_xml – sequence: 1
  givenname: Rishikesh
  orcidid: 0000-0001-6216-0518
  surname: Magar
  fullname: Magar, Rishikesh
  organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 2
  givenname: Lalit
  orcidid: 0000-0003-0426-4858
  surname: Ghule
  fullname: Ghule, Lalit
  organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 3
  givenname: Junhan
  surname: Li
  fullname: Li, Junhan
  organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 4
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 5
  givenname: Amir Barati
  surname: Farimani
  fullname: Farimani, Amir Barati
  email: barati@cmu.edu
  organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
BookMark eNp9kU9P3DAQxa2KSlDgE3CJxHm3_hfH5rakS4uElgPlbE2cCfI2xIvtUPXbN7uhVcWhc5nR0_yeZvQ-kaMhDEjIBaNLxqj5vKrr9cPDklPOloKWykj5gZxwpsxClEId_TMfk_OUtnQqPUlldUI2NzD2eYP5qlgVXxB3RR2G19CP2YcB-mKDYzy0_DPEH0UXYnGNEP3wVBzIou4hJd95B3vijHzsoE94_tZPyePN-nv9bXF3__W2Xt0tnKQ6LxpgtOOSCaewbDTtSgDdoK5EC1xLjU47pG0plROaK8VbbIEZBkI4bEQjTsnt7NsG2Npd9M8Qf9kA3h6EEJ8sxOxdj5Z2lJeTAzWiki3TutOcSupMZRiXVTV5Xc5euxheRkzZbsMYp-eT5VIbamTF1bRl5i0XQ0oRO-t8PvycI_jeMmr3adg5DbtPw76lMbHiHfvn4v9TFzPlEfEvYYQsVaXEb9oilgU
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107702
crossref_primary_10_1109_TII_2023_3326544
crossref_primary_10_1016_j_engappai_2022_105436
crossref_primary_10_1016_j_fusengdes_2024_114475
crossref_primary_10_3390_math10244683
crossref_primary_10_3390_vibration6010002
crossref_primary_10_1016_j_aei_2024_102419
crossref_primary_10_1088_1361_6501_ad8a7b
crossref_primary_10_1515_mt_2023_0334
crossref_primary_10_3390_app15010270
crossref_primary_10_1007_s13369_024_09842_5
crossref_primary_10_3390_s23135897
crossref_primary_10_1007_s42417_023_01036_x
crossref_primary_10_1109_JSEN_2022_3154479
crossref_primary_10_3390_en16010296
crossref_primary_10_1007_s42417_022_00468_1
crossref_primary_10_31436_iiumej_v26i1_3455
crossref_primary_10_1007_s10845_023_02160_x
crossref_primary_10_1109_TIM_2024_3480201
crossref_primary_10_3390_e25091278
crossref_primary_10_1109_ACCESS_2024_3399670
crossref_primary_10_1093_tse_tdac050
crossref_primary_10_1049_tje2_12411
crossref_primary_10_1016_j_heliyon_2024_e38993
crossref_primary_10_32604_cmes_2024_054257
crossref_primary_10_3390_s24123953
crossref_primary_10_1016_j_compchemeng_2021_107654
crossref_primary_10_3390_app142411771
crossref_primary_10_31466_kfbd_1434595
crossref_primary_10_1016_j_rineng_2023_101308
crossref_primary_10_1049_rpg2_13091
crossref_primary_10_3390_math12193012
crossref_primary_10_2478_ama_2022_0017
crossref_primary_10_1038_s41598_024_79151_2
crossref_primary_10_1109_ACCESS_2024_3390234
crossref_primary_10_3390_act12050188
crossref_primary_10_1049_gtd2_13289
crossref_primary_10_1109_TIM_2024_3351229
crossref_primary_10_3390_pr11051507
crossref_primary_10_1109_ACCESS_2023_3281910
crossref_primary_10_1016_j_eswa_2023_123124
crossref_primary_10_1109_ACCESS_2024_3497716
crossref_primary_10_1155_2022_3428715
crossref_primary_10_1088_1742_6596_2853_1_012066
Cites_doi 10.1007/s11265-019-01461-w
10.1016/j.measurement.2016.07.054
10.1109/ACCESS.2019.2907131
10.1016/j.ymssp.2015.04.021
10.1007/978-3-642-76153-9_28
10.1109/PHM-Paris.2019.00061
10.3390/app10186385
10.1016/j.mfglet.2013.09.005
10.3390/s17081729
10.3390/app7010041
10.1109/ACCESS.2020.2990528
10.1016/j.ymssp.2013.01.017
10.1016/j.promfg.2018.03.089
10.1109/ACCESS.2019.2934233
10.1177/1077546312463747
10.1109/MED.2018.8443043
10.1016/j.ymssp.2019.07.007
10.3390/machines5040021
10.1109/TIE.2017.2767540
10.1109/PHM-Qingdao46334.2019.8943026
10.1177/1687814015593442
10.1007/s40684-018-0057-y
10.1006/mssp.2001.1462
10.1177/1077546311435348
10.1109/ICCV.2011.6126366
10.1016/j.asoc.2018.09.037
10.1109/ACCESS.2020.2972859
10.1109/JSEN.2020.2995109
10.1177/0954406215584397
10.1016/j.sigpro.2016.07.028
10.1016/j.measurement.2019.05.079
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3056944
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 25199
ExternalDocumentID oai_doaj_org_article_0f02562d09374d188f82040c97912477
10_1109_ACCESS_2021_3056944
9345676
Genre orig-research
GrantInformation_xml – fundername: CMU Startup Fund
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-ba10f2413c6e5b80f5aa8be873da2848ec8ce0d546c382662deda191a33ceb3b3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:17:54 EDT 2025
Sun Jun 29 15:43:01 EDT 2025
Tue Jul 01 04:03:14 EDT 2025
Thu Apr 24 23:02:59 EDT 2025
Wed Aug 27 05:44:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-ba10f2413c6e5b80f5aa8be873da2848ec8ce0d546c382662deda191a33ceb3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6216-0518
0000-0003-0426-4858
OpenAccessLink https://doaj.org/article/0f02562d09374d188f82040c97912477
PQID 2489094726
PQPubID 4845423
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_0f02562d09374d188f82040c97912477
crossref_citationtrail_10_1109_ACCESS_2021_3056944
crossref_primary_10_1109_ACCESS_2021_3056944
proquest_journals_2489094726
ieee_primary_9345676
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
krizhevsky (ref26) 2012; 25
ref14
ref31
ref30
ref11
ref32
ref10
lessmeier (ref28) 2016
ref2
ref1
ref39
ref17
ref38
ref16
pan (ref19) 2018; 64
ref24
ref23
ref25
ref20
ref22
ref21
ref27
ref29
(ref12) 2019
ref8
van hecke (ref7) 2014; 229
ref9
ref4
ref3
ref6
ref5
simonyan (ref18) 2014
kimotho (ref33) 2014
nair (ref36) 2010
References_xml – start-page: 1
  year: 2014
  ident: ref33
  article-title: An approach for feature extraction and selection from non-trending data for machinery prognosis
  publication-title: Proc 2nd Eur Conf Prognostics Health Manage Soc
– ident: ref32
  doi: 10.1007/s11265-019-01461-w
– year: 2019
  ident: ref12
  publication-title: Case Western Reserve University Bearing Data Center Website
– ident: ref16
  doi: 10.1016/j.measurement.2016.07.054
– ident: ref25
  doi: 10.1109/ACCESS.2019.2907131
– ident: ref13
  doi: 10.1016/j.ymssp.2015.04.021
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref26
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref37
  doi: 10.1007/978-3-642-76153-9_28
– ident: ref31
  doi: 10.1109/PHM-Paris.2019.00061
– ident: ref17
  doi: 10.3390/app10186385
– ident: ref1
  doi: 10.1016/j.mfglet.2013.09.005
– ident: ref23
  doi: 10.3390/s17081729
– ident: ref20
  doi: 10.3390/app7010041
– ident: ref15
  doi: 10.1109/ACCESS.2020.2990528
– ident: ref35
  doi: 10.1016/j.ymssp.2013.01.017
– ident: ref4
  doi: 10.1016/j.promfg.2018.03.089
– ident: ref38
  doi: 10.1109/ACCESS.2019.2934233
– ident: ref6
  doi: 10.1177/1077546312463747
– volume: 229
  start-page: 105
  year: 2014
  ident: ref7
  article-title: Bearing fault diagnosis based on a new acoustic emission sensor technique
  publication-title: Proc Inst Mech Eng O J Risk Rel
– ident: ref29
  doi: 10.1109/MED.2018.8443043
– start-page: 807
  year: 2010
  ident: ref36
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc ICML
– ident: ref5
  doi: 10.1016/j.ymssp.2019.07.007
– ident: ref34
  doi: 10.3390/machines5040021
– ident: ref24
  doi: 10.1109/TIE.2017.2767540
– ident: ref30
  doi: 10.1109/PHM-Qingdao46334.2019.8943026
– ident: ref9
  doi: 10.1177/1687814015593442
– volume: 64
  start-page: 443
  year: 2018
  ident: ref19
  article-title: An improved bearing fault diagnosis method using one-dimensional CNN and LSTM
  publication-title: J Mech Eng
– ident: ref2
  doi: 10.1007/s40684-018-0057-y
– ident: ref10
  doi: 10.1006/mssp.2001.1462
– year: 2014
  ident: ref18
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref11
  doi: 10.1177/1077546311435348
– ident: ref39
  doi: 10.1109/ICCV.2011.6126366
– ident: ref22
  doi: 10.1016/j.asoc.2018.09.037
– ident: ref14
  doi: 10.1109/ACCESS.2020.2972859
– ident: ref27
  doi: 10.1109/JSEN.2020.2995109
– ident: ref8
  doi: 10.1177/0954406215584397
– start-page: 5
  year: 2016
  ident: ref28
  article-title: Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification
  publication-title: Proc Conf Eur Conf Prognostics Health Manage Soc
– ident: ref21
  doi: 10.1016/j.sigpro.2016.07.028
– ident: ref3
  doi: 10.1016/j.measurement.2019.05.079
SSID ssj0000816957
Score 2.4656198
Snippet The increased presence of advanced sensors on the production floors has led to the collection of datasets that can provide significant insights into machine...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25189
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Channels
Convolutional neural network
Convolutional neural networks
Deep learning
Fault detection
FaultNet
Feature extraction
featurization
Machine learning
Mechanical systems
Neural networks
Signal classification
Signal processing
Two dimensional displays
Vibration analysis
Vibrations
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBFgpiS0E-cGy23sTxg9t2YVUhdU9U6s3yY3Kh2q1KlkN_fceONwKKEIcoUeSJJvns-Bt7HgAfXUwRk8FVUuqmEsabyoSoKjqk6ojDokzxzlcreXktvt60N3twNsbCIGJ2PsNpusx7-XETtmmp7Nw0NN0ruQ_7ZLgNsVrjekoqIGFaVRILzbg5ny8W9A5kAtazaSLKRojfJp-co78UVXnyJ87Ty_IQrnaKDV4l36fb3k_Dwx85G_9X8yN4UXgmmw8d4yXs4foVPP8l--AxrJZue9uvsP_E5uwz4h1bbNY_S1ck2ZS3I5-yozgjdssuaFyQLMuSLBfUTK5GGd3XcL388m1xWZXyClUQXPeVdzPepW21ILH1mnetc9qjVk10NGlpDDogj62QoSEjRNYRoyPzzjVNIBPcN2_gYL1Z41tgwQdfS1UHrTvhpHHeBe1IIMOCegL17rvbUHKPpxIYtzbbINzYASybwLIFrAmcjUJ3Q-qNfze_SICOTVPe7HyDgLBlGFreJY5XR06sTMQZqUsMSPBglCGio9QEjhN440MKbhM43XUPW8b4D1sLbcg4VrU8-bvUO3iWFBwWbE7hoL_f4nuiML3_kPvuI_LS7JM
  priority: 102
  providerName: IEEE
Title FaultNet: A Deep Convolutional Neural Network for Bearing Fault Classification
URI https://ieeexplore.ieee.org/document/9345676
https://www.proquest.com/docview/2489094726
https://doaj.org/article/0f02562d09374d188f82040c97912477
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwwIKIhAqTwwEpqH4wdbG6gqJDpRqZtlO85UpRWk_H7OjlsVIcHCEEWKfEl8d8ndl_i-Q-hOVa5i0qiYUp7HRGgRC1OxGDbKashhLXX1zq8zOp2Tl0Wx2Gv15daEdfTAneKGSe2iclYB8makSjmvIWaRxAgmIDQxX0cOMW8PTPl3ME-pKFigGUoTMRyVJcwIAGGWPri0WRDyLRR5xv7QYuXHe9kHm8kpOglZIh51d3eGDmxzjo73uAN7aDZRm2U7s-0jHuEna9e4XDWfwZFA1rFu-J1f5o0hN8Vj8GqQxV4S-3aYbqGQt80Fmk-e38ppHJojxIYkvI21SpPa_RQz1BaaJ3WhFNeWs7xSEHK4NdzYpCoINTlACNCgrRSAM5XnBgC0zi_RYbNq7BXCRhudUZYZUC5RVCitDFcg4NVoeYSyrZ6kCczhroHFUnoEkQjZKVc65cqg3Ajd74TWHXHG78PHzgC7oY712h8AX5DBF-RfvhChnjPf7iQih_SQ0Qj1t-aU4Qn9kBnhAqAty-j1f1z6Bh256XQfZ_rosH3f2FtIV1o98J458JWFXzLS4YU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApiaQEfODZbr-P4wW27sFqgu6dW6s3yKxeq3arNcuDXM3a8EQWEOESJIk_k5BtnvrE9MwDvbUgRk95WQqi64trpSvsgKzyEbJHDRpHinZcrsbjgXy6byz04HmJhYox581kcp8u8lh82fpumyk50jeZeintwH-1-w_porWFGJZWQ0I0sqYUmVJ9MZzN8C3QC2WScqLLm_I75yVn6S1mVP_7F2cDMn8By17V-X8m38bZzY__jt6yN_9v3p_C4ME0y7VXjGezF9XN49Ev-wQNYze32qlvF7gOZko8xXpPZZv29KCPKpswd-ZS3ihPkt-QURwbKkixJcknNtNko4_sCLuafzmeLqhRYqDynqqucndA2Lax5ERunaNtYq1xUsg4WzZaKXvlIQ8OFr9ENESzEYNHBs3Xt0Ql39UvYX2_W8RUQ77xjQjKvVMut0NZZrywKZFiiGgHbfXfjS_bxVATjymQvhGrTg2USWKaANYLjQei6T77x7-anCdChacqcnW8gEKYMREPbxPJYoMjLeJhgd5EDceq11Eh1pBzBQQJveEjBbQRHO_UwZZTfGsaVRvdYMvH671Lv4MHifHlmzj6vvh7Cw9TZfvrmCPa7m218g4Smc2-zHv8Ecvrv3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FaultNet%3A+A+Deep+Convolutional+Neural+Network+for+Bearing+Fault+Classification&rft.jtitle=IEEE+access&rft.au=Magar%2C+Rishikesh&rft.au=Ghule%2C+Lalit&rft.au=Li%2C+Junhan&rft.au=Zhao%2C+Yang&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=25189&rft.epage=25199&rft_id=info:doi/10.1109%2FACCESS.2021.3056944&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3056944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon