Dictionary Representation of Deep Features for Occlusion-Robust Face Recognition
Deep learning has achieved exciting results in face recognition; however, the accuracy is still unsatisfying for occluded faces. To improve the robustness for occluded faces, this paper proposes a novel deep dictionary representation-based classification scheme, where a convolutional neural network...
Saved in:
Published in | IEEE access Vol. 7; pp. 26595 - 26605 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning has achieved exciting results in face recognition; however, the accuracy is still unsatisfying for occluded faces. To improve the robustness for occluded faces, this paper proposes a novel deep dictionary representation-based classification scheme, where a convolutional neural network is employed as the feature extractor and followed by a dictionary to linearly code the extracted deep features. The dictionary is composed by a gallery part consisting of the deep features of the training samples and an auxiliary part consisting of the mapping vectors acquired from the subjects either inside or outside the training set and associated with the occlusion patterns of the testing face samples. A squared Euclidean norm is used to regularize the coding coefficients. The proposed scheme is computationally efficient and is robust to large contiguous occlusion. In addition, the proposed scheme is generic for both the occluded and non-occluded face images and works with a single training sample per subject. The extensive experimental evaluations demonstrate the superior performance of the proposed approach over other state-of-the-art algorithms. |
---|---|
AbstractList | Deep learning has achieved exciting results in face recognition; however, the accuracy is still unsatisfying for occluded faces. To improve the robustness for occluded faces, this paper proposes a novel deep dictionary representation-based classification scheme, where a convolutional neural network is employed as the feature extractor and followed by a dictionary to linearly code the extracted deep features. The dictionary is composed by a gallery part consisting of the deep features of the training samples and an auxiliary part consisting of the mapping vectors acquired from the subjects either inside or outside the training set and associated with the occlusion patterns of the testing face samples. A squared Euclidean norm is used to regularize the coding coefficients. The proposed scheme is computationally efficient and is robust to large contiguous occlusion. In addition, the proposed scheme is generic for both the occluded and non-occluded face images and works with a single training sample per subject. The extensive experimental evaluations demonstrate the superior performance of the proposed approach over other state-of-the-art algorithms. |
Author | Cen, Feng Wang, Guanghui |
Author_xml | – sequence: 1 givenname: Feng orcidid: 0000-0002-0825-385X surname: Cen fullname: Cen, Feng email: feng.cen@tongji.edu.cn organization: Department of Control Science and Engineering, College of Electronics and Information Engineering, Tongji University, Shanghai, China – sequence: 2 givenname: Guanghui orcidid: 0000-0003-3182-104X surname: Wang fullname: Wang, Guanghui organization: Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, USA |
BookMark | eNqFkU9v1DAQxS1UJErpJ-glEucsdvwn9rHadqFSpaIWztZkMq68WuLFTg58e7ykqhAXfLH1Zn5vbL_37GxKEzF2JfhGCO4-XW-3t09Pm44Lt-kcF7I3b9h5J4xrpZbm7K_zO3ZZyp7XZauk-3P29SbiHNME-VfzSMdMhaYZTkqTQnNDdGx2BPNSC01IuXlAPCylltvHNCxlbnaAVElMz1M8YR_Y2wCHQpcv-wX7vrv9tv3S3j98vtte37eouJ3bodfY9UYOfeBKjtaFjoQdZI8ycENGASIRKK201nI0YXAjWdGBHawD6-QFu1t9xwR7f8zxR32CTxD9HyHlZw95jnggL40BMIghOFTWjc6a4AhJjAC6U2P1-rh6HXP6uVCZ_T4tearX912db3gvlKldcu3CnErJFF6nCu5PSfg1CX9Kwr8kUSn3D4Vx_eA5Qzz8h71a2UhEr9Os0UIpJ38DfhmZKw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s10462_023_10551_y crossref_primary_10_1016_j_patcog_2019_107149 crossref_primary_10_1109_ACCESS_2023_3326235 crossref_primary_10_1049_bme2_12029 crossref_primary_10_1109_TCSVT_2020_2978717 crossref_primary_10_1109_TMM_2023_3253054 crossref_primary_10_1109_ACCESS_2019_2912932 crossref_primary_10_3390_electronics10212666 crossref_primary_10_1007_s10489_020_02100_9 crossref_primary_10_1109_ACCESS_2020_3025035 crossref_primary_10_1109_TCYB_2019_2931067 crossref_primary_10_1007_s11063_019_10124_7 crossref_primary_10_1016_j_dsp_2020_102809 crossref_primary_10_1007_s10489_023_05026_0 crossref_primary_10_1007_s00500_022_07289_0 crossref_primary_10_1007_s00138_023_01423_0 crossref_primary_10_3390_s22145284 crossref_primary_10_1371_journal_pone_0236452 crossref_primary_10_1016_j_neucom_2019_06_096 crossref_primary_10_1109_TBIOM_2022_3153391 crossref_primary_10_1109_ACCESS_2021_3089836 crossref_primary_10_1049_bme2_12036 crossref_primary_10_3233_IDA_227309 crossref_primary_10_3390_app11167310 crossref_primary_10_1016_j_compeleceng_2022_108090 crossref_primary_10_1016_j_patcog_2020_107737 crossref_primary_10_1109_ACCESS_2020_3016116 crossref_primary_10_1016_j_neucom_2019_09_045 |
Cites_doi | 10.1109/TCSVT.2018.2829758 10.1109/CVPR.2016.90 10.1145/2733373.2807412 10.1007/s11263-014-0749-x 10.1109/34.908974 10.1016/j.patcog.2013.10.017 10.1109/TIP.2013.2262292 10.1016/j.patcog.2015.02.022 10.1109/CVPR.2017.363 10.1109/TIP.2017.2675341 10.1109/CVPR.2014.244 10.1007/978-3-319-46478-7_31 10.1007/978-3-642-15567-3_33 10.1109/CVPR.2015.7298682 10.1109/ICCV.2011.6126277 10.1109/CVPR.2013.58 10.1109/TIP.2017.2771408 10.1109/CVPR.2017.624 10.1109/TPAMI.2012.30 10.1109/ICCV.2015.425 10.1109/CVPRW.2014.131 10.1109/TCSVT.2017.2654543 10.1109/CVPR.2011.5995556 10.1109/CVPR.2015.7298907 10.1109/CVPR.2015.7298594 10.1109/JSTSP.2007.910971 10.1109/TPAMI.2017.2723009 10.5244/C.29.41 10.1109/TPAMI.2008.79 10.1016/j.patcog.2012.06.022 10.1109/TCSVT.2014.2335851 10.1109/CVPR.2016.529 10.1109/ISSCC.2016.7418007 10.1016/j.patcog.2016.02.016 10.1109/CVPR.2016.322 10.1016/S0262-8856(97)00070-X 10.1109/CVPR.2011.5995566 10.1109/CVPR.2014.220 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2901376 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 26605 |
ExternalDocumentID | oai_doaj_org_article_366aa6ccff9c489d986f9ece1daa524d 10_1109_ACCESS_2019_2901376 8651449 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 10.13039/501100004543 – fundername: Shanghai Agriculture Applied Technology Development Program, China grantid: G20180306 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-b75c2763b7f043d89f2e18b37c3f06e64acceea4545553d6fb9de812a8b89a893 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:26:45 EDT 2025 Mon Jun 30 03:09:51 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Tue Jul 01 02:18:11 EDT 2025 Wed Aug 27 02:51:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-b75c2763b7f043d89f2e18b37c3f06e64acceea4545553d6fb9de812a8b89a893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0825-385X 0000-0003-3182-104X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8651449 |
PQID | 2455607146 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_366aa6ccff9c489d986f9ece1daa524d proquest_journals_2455607146 ieee_primary_8651449 crossref_citationtrail_10_1109_ACCESS_2019_2901376 crossref_primary_10_1109_ACCESS_2019_2901376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref36 ref14 ref30 sun (ref23) 2015 ref33 sun (ref21) 2014 ref32 martinez (ref15) 1998 ref2 ref1 ref39 ref17 ref38 ref19 ref18 huang (ref4) 2007 wright (ref41) 2011 ref46 ref24 ref45 ref26 ref47 ref25 ref20 ref42 ref22 ref44 ref43 simonyan (ref8) 2014 ref28 ref27 ref29 cao (ref10) 2017 ref7 yi (ref11) 2014 ref9 zhuang (ref31) 2014; 114 ref3 ref6 ref5 ref40 van der maaten (ref16) 2008; 9 |
References_xml | – year: 2011 ident: ref41 publication-title: Sparsity and Robustness in Face Recognition – ident: ref37 doi: 10.1109/TCSVT.2018.2829758 – ident: ref7 doi: 10.1109/CVPR.2016.90 – ident: ref44 doi: 10.1145/2733373.2807412 – volume: 114 start-page: 272 year: 2014 ident: ref31 article-title: Sparse illumination learning and transfer for single-sample face recognition with image corruption and misalignment publication-title: Int J Comput Vis doi: 10.1007/s11263-014-0749-x – ident: ref45 doi: 10.1109/34.908974 – ident: ref28 doi: 10.1016/j.patcog.2013.10.017 – ident: ref43 doi: 10.1109/TIP.2013.2262292 – year: 2015 ident: ref23 publication-title: DeepID3 Face Recognition with Very Deep Neural Networks – ident: ref30 doi: 10.1016/j.patcog.2015.02.022 – ident: ref12 doi: 10.1109/CVPR.2017.363 – year: 2007 ident: ref4 article-title: Labeled faces in the wild: A database forstudying face recognition in unconstrained environments – ident: ref33 doi: 10.1109/TIP.2017.2675341 – ident: ref2 doi: 10.1109/CVPR.2014.244 – ident: ref25 doi: 10.1007/978-3-319-46478-7_31 – ident: ref26 doi: 10.1007/978-3-642-15567-3_33 – ident: ref3 doi: 10.1109/CVPR.2015.7298682 – ident: ref35 doi: 10.1109/ICCV.2011.6126277 – ident: ref19 doi: 10.1109/CVPR.2013.58 – ident: ref39 doi: 10.1109/TIP.2017.2771408 – ident: ref38 doi: 10.1109/CVPR.2017.624 – year: 2017 ident: ref10 publication-title: VGGFace2 A dataset for recognising faces across pose and age – ident: ref18 doi: 10.1109/TPAMI.2012.30 – ident: ref47 doi: 10.1109/ICCV.2015.425 – ident: ref13 doi: 10.1109/CVPRW.2014.131 – ident: ref9 doi: 10.1109/TCSVT.2017.2654543 – ident: ref34 doi: 10.1109/CVPR.2011.5995556 – ident: ref22 doi: 10.1109/CVPR.2015.7298907 – start-page: 1988 year: 2014 ident: ref21 article-title: Deep learning face representation by joint identification-verification publication-title: Proc Adv Neural Inf Process Syst – ident: ref6 doi: 10.1109/CVPR.2015.7298594 – ident: ref42 doi: 10.1109/JSTSP.2007.910971 – ident: ref14 doi: 10.1109/TPAMI.2017.2723009 – year: 2014 ident: ref8 publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition – ident: ref40 doi: 10.5244/C.29.41 – year: 2014 ident: ref11 publication-title: Learning face representation from scratch – ident: ref17 doi: 10.1109/TPAMI.2008.79 – ident: ref27 doi: 10.1016/j.patcog.2012.06.022 – ident: ref29 doi: 10.1109/TCSVT.2014.2335851 – ident: ref24 doi: 10.1109/CVPR.2016.529 – ident: ref20 doi: 10.1109/ISSCC.2016.7418007 – ident: ref32 doi: 10.1016/j.patcog.2016.02.016 – ident: ref36 doi: 10.1109/CVPR.2016.322 – ident: ref46 doi: 10.1016/S0262-8856(97)00070-X – volume: 9 start-page: 2579 year: 2008 ident: ref16 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – year: 1998 ident: ref15 article-title: The AR face database – ident: ref5 doi: 10.1109/CVPR.2011.5995566 – ident: ref1 doi: 10.1109/CVPR.2014.220 |
SSID | ssj0000816957 |
Score | 2.3803856 |
Snippet | Deep learning has achieved exciting results in face recognition; however, the accuracy is still unsatisfying for occluded faces. To improve the robustness for... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 26595 |
SubjectTerms | Algorithms Artificial neural networks convolutional neural network deep learning Dictionaries dictionary representation Face Face recognition Feature extraction Feature recognition Machine learning Occlusion occlusion-robust Representations Testing Training Visualization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp_YQkm5DNl_o0GPdyLYkS8dkt0soJC1LA7kJaSRBIXjDZveQf5-RrF0WAumlV1uyrZnRzJM8ekPIV2aZdoL5irdOVZxDqJyHuhIO4YZDIwg5efz2Tt7c858P4mGn1FfKCRvogQfBXbZSWisBYtTAlfZayagDhNpbKxruk_fFmLezmMo-WNVSi67QDNVMX15NJjiilMulv6d_h21iGdkJRZmxv5RYeeOXc7CZHZD9ghLp1fB1h-RD6D-TTzvcgSPye_o3H0mwyxc6z-ms5RRRTxeRTkN4ognerfEGRWBKfwE8rtPWWDVfuPXzis4sBDrf5A8t-i_kfvbjz-SmKuURKuBMrSrXCWjQPbguMt56pWMTauXaDtrIZJDcAkZAyxEjCdF6GZ32AeO5VU5pizjliOz1iz4cE6prL0LXsQawW5B1mptdAyB4VKgxNSbNRlIGCnd4KmHxaPIagmkziNck8Zoi3jH5tu30NFBnvN_8Oqlg2zTxXucLaA2mWIP5lzWMySgpcPsQJREQcj0mZxuFmjJHn02Dcknselye_I9Xn5KPaTjD9swZ2Vst1-EcAcvKXWTbfAWWy-bU priority: 102 providerName: Directory of Open Access Journals |
Title | Dictionary Representation of Deep Features for Occlusion-Robust Face Recognition |
URI | https://ieeexplore.ieee.org/document/8651449 https://www.proquest.com/docview/2455607146 https://doaj.org/article/366aa6ccff9c489d986f9ece1daa524d |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqyCWlsoHjs02D9uxj-2WVYVUQCsq9WbZ47GEqJKqTQ7l12M73qgChLhFiR05_saZ8XjmG0I-lKZUlpeuYI2VBWOAhXVQFdwGc8MGIcAUPH75WVxcsU_X_HqHHM-5MIiYgs9wGS_TWb7rYYyushMpgnpnapfsho3blKs1-1NiAQnF20wsVJXq5HS1Ct8Qo7fUMp4WNpFX5JHySRz9uajKH3_ipF7Wz8nldmBTVMmP5TjYJfz8jbPxf0f-gjzLdiY9nQTjJdnB7hV5-oh9cJ98Pf-ekhrM3QPdpIDYnIfU0d7Tc8RbGg3EMTygwbSlXwBuxuhcKza9He8HujaAdLONQOq71-Rq_fHb6qLIBRYKYKUcCttyqMMPxra-ZI2TytdYSdu00PhSoGAGgg41LFhZnDdOeKscBovASCuVCZbOG7LX9R2-JVRVjmPbljWEbiiquLrbGoAzLwPmckHq7cxryOzjsQjGjU67kFLpCS4d4dIZrgU5njvdTuQb_25-FiGdm0bm7HQjQKHzQtSNEMYIAO8VMKmcksIrBKycMbxmbkH2I3zzSzJyC3K4FRCdV_m9rsO8RH4-Jt79vdcBeRIHOLlsDsnecDfi-2DEDPYobf6Pkgz_AtEo75U |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPHJttHrZjH8uW1QLdglat1Jvlx0RCVEnVJgf49diON6oAIW5RYkeOv7FnMp75BuBdrnNpWO4yWhmRUWoxM84WGTPe3DBeCDAGj69P-eqcfrpgFztwMOXCIGIMPsN5uIxn-a6zQ3CVHQru1TuVd-Cu1_usGLO1Jo9KKCEhWZ2ohYpcHh4tFv4rQvyWnIfzwiowi9xSP5GlP5VV-WMvjgpm-QjW26GNcSXf50Nv5vbnb6yN_zv2x_AwWZrkaBSNJ7CD7VN4cIt_cA--Hn-LaQ36-gfZxJDYlInUkq4hx4hXJJiIg39AvHFLvlh7OQT3WrbpzHDTk6W2SDbbGKSufQbnyw9ni1WWSixkluaiz0zNbOm3GFM3Oa2ckE2JhTBVbasm58iptl6Lahrmm1WON0Y69DaBFkZI7W2d57Dbdi2-ACILx7Cu89L6bsiLsL7r0lpGG-FRFzMotzOvbOIfD2UwLlX8D8mlGuFSAS6V4JrBwdTpaqTf-Hfz9wHSqWngzo43PBQqLUVVca41t7ZppKVCOil4I9Fi4bRmJXUz2AvwTS9JyM1gfysgKq3zG1X6eQkMfZS__Huvt3BvdbY-UScfTz-_gvthsKMDZx92--sBX3uTpjdvoiT_Asze8ek |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dictionary+Representation+of+Deep+Features+for+Occlusion-Robust+Face+Recognition&rft.jtitle=IEEE+access&rft.au=Cen%2C+Feng&rft.au=Wang%2C+Guanghui&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=26595&rft.epage=26605&rft_id=info:doi/10.1109%2FACCESS.2019.2901376&rft.externalDocID=8651449 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |