FaultNet: A Deep Convolutional Neural Network for Bearing Fault Classification
The increased presence of advanced sensors on the production floors has led to the collection of datasets that can provide significant insights into machine health. An important and reliable indicator of machine health, vibration signal data can provide us a greater understanding of different faults...
Saved in:
Published in | IEEE access Vol. 9; pp. 25189 - 25199 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increased presence of advanced sensors on the production floors has led to the collection of datasets that can provide significant insights into machine health. An important and reliable indicator of machine health, vibration signal data can provide us a greater understanding of different faults occurring in mechanical systems. In this work, we analyze vibration signal data of mechanical systems with bearings by combining different signal processing methods and coupling them with machine learning techniques to classify different types of bearing faults. We also highlight the importance of using different signal processing methods and their effect on accuracy for bearing fault detection. Apart from the traditional machine learning algorithms we also propose a convolutional neural network FaultNet which can effectively determine the type of bearing fault with a high degree of accuracy. The distinguishing factor of this work is the idea of channels proposed to extract more information from the signal, we have stacked the 'Mean' and 'Median' channels to raw signal to extract more useful features to classify the signals with greater accuracy. |
---|---|
AbstractList | The increased presence of advanced sensors on the production floors has led to the collection of datasets that can provide significant insights into machine health. An important and reliable indicator of machine health, vibration signal data can provide us a greater understanding of different faults occurring in mechanical systems. In this work, we analyze vibration signal data of mechanical systems with bearings by combining different signal processing methods and coupling them with machine learning techniques to classify different types of bearing faults. We also highlight the importance of using different signal processing methods and their effect on accuracy for bearing fault detection. Apart from the traditional machine learning algorithms we also propose a convolutional neural network FaultNet which can effectively determine the type of bearing fault with a high degree of accuracy. The distinguishing factor of this work is the idea of channels proposed to extract more information from the signal, we have stacked the ‘Mean’ and ‘Median’ channels to raw signal to extract more useful features to classify the signals with greater accuracy. |
Author | Farimani, Amir Barati Ghule, Lalit Magar, Rishikesh Li, Junhan Zhao, Yang |
Author_xml | – sequence: 1 givenname: Rishikesh orcidid: 0000-0001-6216-0518 surname: Magar fullname: Magar, Rishikesh organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 2 givenname: Lalit orcidid: 0000-0003-0426-4858 surname: Ghule fullname: Ghule, Lalit organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 3 givenname: Junhan surname: Li fullname: Li, Junhan organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 4 givenname: Yang surname: Zhao fullname: Zhao, Yang organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 5 givenname: Amir Barati surname: Farimani fullname: Farimani, Amir Barati email: barati@cmu.edu organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA |
BookMark | eNp9kU9P3DAQxa2KSlDgE3CJxHm3_hfH5rakS4uElgPlbE2cCfI2xIvtUPXbN7uhVcWhc5nR0_yeZvQ-kaMhDEjIBaNLxqj5vKrr9cPDklPOloKWykj5gZxwpsxClEId_TMfk_OUtnQqPUlldUI2NzD2eYP5qlgVXxB3RR2G19CP2YcB-mKDYzy0_DPEH0UXYnGNEP3wVBzIou4hJd95B3vijHzsoE94_tZPyePN-nv9bXF3__W2Xt0tnKQ6LxpgtOOSCaewbDTtSgDdoK5EC1xLjU47pG0plROaK8VbbIEZBkI4bEQjTsnt7NsG2Npd9M8Qf9kA3h6EEJ8sxOxdj5Z2lJeTAzWiki3TutOcSupMZRiXVTV5Xc5euxheRkzZbsMYp-eT5VIbamTF1bRl5i0XQ0oRO-t8PvycI_jeMmr3adg5DbtPw76lMbHiHfvn4v9TFzPlEfEvYYQsVaXEb9oilgU |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_asoc_2021_107702 crossref_primary_10_1109_TII_2023_3326544 crossref_primary_10_1016_j_engappai_2022_105436 crossref_primary_10_1016_j_fusengdes_2024_114475 crossref_primary_10_3390_math10244683 crossref_primary_10_3390_vibration6010002 crossref_primary_10_1016_j_aei_2024_102419 crossref_primary_10_1088_1361_6501_ad8a7b crossref_primary_10_1515_mt_2023_0334 crossref_primary_10_3390_app15010270 crossref_primary_10_1007_s13369_024_09842_5 crossref_primary_10_3390_s23135897 crossref_primary_10_1007_s42417_023_01036_x crossref_primary_10_1109_JSEN_2022_3154479 crossref_primary_10_3390_en16010296 crossref_primary_10_1007_s42417_022_00468_1 crossref_primary_10_31436_iiumej_v26i1_3455 crossref_primary_10_1007_s10845_023_02160_x crossref_primary_10_1109_TIM_2024_3480201 crossref_primary_10_3390_e25091278 crossref_primary_10_1109_ACCESS_2024_3399670 crossref_primary_10_1093_tse_tdac050 crossref_primary_10_1049_tje2_12411 crossref_primary_10_1016_j_heliyon_2024_e38993 crossref_primary_10_32604_cmes_2024_054257 crossref_primary_10_3390_s24123953 crossref_primary_10_1016_j_compchemeng_2021_107654 crossref_primary_10_3390_app142411771 crossref_primary_10_31466_kfbd_1434595 crossref_primary_10_1016_j_rineng_2023_101308 crossref_primary_10_1049_rpg2_13091 crossref_primary_10_3390_math12193012 crossref_primary_10_2478_ama_2022_0017 crossref_primary_10_1038_s41598_024_79151_2 crossref_primary_10_1109_ACCESS_2024_3390234 crossref_primary_10_3390_act12050188 crossref_primary_10_1049_gtd2_13289 crossref_primary_10_1109_TIM_2024_3351229 crossref_primary_10_3390_pr11051507 crossref_primary_10_1109_ACCESS_2023_3281910 crossref_primary_10_1016_j_eswa_2023_123124 crossref_primary_10_1109_ACCESS_2024_3497716 crossref_primary_10_1155_2022_3428715 crossref_primary_10_1088_1742_6596_2853_1_012066 |
Cites_doi | 10.1007/s11265-019-01461-w 10.1016/j.measurement.2016.07.054 10.1109/ACCESS.2019.2907131 10.1016/j.ymssp.2015.04.021 10.1007/978-3-642-76153-9_28 10.1109/PHM-Paris.2019.00061 10.3390/app10186385 10.1016/j.mfglet.2013.09.005 10.3390/s17081729 10.3390/app7010041 10.1109/ACCESS.2020.2990528 10.1016/j.ymssp.2013.01.017 10.1016/j.promfg.2018.03.089 10.1109/ACCESS.2019.2934233 10.1177/1077546312463747 10.1109/MED.2018.8443043 10.1016/j.ymssp.2019.07.007 10.3390/machines5040021 10.1109/TIE.2017.2767540 10.1109/PHM-Qingdao46334.2019.8943026 10.1177/1687814015593442 10.1007/s40684-018-0057-y 10.1006/mssp.2001.1462 10.1177/1077546311435348 10.1109/ICCV.2011.6126366 10.1016/j.asoc.2018.09.037 10.1109/ACCESS.2020.2972859 10.1109/JSEN.2020.2995109 10.1177/0954406215584397 10.1016/j.sigpro.2016.07.028 10.1016/j.measurement.2019.05.079 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3056944 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 25199 |
ExternalDocumentID | oai_doaj_org_article_0f02562d09374d188f82040c97912477 10_1109_ACCESS_2021_3056944 9345676 |
Genre | orig-research |
GrantInformation_xml | – fundername: CMU Startup Fund |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-ba10f2413c6e5b80f5aa8be873da2848ec8ce0d546c382662deda191a33ceb3b3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:17:54 EDT 2025 Sun Jun 29 15:43:01 EDT 2025 Tue Jul 01 04:03:14 EDT 2025 Thu Apr 24 23:02:59 EDT 2025 Wed Aug 27 05:44:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-ba10f2413c6e5b80f5aa8be873da2848ec8ce0d546c382662deda191a33ceb3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6216-0518 0000-0003-0426-4858 |
OpenAccessLink | https://doaj.org/article/0f02562d09374d188f82040c97912477 |
PQID | 2489094726 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0f02562d09374d188f82040c97912477 crossref_citationtrail_10_1109_ACCESS_2021_3056944 crossref_primary_10_1109_ACCESS_2021_3056944 proquest_journals_2489094726 ieee_primary_9345676 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref37 ref15 krizhevsky (ref26) 2012; 25 ref14 ref31 ref30 ref11 ref32 ref10 lessmeier (ref28) 2016 ref2 ref1 ref39 ref17 ref38 ref16 pan (ref19) 2018; 64 ref24 ref23 ref25 ref20 ref22 ref21 ref27 ref29 (ref12) 2019 ref8 van hecke (ref7) 2014; 229 ref9 ref4 ref3 ref6 ref5 simonyan (ref18) 2014 kimotho (ref33) 2014 nair (ref36) 2010 |
References_xml | – start-page: 1 year: 2014 ident: ref33 article-title: An approach for feature extraction and selection from non-trending data for machinery prognosis publication-title: Proc 2nd Eur Conf Prognostics Health Manage Soc – ident: ref32 doi: 10.1007/s11265-019-01461-w – year: 2019 ident: ref12 publication-title: Case Western Reserve University Bearing Data Center Website – ident: ref16 doi: 10.1016/j.measurement.2016.07.054 – ident: ref25 doi: 10.1109/ACCESS.2019.2907131 – ident: ref13 doi: 10.1016/j.ymssp.2015.04.021 – volume: 25 start-page: 1097 year: 2012 ident: ref26 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref37 doi: 10.1007/978-3-642-76153-9_28 – ident: ref31 doi: 10.1109/PHM-Paris.2019.00061 – ident: ref17 doi: 10.3390/app10186385 – ident: ref1 doi: 10.1016/j.mfglet.2013.09.005 – ident: ref23 doi: 10.3390/s17081729 – ident: ref20 doi: 10.3390/app7010041 – ident: ref15 doi: 10.1109/ACCESS.2020.2990528 – ident: ref35 doi: 10.1016/j.ymssp.2013.01.017 – ident: ref4 doi: 10.1016/j.promfg.2018.03.089 – ident: ref38 doi: 10.1109/ACCESS.2019.2934233 – ident: ref6 doi: 10.1177/1077546312463747 – volume: 229 start-page: 105 year: 2014 ident: ref7 article-title: Bearing fault diagnosis based on a new acoustic emission sensor technique publication-title: Proc Inst Mech Eng O J Risk Rel – ident: ref29 doi: 10.1109/MED.2018.8443043 – start-page: 807 year: 2010 ident: ref36 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc ICML – ident: ref5 doi: 10.1016/j.ymssp.2019.07.007 – ident: ref34 doi: 10.3390/machines5040021 – ident: ref24 doi: 10.1109/TIE.2017.2767540 – ident: ref30 doi: 10.1109/PHM-Qingdao46334.2019.8943026 – ident: ref9 doi: 10.1177/1687814015593442 – volume: 64 start-page: 443 year: 2018 ident: ref19 article-title: An improved bearing fault diagnosis method using one-dimensional CNN and LSTM publication-title: J Mech Eng – ident: ref2 doi: 10.1007/s40684-018-0057-y – ident: ref10 doi: 10.1006/mssp.2001.1462 – year: 2014 ident: ref18 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref11 doi: 10.1177/1077546311435348 – ident: ref39 doi: 10.1109/ICCV.2011.6126366 – ident: ref22 doi: 10.1016/j.asoc.2018.09.037 – ident: ref14 doi: 10.1109/ACCESS.2020.2972859 – ident: ref27 doi: 10.1109/JSEN.2020.2995109 – ident: ref8 doi: 10.1177/0954406215584397 – start-page: 5 year: 2016 ident: ref28 article-title: Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification publication-title: Proc Conf Eur Conf Prognostics Health Manage Soc – ident: ref21 doi: 10.1016/j.sigpro.2016.07.028 – ident: ref3 doi: 10.1016/j.measurement.2019.05.079 |
SSID | ssj0000816957 |
Score | 2.4656198 |
Snippet | The increased presence of advanced sensors on the production floors has led to the collection of datasets that can provide significant insights into machine... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25189 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Channels Convolutional neural network Convolutional neural networks Deep learning Fault detection FaultNet Feature extraction featurization Machine learning Mechanical systems Neural networks Signal classification Signal processing Two dimensional displays Vibration analysis Vibrations |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBFgpiS0E-cGy23sTxg9t2YVUhdU9U6s3yY3Kh2q1KlkN_fceONwKKEIcoUeSJJvns-Bt7HgAfXUwRk8FVUuqmEsabyoSoKjqk6ojDokzxzlcreXktvt60N3twNsbCIGJ2PsNpusx7-XETtmmp7Nw0NN0ruQ_7ZLgNsVrjekoqIGFaVRILzbg5ny8W9A5kAtazaSLKRojfJp-co78UVXnyJ87Ty_IQrnaKDV4l36fb3k_Dwx85G_9X8yN4UXgmmw8d4yXs4foVPP8l--AxrJZue9uvsP_E5uwz4h1bbNY_S1ck2ZS3I5-yozgjdssuaFyQLMuSLBfUTK5GGd3XcL388m1xWZXyClUQXPeVdzPepW21ILH1mnetc9qjVk10NGlpDDogj62QoSEjRNYRoyPzzjVNIBPcN2_gYL1Z41tgwQdfS1UHrTvhpHHeBe1IIMOCegL17rvbUHKPpxIYtzbbINzYASybwLIFrAmcjUJ3Q-qNfze_SICOTVPe7HyDgLBlGFreJY5XR06sTMQZqUsMSPBglCGio9QEjhN440MKbhM43XUPW8b4D1sLbcg4VrU8-bvUO3iWFBwWbE7hoL_f4nuiML3_kPvuI_LS7JM priority: 102 providerName: IEEE |
Title | FaultNet: A Deep Convolutional Neural Network for Bearing Fault Classification |
URI | https://ieeexplore.ieee.org/document/9345676 https://www.proquest.com/docview/2489094726 https://doaj.org/article/0f02562d09374d188f82040c97912477 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwwIKIhAqTwwEpqH4wdbG6gqJDpRqZtlO85UpRWk_H7OjlsVIcHCEEWKfEl8d8ndl_i-Q-hOVa5i0qiYUp7HRGgRC1OxGDbKashhLXX1zq8zOp2Tl0Wx2Gv15daEdfTAneKGSe2iclYB8makSjmvIWaRxAgmIDQxX0cOMW8PTPl3ME-pKFigGUoTMRyVJcwIAGGWPri0WRDyLRR5xv7QYuXHe9kHm8kpOglZIh51d3eGDmxzjo73uAN7aDZRm2U7s-0jHuEna9e4XDWfwZFA1rFu-J1f5o0hN8Vj8GqQxV4S-3aYbqGQt80Fmk-e38ppHJojxIYkvI21SpPa_RQz1BaaJ3WhFNeWs7xSEHK4NdzYpCoINTlACNCgrRSAM5XnBgC0zi_RYbNq7BXCRhudUZYZUC5RVCitDFcg4NVoeYSyrZ6kCczhroHFUnoEkQjZKVc65cqg3Ajd74TWHXHG78PHzgC7oY712h8AX5DBF-RfvhChnjPf7iQih_SQ0Qj1t-aU4Qn9kBnhAqAty-j1f1z6Bh256XQfZ_rosH3f2FtIV1o98J458JWFXzLS4YU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApiaQEfODZbr-P4wW27sFqgu6dW6s3yKxeq3arNcuDXM3a8EQWEOESJIk_k5BtnvrE9MwDvbUgRk95WQqi64trpSvsgKzyEbJHDRpHinZcrsbjgXy6byz04HmJhYox581kcp8u8lh82fpumyk50jeZeintwH-1-w_porWFGJZWQ0I0sqYUmVJ9MZzN8C3QC2WScqLLm_I75yVn6S1mVP_7F2cDMn8By17V-X8m38bZzY__jt6yN_9v3p_C4ME0y7VXjGezF9XN49Ev-wQNYze32qlvF7gOZko8xXpPZZv29KCPKpswd-ZS3ihPkt-QURwbKkixJcknNtNko4_sCLuafzmeLqhRYqDynqqucndA2Lax5ERunaNtYq1xUsg4WzZaKXvlIQ8OFr9ENESzEYNHBs3Xt0Ql39UvYX2_W8RUQ77xjQjKvVMut0NZZrywKZFiiGgHbfXfjS_bxVATjymQvhGrTg2USWKaANYLjQei6T77x7-anCdChacqcnW8gEKYMREPbxPJYoMjLeJhgd5EDceq11Eh1pBzBQQJveEjBbQRHO_UwZZTfGsaVRvdYMvH671Lv4MHifHlmzj6vvh7Cw9TZfvrmCPa7m218g4Smc2-zHv8Ecvrv3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FaultNet%3A+A+Deep+Convolutional+Neural+Network+for+Bearing+Fault+Classification&rft.jtitle=IEEE+access&rft.au=Magar%2C+Rishikesh&rft.au=Ghule%2C+Lalit&rft.au=Li%2C+Junhan&rft.au=Zhao%2C+Yang&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=25189&rft.epage=25199&rft_id=info:doi/10.1109%2FACCESS.2021.3056944&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3056944 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |