Identifying Influential Nodes in Complex Networks Based on Weighted Formal Concept Analysis
The identification of influential nodes is essential to research regarding network attacks, information dissemination, and epidemic spreading. Thus, techniques for identifying influential nodes in complex networks have been the subject of increasing attention. During recent decades, many methods hav...
Saved in:
Published in | IEEE access Vol. 5; pp. 3777 - 3789 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2017.2679038 |
Cover
Abstract | The identification of influential nodes is essential to research regarding network attacks, information dissemination, and epidemic spreading. Thus, techniques for identifying influential nodes in complex networks have been the subject of increasing attention. During recent decades, many methods have been proposed from various viewpoints, each with its own advantages and disadvantages. In this paper, an efficient algorithm is proposed for identifying influential nodes, using weighted formal concept analysis (WFCA), which is a typical computational intelligence technique. We call this a WFCA-based influential nodes identification algorithm. The basic idea is to quantify the importance of nodes via WFCA. Specifically, this model converts the binary relationships between nodes in a given network into a knowledge hierarchy, and employs WFCA to aggregate the nodes in terms of their attributes. The more nodes aggregated, the more important each attribute becomes. WFCA not only works on undirected or directed networks, but is also applicable to attributed networks. To evaluate the performance of WFCA, we employ the SIR model to examine the spreading efficiency of each node, and compare the WFCA algorithm with PageRank, HITS, K-shell, H-index, eigenvector centrality, closeness centrality, and betweenness centrality on several real-world networks. Extensive experiments demonstrate that the WFCA algorithm ranks nodes effectively, and outperforms several state-of-the-art algorithms. |
---|---|
AbstractList | The identification of influential nodes is essential to research regarding network attacks, information dissemination, and epidemic spreading. Thus, techniques for identifying influential nodes in complex networks have been the subject of increasing attention. During recent decades, many methods have been proposed from various viewpoints, each with its own advantages and disadvantages. In this paper, an efficient algorithm is proposed for identifying influential nodes, using weighted formal concept analysis (WFCA), which is a typical computational intelligence technique. We call this a WFCA-based influential nodes identification algorithm. The basic idea is to quantify the importance of nodes via WFCA. Specifically, this model converts the binary relationships between nodes in a given network into a knowledge hierarchy, and employs WFCA to aggregate the nodes in terms of their attributes. The more nodes aggregated, the more important each attribute becomes. WFCA not only works on undirected or directed networks, but is also applicable to attributed networks. To evaluate the performance of WFCA, we employ the SIR model to examine the spreading efficiency of each node, and compare the WFCA algorithm with PageRank, HITS, K-shell, H-index, eigenvector centrality, closeness centrality, and betweenness centrality on several real-world networks. Extensive experiments demonstrate that the WFCA algorithm ranks nodes effectively, and outperforms several state-of-the-art algorithms. |
Author | Bin Wang Zejun Sun Yixiang Hu Junming Shao Jinfang Sheng Yihan Wang |
Author_xml | – sequence: 1 givenname: Zejun surname: Sun fullname: Sun, Zejun – sequence: 2 givenname: Bin surname: Wang fullname: Wang, Bin – sequence: 3 givenname: Jinfang surname: Sheng fullname: Sheng, Jinfang – sequence: 4 givenname: Yixiang surname: Hu fullname: Hu, Yixiang – sequence: 5 givenname: Yihan surname: Wang fullname: Wang, Yihan – sequence: 6 givenname: Junming surname: Shao fullname: Shao, Junming |
BookMark | eNp9kU1vEzEQhi3USpTSX9DLSpwT7PX3MaxaiFSVQ6l66MFy1rPBYWMH21HJv6_TLQhxYC7zoXnesfW-QychBkDokuA5IVh_XHTd1d3dvMVEzlshNabqDTpridAzyqk4-at-iy5y3uAaqo64PEOPSweh-OHgw7pZhmHcH1s7NrfRQW58aLq43Y3wq7mF8hTTj9x8shlcE0PzAH79vdT6OqZtRboYetiVZhHseMg-v0engx0zXLzmc3R_ffWt-zK7-fp52S1uZj3DqsxWSimxoisG1AEB5oTsWxC9G7gYNFbtSioqOdHOKcwl6aVjA3Eca8VrT-k5Wk66LtqN2SW_telgovXmZRDT2thUfD-CYUMV4C3nVmJGida4nmoZ5oxS0vOj1odJa5fizz3kYjZxn-qHsmkZ55oJoUjd0tNWn2LOCQbT-2KLj6Ek60dDsDlaYyZrzNEa82pNZek_7O8X_5-6nCgPAH8IqSRthabPiNCaFA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1002_cpe_7685 crossref_primary_10_1007_s42979_022_01270_2 crossref_primary_10_1007_s11280_018_0537_6 crossref_primary_10_1016_j_physa_2022_126885 crossref_primary_10_1016_j_neucom_2019_06_020 crossref_primary_10_1186_s43088_023_00357_w crossref_primary_10_1016_j_ress_2020_107002 crossref_primary_10_1007_s42979_023_02470_0 crossref_primary_10_1109_ACCESS_2018_2818192 crossref_primary_10_1109_ACCESS_2018_2879648 crossref_primary_10_1155_2019_7428458 crossref_primary_10_1145_3554728 crossref_primary_10_1007_s10844_023_00822_z crossref_primary_10_1371_journal_pone_0203388 crossref_primary_10_3390_info10020078 crossref_primary_10_1007_s10489_022_03262_4 crossref_primary_10_1016_j_physa_2019_121265 crossref_primary_10_1109_ACCESS_2018_2843532 crossref_primary_10_1142_S0129183120500837 crossref_primary_10_1016_j_cjph_2018_11_003 crossref_primary_10_1016_j_physa_2019_121765 crossref_primary_10_1016_j_eswa_2021_115778 crossref_primary_10_1007_s11227_023_05116_3 crossref_primary_10_3233_JIFS_201809 crossref_primary_10_1002_num_22709 crossref_primary_10_1016_j_physa_2019_123769 crossref_primary_10_1109_ACCESS_2019_2891772 crossref_primary_10_1109_ACCESS_2022_3213044 crossref_primary_10_1109_ACCESS_2018_2875247 crossref_primary_10_1016_j_physa_2019_121807 crossref_primary_10_1109_TCYB_2018_2815178 crossref_primary_10_1016_j_bdr_2020_100145 crossref_primary_10_1142_S0129183121500121 crossref_primary_10_1016_j_ins_2022_04_010 crossref_primary_10_1016_j_oceaneng_2023_115192 crossref_primary_10_1109_ACCESS_2019_2939804 crossref_primary_10_1142_S0129183119500219 crossref_primary_10_1016_j_chaos_2020_109637 crossref_primary_10_1016_j_inffus_2024_102439 crossref_primary_10_1109_ACCESS_2020_2978142 crossref_primary_10_1007_s11227_022_04366_x crossref_primary_10_1016_j_physa_2019_123262 crossref_primary_10_1142_S0217984921503012 |
Cites_doi | 10.1016/j.eswa.2015.01.044 10.1007/11528784_8 10.1007/978-3-642-22688-5_4 10.1109/SMC.2015.233 10.1016/j.physa.2015.09.028 10.1007/978-3-319-19545-2_4 10.1007/978-3-642-11928-6_10 10.1016/j.physa.2011.09.017 10.1145/2783258.2783301 10.1038/srep19307 10.1016/j.scico.2008.09.015 10.1145/2934688 10.1016/j.physrep.2016.10.006 10.1093/bioinformatics/btn182 10.1126/science.254.5031.591 10.1016/j.ins.2005.11.014 10.1145/1341531.1341559 10.1109/ICSE-COMPANION.2009.5071013 10.1016/j.plrev.2014.11.001 10.1109/CNSC.2014.6906673 10.1371/journal.pone.0077455 10.1016/j.artint.2014.06.004 10.1038/srep21380 10.1007/BF02289527 10.1145/324133.324140 10.1126/science.286.5439.509 10.1007/978-94-009-7798-3_15 10.1098/rsif.2014.0378 10.1103/PhysRevE.71.056103 10.1371/journal.pone.0021202 10.1093/biomet/30.1-2.81 10.1038/ncomms10168 10.1016/j.comnet.2012.10.007 10.1007/s10955-014-1024-9 10.1007/978-3-642-15939-8_16 10.1073/pnas.122653799 10.1016/j.ins.2011.09.023 10.1016/j.physrep.2016.06.007 10.1080/0022250X.1972.9989806 10.1209/0295-5075/113/58004 10.1016/0378-8733(78)90021-7 10.1038/nphys1746 10.1007/978-3-642-14274-1_9 10.1126/science.1215842 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2017.2679038 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore : Open Access Journals and Conferences [open access] IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 3789 |
ExternalDocumentID | oai_doaj_org_article_4f5715255a70431990c2e24054331c53 10_1109_ACCESS_2017_2679038 7873269 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61403062 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Fujian Province of China grantid: 2015J01271 funderid: 10.13039/501100003392 – fundername: Science-Technology Foundation for Young Scientist of Sichuan Province grantid: 2016JQ0007 – fundername: Education Hall of Young Teachers’ Scientific Research Project of Fujian Province of China grantid: JAT160469 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-b8886b3b4e3de1e4d67c2e6cdf56f9082b7837519dd80571c7d4f1d5098505733 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:21:24 EDT 2025 Mon Jun 30 05:58:13 EDT 2025 Tue Jul 01 04:10:48 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Tue Aug 26 16:39:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-b8886b3b4e3de1e4d67c2e6cdf56f9082b7837519dd80571c7d4f1d5098505733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/4f5715255a70431990c2e24054331c53 |
PQID | 2455946681 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2017_2679038 crossref_primary_10_1109_ACCESS_2017_2679038 ieee_primary_7873269 proquest_journals_2455946681 doaj_primary_oai_doaj_org_article_4f5715255a70431990c2e24054331c53 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170000 2017-00-00 20170101 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 20170000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 poelmans (ref32) 2010 ref11 ref10 özgür (ref17) 2008; 24 ref2 ref1 ref39 ref38 ref16 ref19 ref18 ref24 ref26 ref25 ref20 ref42 ref41 ref44 ref21 ref43 lü (ref22) 2011; 6 ref27 barabási (ref28) 1999; 286 ref29 lü (ref45) 2016; 7 ref8 ref7 ref9 ref4 ref3 ref6 ref5 lü (ref23) 2016; 650 ref40 |
References_xml | – ident: ref38 doi: 10.1016/j.eswa.2015.01.044 – ident: ref34 doi: 10.1007/11528784_8 – ident: ref40 doi: 10.1007/978-3-642-22688-5_4 – ident: ref7 doi: 10.1109/SMC.2015.233 – ident: ref14 doi: 10.1016/j.physa.2015.09.028 – ident: ref35 doi: 10.1007/978-3-319-19545-2_4 – ident: ref41 doi: 10.1007/978-3-642-11928-6_10 – ident: ref2 doi: 10.1016/j.physa.2011.09.017 – ident: ref1 doi: 10.1145/2783258.2783301 – ident: ref9 doi: 10.1038/srep19307 – ident: ref37 doi: 10.1016/j.scico.2008.09.015 – ident: ref5 doi: 10.1145/2934688 – ident: ref11 doi: 10.1016/j.physrep.2016.10.006 – volume: 24 start-page: 277i year: 2008 ident: ref17 article-title: Identifying gene-disease associations using centrality on a literature mined gene-interaction network publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn182 – ident: ref42 doi: 10.1126/science.254.5031.591 – ident: ref33 doi: 10.1016/j.ins.2005.11.014 – ident: ref16 doi: 10.1145/1341531.1341559 – ident: ref30 doi: 10.1109/ICSE-COMPANION.2009.5071013 – ident: ref10 doi: 10.1016/j.plrev.2014.11.001 – ident: ref36 doi: 10.1109/CNSC.2014.6906673 – ident: ref29 doi: 10.1371/journal.pone.0077455 – start-page: 139 year: 2010 ident: ref32 publication-title: Formal Concept Analysis in Knowledge Discovery A Survey (Lecture Notes in Computer Science) – ident: ref8 doi: 10.1016/j.artint.2014.06.004 – ident: ref44 doi: 10.1038/srep21380 – ident: ref19 doi: 10.1007/BF02289527 – ident: ref24 doi: 10.1145/324133.324140 – volume: 286 start-page: 509 year: 1999 ident: ref28 article-title: Emergence of scaling in random networks publication-title: Science doi: 10.1126/science.286.5439.509 – ident: ref25 doi: 10.1007/978-94-009-7798-3_15 – ident: ref6 doi: 10.1098/rsif.2014.0378 – ident: ref27 doi: 10.1103/PhysRevE.71.056103 – volume: 6 start-page: 21202e year: 2011 ident: ref22 article-title: Leaders in social networks, the delicious case publication-title: PLoS ONE doi: 10.1371/journal.pone.0021202 – ident: ref43 doi: 10.1093/biomet/30.1-2.81 – volume: 7 year: 2016 ident: ref45 article-title: The H-index of a network node and its relation to degree and coreness publication-title: Nature Commun doi: 10.1038/ncomms10168 – ident: ref21 doi: 10.1016/j.comnet.2012.10.007 – ident: ref12 doi: 10.1007/s10955-014-1024-9 – ident: ref4 doi: 10.1007/978-3-642-15939-8_16 – ident: ref3 doi: 10.1073/pnas.122653799 – ident: ref39 doi: 10.1016/j.ins.2011.09.023 – volume: 650 start-page: 1 year: 2016 ident: ref23 article-title: Vital nodes identification in complex networks publication-title: Phys Rep doi: 10.1016/j.physrep.2016.06.007 – ident: ref18 doi: 10.1080/0022250X.1972.9989806 – ident: ref13 doi: 10.1209/0295-5075/113/58004 – ident: ref20 doi: 10.1016/0378-8733(78)90021-7 – ident: ref26 doi: 10.1038/nphys1746 – ident: ref31 doi: 10.1007/978-3-642-14274-1_9 – ident: ref15 doi: 10.1126/science.1215842 |
SSID | ssj0000816957 |
Score | 2.2949307 |
Snippet | The identification of influential nodes is essential to research regarding network attacks, information dissemination, and epidemic spreading. Thus, techniques... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3777 |
SubjectTerms | Aggregates Algorithm design and analysis Algorithms Artificial intelligence Complex networks Context Eigenvectors Formal concept analysis Influential nodes Information dissemination Lattices Networks Nodes Search engines SIR model Sun weighted formal concept analysis |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SnNpD0yQt3TYNOuQYbyxZku1jsnRJC9lTQwM9COthKF28obsLpb8-M5LWhLaU3oSRjMQ38jw88w3AOVGUO9lWhSUXRfalKzrelEXXtkL7SlQ2kvrcLvTNnfx0r-734GKshQkhxOSzMKVh_JfvV25LobJLFC60Ntp92MdRqtUa4ynUQKJVdSYW4mV7eTWb4Rkoe6ueCl23JdWgPFE-kaM_N1X540sc1cv8EG53G0tZJd-n242dul-_cTb-785fwotsZ7KrJBhHsBeGY3j-hH3wBL6mIt1Y6MQ-pmYleN-XbLHyYc2-DYw-Fsvwky1SrviaXaPO82w1sC8xoorjOdm8S5wZqx_ZjuPkFdzNP3ye3RS510LhZNlsCouesLaVlaHygQfpde1E0M73SvfUFt3W6Mqiued9gyYed7WXPfdobjQqciq-hoNhNYQ3wDz3vVAdF7aX0qveNtY5X9lKdoJrFyYgdiAYl4nIqR_G0kSHpGxNQs4QciYjN4GLcdFD4uH49_RrQnecSiTa8QGiYvKdNLLHgyj0qbqaKIZQL-OR0cJRVEXmVDWBE0JyfEkGcQKnO1kx-cKvjZDomkmtG_7276vewTPaYIrenMLB5sc2vEd7ZmPPoiA_Ahw58DM priority: 102 providerName: IEEE |
Title | Identifying Influential Nodes in Complex Networks Based on Weighted Formal Concept Analysis |
URI | https://ieeexplore.ieee.org/document/7873269 https://www.proquest.com/docview/2455946681 https://doaj.org/article/4f5715255a70431990c2e24054331c53 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ-iVrFaJQePrm6ySXZz1GKpgj0pCh7C5rEglK3YCv58Z5JtKQh68bYs2Ucmk5lvwsw3hJwjRbkTusgshiiiyV1WsyrPaq258gUvbCT1eZio8ZO4f5Eva62-MCcs0QMnwV2JRpbYo0fWJfLAgPF0PIAbkljq42Tk-cx1vhZMRRtcMaVl2dEMsVxfXQ-HMCPM5SovuSp1jhUpa64oMvZ3LVZ-2OXobEa7ZKdDifQ6_d0e2QjtPtle4w7skddUYhvLlOhdajUCu3VKJzMf5vStpbjVp-GLTlKm95zegMfydNbS53geCtcjRKxTGBlrF-mSoeSAPI1uH4fjrOuUkDmRV4vMQhyrbGFFKHxgQXhVgpSU841UDTY1tyUEogDWvK8AoDFXetEwD2ChkpER8ZBstrM2HBHqmW-4rBm3jRBeNrayzvnCFqLmTLnQJ3wpNOM6GnHsZjE1MZzItUmSNihp00m6Ty5WD70nFo3fh9_gaqyGIgV2vAGKYTrFMH8pRp_0cC1XLwHLBFBV98lgubam265zwwUEVkKpih3_x6dPyBZOJ53UDMjm4uMznAJ2WdizqKZnsczwG59J5PU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAO5VEqthTwgWOzTRzbSY7titUWuntqRSUOVvyIhFhlK3ZXQvx6ZmxvVAFC3KLIjmx9Y88jM98AvCeKciuaMjPkoogut1lb1HnWNg1XruSlCaQ-84Wa3YiPt_J2D06HWhjvfUg-82N6DP_y3cpuKVR2hsKF1kbzAB6i3hcyVmsNERVqIdHIKlELFXlzdj6Z4C4of6sac1U1OVWh3FM_gaU_tVX54y4OCmb6FOa7pcW8km_j7caM7c_fWBv_d-3P4CBZmuw8isZz2PP9C3hyj3_wEL7EMt1Q6sQuY7sSPPFLtlg5v2Zfe0bXxdL_YIuYLb5mF6j1HFv17HOIqeLzlKzeJY4M9Y9sx3LyEm6mH64nsyx1W8isyOtNZtAXVqY0wpfOF144VVnulXWdVB01RjcVOrNo8DlXo5FX2MqJrnBocNQysCoewX6_6v0rYK5wHZdtwU0nhJOdqY21rjSlaHmhrB8B34GgbaIip44YSx1ckrzRETlNyOmE3AhOh0l3kYnj38MvCN1hKNFohxeIik6nUosONyLRq2orIhlCzYxbRhtHUh2ZleUIDgnJ4SMJxBGc7GRFpyO_1lygcyaUqovjv896B49m1_MrfXW5-PQaHtNiYyznBPY337f-DVo3G_M2CPUv03_zgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Influential+Nodes+in+Complex+Networks+Based+on+Weighted+Formal+Concept+Analysis&rft.jtitle=IEEE+access&rft.au=Sun%2C+Zejun&rft.au=Wang%2C+Bin&rft.au=Sheng%2C+Jinfang&rft.au=Hu%2C+Yixiang&rft.date=2017&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=5&rft.spage=3777&rft.epage=3789&rft_id=info:doi/10.1109%2FACCESS.2017.2679038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2017_2679038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |