Human eye-head coordination in two dimensions under different sensorimotor conditions
The coordination between eye and head movements during a rapid orienting gaze shift has been investigated mainly when subjects made horizontal movements towards visual targets with the eyes starting at the centre of the orbit. Under these conditions, it is difficult to identify the signals driving t...
Saved in:
Published in | Experimental brain research Vol. 114; no. 3; pp. 542 - 560 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin
Springer
01.05.1997
|
Subjects | |
Online Access | Get full text |
ISSN | 0014-4819 |
DOI | 10.1007/PL00005663 |
Cover
Loading…
Abstract | The coordination between eye and head movements during a rapid orienting gaze shift has been investigated mainly when subjects made horizontal movements towards visual targets with the eyes starting at the centre of the orbit. Under these conditions, it is difficult to identify the signals driving the two motor systems, because their initial motor errors are identical and equal to the coordinates of the sensory stimulus (i.e. retinal error). In this paper, we investigate head-free gaze saccades of human subjects towards visual as well as auditory stimuli presented in the two-dimensional frontal plane, under both aligned and unaligned initial fixation conditions. Although the basic patterns for eye and head movements were qualitatively comparable for both stimulus modalities, systematic differences were also obtained under aligned conditions, suggesting a task-dependent movement strategy. Auditory-evoked gaze shifts were endowed with smaller eye-head latency differences, consistently larger head movements and smaller concomitant ocular saccades than visually triggered movements. By testing gaze control for eccentric initial eye positions, we found that the head displacement vector was best related to the initial head motor-error (target-re-head), rather than to the initial gaze error (target-re-eye), regardless of target modality. These findings suggest an independent control of the eye and head motor systems by commands in different frames of reference. However, we also observed a systematic influence of the oculomotor response on the properties of the evoked head movements, indicating a subtle coupling between the two systems. The results are discussed in view of current eye-head coordination models. |
---|---|
AbstractList | The coordination between eye and head movements during a rapid orienting gaze shift has been investigated mainly when subjects made horizontal movements towards visual targets with the eyes starting at the centre of the orbit. Under these conditions, it is difficult to identify the signals driving the two motor systems, because their initial motor errors are identical and equal to the coordinates of the sensory stimulus (i.e. retinal error). In this paper, we investigate head-free gaze saccades of human subjects towards visual as well as auditory stimuli presented in the two-dimensional frontal plane, under both aligned and unaligned initial fixation conditions. Although the basic patterns for eye and head movements were qualitatively comparable for both stimulus modalities, systematic differences were also obtained under aligned conditions, suggesting a task-dependent movement strategy. Auditory-evoked gaze shifts were endowed with smaller eye-head latency differences, consistently larger head movements and smaller concomitant ocular saccades than visually triggered movements. By testing gaze control for eccentric initial eye positions, we found that the head displacement vector was best related to the initial head motor-error (target-re-head), rather than to the initial gaze error (target-re-eye), regardless of target modality. These findings suggest an independent control of the eye and head motor systems by commands in different frames of reference. However, we also observed a systematic influence of the oculomotor response on the properties of the evoked head movements, indicating a subtle coupling between the two systems. The results are discussed in view of current eye-head coordination models.The coordination between eye and head movements during a rapid orienting gaze shift has been investigated mainly when subjects made horizontal movements towards visual targets with the eyes starting at the centre of the orbit. Under these conditions, it is difficult to identify the signals driving the two motor systems, because their initial motor errors are identical and equal to the coordinates of the sensory stimulus (i.e. retinal error). In this paper, we investigate head-free gaze saccades of human subjects towards visual as well as auditory stimuli presented in the two-dimensional frontal plane, under both aligned and unaligned initial fixation conditions. Although the basic patterns for eye and head movements were qualitatively comparable for both stimulus modalities, systematic differences were also obtained under aligned conditions, suggesting a task-dependent movement strategy. Auditory-evoked gaze shifts were endowed with smaller eye-head latency differences, consistently larger head movements and smaller concomitant ocular saccades than visually triggered movements. By testing gaze control for eccentric initial eye positions, we found that the head displacement vector was best related to the initial head motor-error (target-re-head), rather than to the initial gaze error (target-re-eye), regardless of target modality. These findings suggest an independent control of the eye and head motor systems by commands in different frames of reference. However, we also observed a systematic influence of the oculomotor response on the properties of the evoked head movements, indicating a subtle coupling between the two systems. The results are discussed in view of current eye-head coordination models. The coordination between eye and head movements during a rapid orienting gaze shift has been investigated mainly when subjects made horizontal movements towards visual targets with the eyes starting at the centre of the orbit. Under these conditions, it is difficult to identify the signals driving the two motor systems, because their initial motor errors are identical and equal to the coordinates of the sensory stimulus (i.e. retinal error). In this paper, we investigate head-free gaze saccades of human subjects towards visual as well as auditory stimuli presented in the two-dimensional frontal plane, under both aligned and unaligned initial fixation conditions. Although the basic patterns for eye and head movements were qualitatively comparable for both stimulus modalities, systematic differences were also obtained under aligned conditions, suggesting a task-dependent movement strategy. Auditory-evoked gaze shifts were endowed with smaller eye-head latency differences, consistently larger head movements and smaller concomitant ocular saccades than visually triggered movements. By testing gaze control for eccentric initial eye positions, we found that the head displacement vector was best related to the initial head motor-error (target-re-head), rather than to the initial gaze error (target-re-eye), regardless of target modality. These findings suggest an independent control of the eye and head motor systems by commands in different frames of reference. However, we also observed a systematic influence of the oculomotor response on the properties of the evoked head movements, indicating a subtle coupling between the two systems. The results are discussed in view of current eyehead coordination models. The coordination between eye and head movements during a rapid orienting gaze shift has been investigated mainly when subjects made horizontal movements towards visual targets with the eyes starting at the centre of the orbit. Under these conditions, it is difficult to identify the signals driving the two motor systems, because their initial motor errors are identical and equal to the coordinates of the sensory stimulus (i.e. retinal error). In this paper, we investigate head-free gaze saccades of human subjects towards visual as well as auditory stimuli presented in the two-dimensional frontal plane, under both aligned and unaligned initial fixation conditions. Although the basic patterns for eye and head movements were qualitatively comparable for both stimulus modalities, systematic differences were also obtained under aligned conditions, suggesting a task-dependent movement strategy. Auditory-evoked gaze shifts were endowed with smaller eye-head latency differences, consistently larger head movements and smaller concomitant ocular saccades than visually triggered movements. By testing gaze control for eccentric initial eye positions, we found that the head displacement vector was best related to the initial head motor-error (target-re-head), rather than to the initial gaze error (target-re-eye), regardless of target modality. These findings suggest an independent control of the eye and head motor systems by commands in different frames of reference. However, we also observed a systematic influence of the oculomotor response on the properties of the evoked head movements, indicating a subtle coupling between the two systems. The results are discussed in view of current eye-head coordination models. |
Author | Opstal, A. J. Van Goossens, H. H. L. M. |
Author_xml | – sequence: 1 givenname: H. H. L. M. surname: Goossens fullname: Goossens, H. H. L. M. – sequence: 2 givenname: A. J. Van surname: Opstal fullname: Opstal, A. J. Van |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2677200$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/9187290$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAUhbMY0XF0417oQlwI1ds20yRLGXzBgC6cdbnNAyNtokmLzL834wwKIphNyDnfuXBzDsnEeacJOSngsgBgV09LSGde19WETAEKmlNeiANyGOPr5lkx2Cf7ouCsFDAlq_uxR5fptc5fNKpMeh-UdThY7zLrsuHDZ8r22sUkxGx0SockGKODdkMWk-GD7f3gQ8o6ZTfBeET2DHZRH-_uGVnd3jwv7vPl493D4nqZSwp8yFvBwcwZKmZECVoJBpVpa9mKiqOhklaoKLRS4bxVtBWAnHGKCjkHTQtZzcj5du5b8O-jjkPT2yh116HTfowNE8AYZ-JfsKgrWpbzMoGnO3Bse62at7QchnWz-7Dkn-18jBI7E9BJG7-xsmashA12scVk8DEGbb6JAppNT81PTwmGX7C0w1cDQ0Db_RX5BOv_lzc |
CODEN | EXBRAP |
CitedBy_id | crossref_primary_10_1523_JNEUROSCI_0938_07_2007 crossref_primary_10_1007_s00221_007_1222_7 crossref_primary_10_1152_jn_00864_2016 crossref_primary_10_1523_JNEUROSCI_2714_11_2012 crossref_primary_10_1152_jn_01092_2011 crossref_primary_10_1523_JNEUROSCI_3875_14_2015 crossref_primary_10_1016_S0896_6273_04_00267_3 crossref_primary_10_1152_jn_90669_2008 crossref_primary_10_3390_s23084028 crossref_primary_10_1007_s10846_016_0410_8 crossref_primary_10_1152_jn_1998_79_2_859 crossref_primary_10_1152_jn_00502_2017 crossref_primary_10_1152_jn_2000_84_1_96 crossref_primary_10_1109_TPAMI_2017_2782819 crossref_primary_10_1371_journal_pone_0173678 crossref_primary_10_1152_jn_01075_2002 crossref_primary_10_1152_jn_2002_88_1_438 crossref_primary_10_1007_s00221_008_1440_7 crossref_primary_10_1007_s00221_008_1444_3 crossref_primary_10_1523_JNEUROSCI_4099_05_2006 crossref_primary_10_1371_journal_pcbi_1002508 crossref_primary_10_1152_jn_00500_2009 crossref_primary_10_1523_JNEUROSCI_0199_04_2004 crossref_primary_10_9746_sicetr_46_123 crossref_primary_10_1145_3361218 crossref_primary_10_1007_s00221_008_1504_8 crossref_primary_10_1016_j_heares_2020_108011 crossref_primary_10_1007_s00221_008_1534_2 crossref_primary_10_1007_s00221_012_3270_x crossref_primary_10_1242_jeb_129544 crossref_primary_10_1080_000164801750388324 crossref_primary_10_1371_journal_pone_0121035 crossref_primary_10_1523_JNEUROSCI_2671_04_2004 crossref_primary_10_1016_j_heliyon_2023_e15018 crossref_primary_10_1145_2724731 crossref_primary_10_1007_s10162_012_0367_7 crossref_primary_10_3389_fncom_2022_1040646 crossref_primary_10_1016_j_apergo_2017_01_006 crossref_primary_10_1007_s10514_013_9335_2 crossref_primary_10_1152_jn_00027_2005 crossref_primary_10_3390_oral3020016 crossref_primary_10_1038_s41598_022_26479_2 crossref_primary_10_1097_00001756_200508010_00011 crossref_primary_10_1093_gerona_56_9_M571 crossref_primary_10_1111_j_1460_9568_2009_06761_x crossref_primary_10_1038_s42003_023_05305_z crossref_primary_10_1053_apmr_2002_32640 crossref_primary_10_1152_jn_00856_2006 crossref_primary_10_1523_JNEUROSCI_0048_04_2004 crossref_primary_10_1016_S0042_6989_01_00158_4 crossref_primary_10_1007_s00221_008_1445_2 crossref_primary_10_1152_jn_00105_2015 crossref_primary_10_1113_jphysiol_2006_113720 crossref_primary_10_1152_jn_00840_2016 crossref_primary_10_1016_j_jneumeth_2006_08_012 crossref_primary_10_3758_s13428_019_01267_5 crossref_primary_10_1051_aacus_2021039 crossref_primary_10_1152_jn_00670_2006 crossref_primary_10_1152_jn_1999_82_3_1406 crossref_primary_10_1523_ENEURO_0111_18_2019 crossref_primary_10_1371_journal_pone_0047606 crossref_primary_10_3390_s18092979 crossref_primary_10_1007_s00221_008_1627_y crossref_primary_10_1371_journal_pcbi_1002253 crossref_primary_10_1016_j_patrec_2015_11_020 crossref_primary_10_1080_00222895_2016_1161589 crossref_primary_10_1080_00222895_2014_984649 crossref_primary_10_1152_jn_00487_2011 crossref_primary_10_1152_jn_2000_83_6_3411 crossref_primary_10_1111_j_1460_9568_2011_07844_x crossref_primary_10_1016_j_preteyeres_2007_03_004 crossref_primary_10_1152_jn_1999_81_6_2720 crossref_primary_10_1152_jn_00273_2014 crossref_primary_10_1152_jn_00386_2007 crossref_primary_10_1152_jn_90716_2008 crossref_primary_10_1007_s00221_005_0051_9 crossref_primary_10_1007_s10162_013_0401_4 crossref_primary_10_1016_j_brainres_2005_10_029 crossref_primary_10_1121_1_1687423 crossref_primary_10_1016_j_mex_2020_101131 crossref_primary_10_1007_s00422_006_0049_9 crossref_primary_10_1007_s00221_006_0737_7 crossref_primary_10_3389_fncom_2015_00072 crossref_primary_10_1523_JNEUROSCI_0486_11_2011 crossref_primary_10_1038_s41598_018_34512_6 crossref_primary_10_1152_jn_00822_2006 crossref_primary_10_1111_j_1460_9568_2007_05392_x crossref_primary_10_1016_j_ergon_2014_09_004 crossref_primary_10_1073_pnas_2412954122 crossref_primary_10_1111_ejn_12176 crossref_primary_10_1016_j_visres_2010_03_017 crossref_primary_10_1152_jn_01320_2005 crossref_primary_10_1152_jn_00099_2009 crossref_primary_10_1152_jn_00510_2005 crossref_primary_10_1152_jn_00072_2019 crossref_primary_10_3758_s13428_023_02316_w crossref_primary_10_1007_s00221_009_1815_4 crossref_primary_10_1007_s11370_010_0077_0 crossref_primary_10_1111_j_1460_9568_2010_07198_x crossref_primary_10_1007_s10514_007_9078_z crossref_primary_10_1016_S0361_9230_98_00007_0 crossref_primary_10_1111_j_1460_9568_2010_07113_x crossref_primary_10_1152_jn_00788_2009 crossref_primary_10_1167_jov_20_5_3 crossref_primary_10_1016_S0042_6989_01_00054_2 crossref_primary_10_1152_jn_00252_2007 crossref_primary_10_1016_S0022_510X_03_00145_X crossref_primary_10_1007_s10827_013_0477_1 crossref_primary_10_1016_j_cognition_2014_05_005 crossref_primary_10_1121_1_4935091 crossref_primary_10_1523_JNEUROSCI_5030_10_2011 crossref_primary_10_1177_2331216519847332 crossref_primary_10_1152_jn_00605_2015 crossref_primary_10_1152_jn_2002_88_4_2000 crossref_primary_10_1007_s00422_010_0408_4 crossref_primary_10_1145_2536764_2536774 crossref_primary_10_1016_S0166_4328_99_00141_2 crossref_primary_10_1152_jn_90276_2008 crossref_primary_10_1016_S0042_6989_01_00224_3 crossref_primary_10_3758_s13428_018_1026_7 crossref_primary_10_1016_j_visres_2007_11_014 crossref_primary_10_1038_s41598_018_36422_z crossref_primary_10_1152_jn_2000_83_4_2260 crossref_primary_10_1007_s10514_013_9346_z crossref_primary_10_1016_j_celrep_2017_10_045 crossref_primary_10_1109_TSMCB_2012_2216979 crossref_primary_10_1523_JNEUROSCI_20_07_02719_2000 crossref_primary_10_1016_j_robot_2021_103834 crossref_primary_10_1152_jn_00331_2011 crossref_primary_10_1016_S0042_6989_02_00063_9 crossref_primary_10_1152_jn_00958_2009 crossref_primary_10_1523_JNEUROSCI_1343_10_2010 crossref_primary_10_1109_51_827410 crossref_primary_10_1068_p5036 crossref_primary_10_1152_jn_01037_2012 crossref_primary_10_1152_jn_1999_81_4_1760 crossref_primary_10_1016_j_visres_2015_10_001 |
ContentType | Journal Article |
Copyright | 1997 INIST-CNRS |
Copyright_xml | – notice: 1997 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1007/PL00005663 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Psychology |
EndPage | 560 |
ExternalDocumentID | 9187290 2677200 10_1007_PL00005663 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -XW -Y2 -~C -~X .55 .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 203 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 4.4 406 408 409 40D 40E 53G 5GY 5RE 5VS 67N 67Z 6NX 78A 7RV 7X7 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFFNX AFGCZ AFHIU AFLOW AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN B-. BA0 BDATZ BGNMA BSONS CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EMB EN4 EPAXT ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IHW IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH L7B LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF- PT4 PT5 QOK QOR QOS R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S27 S3A S3B SAP SBL SBY SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 X7M YLTOR Z45 ZGI ZMTXR ZOVNA ZXP ~EX ~KM 0-V 2.D 28- 3SX 5QI 88E 8AO 8FI 8FJ AAUYE AAYJJ ABHQN ABRTQ ABUWG ADBBV ADKNI ADYPR AEFIE AFEXP AFKRA AFOHR AFQWF AHAVH AIIXL ARALO AZQEC BBWZM BENPR BKEYQ BPHCQ BVXVI CAG CCPQU COF DWQXO EBD EMOBN EX3 FA8 GNUQQ H13 HMCUK INH INR IPY IQODW ISR ITC KOW M1P M2M M2R NAPCQ NDZJH OHT PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PRQQA PSQYO PSYQQ Q2X R4E S1Z S26 S28 SCLPG SV3 T16 UKHRP WK6 WOW -4W -56 -5G -BR -EM 3V. AAAVM ADINQ CGR CUY CVF ECM EIF GQ6 NPM PKN Z7R Z7U Z7W Z7X Z82 Z83 Z87 Z88 Z8M Z8O Z8Q Z8R Z8V Z8W Z91 Z92 7TK 7X8 |
ID | FETCH-LOGICAL-c408t-b980f57ad7f920ed9703fb6cb938af4c43ad40bcda5bd4b90a8784ada880e41c3 |
ISSN | 0014-4819 |
IngestDate | Fri Sep 05 13:06:23 EDT 2025 Fri Sep 05 09:36:00 EDT 2025 Wed Feb 19 02:36:23 EST 2025 Mon Jul 21 09:15:44 EDT 2025 Thu Apr 24 22:54:29 EDT 2025 Tue Jul 01 03:27:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Human Sensorimotor coordination Visual stimulus Acoustic stimulus Motor pathway Visual pathway Gaze Eye head coordination Auditory pathway Motor control Saccadic eye movement |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c408t-b980f57ad7f920ed9703fb6cb938af4c43ad40bcda5bd4b90a8784ada880e41c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 9187290 |
PQID | 16342252 |
PQPubID | 23462 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_79077879 proquest_miscellaneous_16342252 pubmed_primary_9187290 pascalfrancis_primary_2677200 crossref_primary_10_1007_PL00005663 crossref_citationtrail_10_1007_PL00005663 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1997-05-01 |
PublicationDateYYYYMMDD | 1997-05-01 |
PublicationDate_xml | – month: 05 year: 1997 text: 1997-05-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin – name: Germany |
PublicationTitle | Experimental brain research |
PublicationTitleAlternate | Exp Brain Res |
PublicationYear | 1997 |
Publisher | Springer |
Publisher_xml | – name: Springer |
SSID | ssj0014370 |
Score | 1.9776745 |
Snippet | The coordination between eye and head movements during a rapid orienting gaze shift has been investigated mainly when subjects made horizontal movements... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 542 |
SubjectTerms | Acoustic Stimulation Adult Biological and medical sciences Female Fixation, Ocular - physiology Fundamental and applied biological sciences. Psychology Head Movements - physiology Humans Kinesthesis Male Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration Photic Stimulation Psychomotor Performance - physiology Saccades - physiology Vertebrates: nervous system and sense organs |
Title | Human eye-head coordination in two dimensions under different sensorimotor conditions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/9187290 https://www.proquest.com/docview/16342252 https://www.proquest.com/docview/79077879 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_i9MwFA-6QxiI6J2HU08DiiCjkrbJ0vy4E88hevrDTe63kTYJ7PDasfU4dn-9L02a9vAG6i9lNCEr_Xz68l7eN4TeZkYZqypHtBBpRCkzkVRCRwLgVinTiWo8pt9OJ7M5_XLOztsO2T67pM4_FDd35pX8D6pwD3C1WbL_gGxYFG7Ab8AXroAwXP8KY3cCr7c6ApFq09PAkly6470mfvG6GitbvX_TRLvZdLF16IhSjzcwUK0tVtXaRp-rZXd4dxEi9Lr6_7ntJjH21YHCKfLnCrZZ7bTxWZfq8BMe7PsKVE8XBOC9T8rn2_EumK8VmTGNaOblWisyXeKn50baE4DM1cr6QzC7WAzbptQWH3UyrYfQ6rKBSMQZKPuk25tCxKAfuY_2ErAHyADtTU-Oj0-Dw4im3GUb-aftVaLt_nSIHvh1bmkhD1dyAx-EcZ1Mdpsajcpx9hg98rYCnjrgn6B7utxHB1MAuLrc4ne4id5t3CL7aBh2su0BmjfEwC0xcJ8YeFliIAbuiIEbYuBADNwnBu6I8RTNTz6dfZxFvn9GVFCS1VEuMmIYl4obkRCtBEh3k0-KXKSZNLSgqVSU5IWSLFc0F0RmPKNSSZDpmsZFeogGZVXqZwjHzHAFek3MNKg9nMnUJCmXNEuMSoiiI_S-fZ-LwheXtz1Ofi3astg_vrYojNCbMHflSqrcOevoFixhajKxBCAj9LqFaQES0bq5ZKmrq80CLAwKu1SyewYXhMNGJUbo0OEbFvf0eL5r4AUadh_JSzSo11f6CLTSOn_lGfkbTtWORw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+eye-head+coordination+in+two+dimensions+under+different+sensorimotor+conditions&rft.jtitle=Experimental+brain+research&rft.au=Goossens%2C+H+H&rft.au=Van+Opstal%2C+A+J&rft.date=1997-05-01&rft.issn=0014-4819&rft.volume=114&rft.issue=3&rft.spage=542&rft_id=info:doi/10.1007%2Fpl00005663&rft_id=info%3Apmid%2F9187290&rft.externalDocID=9187290 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon |