Recursive Conditional Generative Adversarial Networks for Video Transformation
Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising, and image inpainting. So far, cGANs have been applied to the transformation of still images, but their use could be extended to the transforma...
Saved in:
Published in | IEEE access Vol. 7; pp. 37807 - 37821 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising, and image inpainting. So far, cGANs have been applied to the transformation of still images, but their use could be extended to the transformation of video contents, which has a much larger market. This paper considers problems with the cGAN-based transformation of video contents. The major problem is flickering caused by the discontinuity between adjacent image frames. Several postprocessing algorithms have been proposed to reduce that effect after transformation. We propose a recursive cGAN in which the previous output frame is used as an input in addition to the current input frame to reduce the flickering effect without losing the objective quality of each image. Compared with previous postprocessing algorithms, our approach performed better in terms of various evaluation metrics for video contents. |
---|---|
AbstractList | Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising, and image inpainting. So far, cGANs have been applied to the transformation of still images, but their use could be extended to the transformation of video contents, which has a much larger market. This paper considers problems with the cGAN-based transformation of video contents. The major problem is flickering caused by the discontinuity between adjacent image frames. Several postprocessing algorithms have been proposed to reduce that effect after transformation. We propose a recursive cGAN in which the previous output frame is used as an input in addition to the current input frame to reduce the flickering effect without losing the objective quality of each image. Compared with previous postprocessing algorithms, our approach performed better in terms of various evaluation metrics for video contents. |
Author | Suh, Doug Young Kim, San |
Author_xml | – sequence: 1 givenname: San orcidid: 0000-0001-9851-5464 surname: Kim fullname: Kim, San organization: Department of Electrical Engineering, Kyung Hee University, Seoul, South Korea – sequence: 2 givenname: Doug Young surname: Suh fullname: Suh, Doug Young email: suh@khu.ac.kr organization: Department of Electrical Engineering, Kyung Hee University, Seoul, South Korea |
BookMark | eNpNUdtKAzEQDaJgvXyBLws-t-ae3ceyeANRsNXXkE1mJbXdaLJV_HuzbilmCDM5zDkz5Jygwy50gNAFwTNCcHU1r-vrxWJGMalmtMKSK3qAJpTIasoEk4f_6mN0ntIK51NmSKgJenwGu43Jf0FRh8753ofOrItb6CCafoDn7gtiMtFn-BH67xDfU9GGWLx6B6FYRtOl_NyYgXqGjlqzTnC-y6fo5eZ6Wd9NH55u7-v5w9RyXPbTRoocVeWs5K0jGFMumXANdwpkRRwo7igXkjBqrGJKNg2hkmFVWWvaxrBTdD_qumBW-iP6jYk_Ohiv_4AQ37SJvbdr0KqxtjWEQIkJl0BNS5yylpdCYEvVoHU5an3E8LmF1OtV2Mb8C0nnHYTECgucu9jYZWNIKUK7n0qwHnzQow968EHvfMisi5HlAWDPKKViIt9fLhyFqg |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_patrec_2023_03_023 crossref_primary_10_3390_rs13010128 crossref_primary_10_1016_j_patrec_2022_04_010 |
Cites_doi | 10.1109/TCE.2005.1405722 10.1109/ICCV.2015.304 10.1109/CVPR.2015.7298965 10.1145/383259.383296 10.1109/TIP.2005.860328 10.1109/CVPR.2017.19 10.1109/ICCV.2015.164 10.1007/978-3-319-46487-9_40 10.1109/TIP.2003.819861 10.1109/CVPR.2017.632 10.1109/TCSVT.2008.919114 10.1145/1661412.1618470 10.1007/s00138-014-0623-4 10.1007/978-3-319-46493-0_20 10.1109/IEEESTD.2015.7118618 10.1145/344779.344972 10.1007/978-3-642-40602-7_39 10.1109/CVPR.2005.38 10.1109/TIP.2006.881969 10.1109/CVPR.2016.350 10.1109/TIP.2005.859378 10.1023/B:JMIV.0000035178.72139.2d 10.1137/090766371 10.1109/ICCV.2017.244 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2906472 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 37821 |
ExternalDocumentID | oai_doaj_org_article_7bccfa11e80146e2af1d7cc48550c27a 10_1109_ACCESS_2019_2906472 8673567 |
Genre | orig-research |
GrantInformation_xml | – fundername: Korea Electric Power Corporation grantid: R18XA02 funderid: 10.13039/501100010193 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-b6565699dc64fd10024635db4d7e691de74d2456132ac7376bb1263079ccafba3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:14:30 EDT 2024 Thu Oct 10 18:28:35 EDT 2024 Fri Aug 23 00:50:44 EDT 2024 Wed Jun 26 19:27:11 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-b6565699dc64fd10024635db4d7e691de74d2456132ac7376bb1263079ccafba3 |
ORCID | 0000-0001-9851-5464 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8673567 |
PQID | 2455607050 |
PQPubID | 4845423 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2019_2906472 doaj_primary_oai_doaj_org_article_7bccfa11e80146e2af1d7cc48550c27a ieee_primary_8673567 proquest_journals_2455607050 |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 luan (ref4) 2007 ref14 kim (ref17) 2017 choi (ref18) 2017 ref31 poplawski (ref19) 0 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ronneberger (ref34) 2015 barratt (ref24) 2018 abadi (ref36) 2016 kingma (ref37) 2014 radford (ref40) 0 mirza (ref16) 2019 vondrick (ref20) 2016 ref23 ref26 ref22 (ref35) 2018 ref21 goodfellow (ref15) 2014 ref28 ref27 ref29 ref8 ref7 borji (ref25) 2018 ref9 ref3 ref6 ref5 karras (ref38) 2018 zhao (ref39) 2017 |
References_xml | – year: 0 ident: ref40 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks contributor: fullname: radford – start-page: 1 year: 2018 ident: ref38 article-title: Progressive growing of GANs for improved Quality, Stability, and Variation publication-title: Proc Int Conf Learn Represent contributor: fullname: karras – start-page: 309 year: 2007 ident: ref4 article-title: Natural image colorization publication-title: Proc 18th Eurograph Conf Rendering Techn contributor: fullname: luan – year: 2019 ident: ref16 publication-title: Conditional generative adversarial nets contributor: fullname: mirza – start-page: 1 year: 2017 ident: ref39 article-title: Energy-based generative adversarial network publication-title: Proc Int Conf Learn Represent contributor: fullname: zhao – ident: ref21 doi: 10.1109/TCE.2005.1405722 – year: 2018 ident: ref35 publication-title: Pexels Videos – ident: ref9 doi: 10.1109/ICCV.2015.304 – ident: ref10 doi: 10.1109/CVPR.2015.7298965 – ident: ref3 doi: 10.1145/383259.383296 – year: 0 ident: ref19 article-title: Flicker in solid-state lighting: measurement techniques, and proposed reporting and application criteria contributor: fullname: poplawski – ident: ref22 doi: 10.1109/TIP.2005.860328 – year: 2018 ident: ref24 publication-title: A note on the inception score contributor: fullname: barratt – ident: ref13 doi: 10.1109/CVPR.2017.19 – ident: ref8 doi: 10.1109/ICCV.2015.164 – ident: ref7 doi: 10.1007/978-3-319-46487-9_40 – start-page: 234 year: 2015 ident: ref34 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc MICCAI contributor: fullname: ronneberger – ident: ref30 doi: 10.1109/TIP.2003.819861 – year: 2017 ident: ref17 publication-title: Learning to discover cross-domain relations with generative adversarial networks contributor: fullname: kim – start-page: 2672 year: 2014 ident: ref15 article-title: Generative adversarial nets publication-title: Proc 27th Int Conf Neural Inf Process Syst (NIPS) contributor: fullname: goodfellow – ident: ref12 doi: 10.1109/CVPR.2017.632 – ident: ref26 doi: 10.1109/TCSVT.2008.919114 – start-page: 1 year: 2014 ident: ref37 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent contributor: fullname: kingma – ident: ref11 doi: 10.1145/1661412.1618470 – ident: ref5 doi: 10.1007/s00138-014-0623-4 – ident: ref29 doi: 10.1007/978-3-319-46493-0_20 – ident: ref27 doi: 10.1109/IEEESTD.2015.7118618 – ident: ref2 doi: 10.1145/344779.344972 – year: 2018 ident: ref25 publication-title: Pros and cons of gan evaluation measures contributor: fullname: borji – start-page: 1 year: 2016 ident: ref36 article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI) contributor: fullname: abadi – ident: ref33 doi: 10.1007/978-3-642-40602-7_39 – year: 2017 ident: ref18 publication-title: StarGAN Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation contributor: fullname: choi – ident: ref6 doi: 10.1109/CVPR.2005.38 – ident: ref1 doi: 10.1109/TIP.2006.881969 – start-page: 613 year: 2016 ident: ref20 article-title: Generating videos with scene dynamics publication-title: Proc Int Conf Neural Inf Process Syst (NIPS) contributor: fullname: vondrick – ident: ref32 doi: 10.1109/CVPR.2016.350 – ident: ref31 doi: 10.1109/TIP.2005.859378 – ident: ref28 doi: 10.1023/B:JMIV.0000035178.72139.2d – ident: ref23 doi: 10.1137/090766371 – ident: ref14 doi: 10.1109/ICCV.2017.244 |
SSID | ssj0000816957 |
Score | 2.2047572 |
Snippet | Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising,... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 37807 |
SubjectTerms | Algorithms Data models Gallium nitride generative adversarial network Generative adversarial networks Histograms Image quality Image resolution Image sequences Image-to-image transformation Noise reduction reducing flicker Task analysis Transformations video transformation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIhAQR4YCY1jx67HUlFVDB1Qi7pZ_orEkiBa_j8-O62CGFhYkyjJ3fnO786ndwjdS-qroqYm-Le1OSsJz41hMqdc-FprFyBIbJBd8PmKvayrdW_UF_SEJXrgpLiRMNbWmhAfaU58qWvihLWRiMuWIkGjQvaSqRiDx4TLSnQ0Q-H-aDKdBomgl0s-AsU5E-WPrSgy9ncjVn7F5bjZzE7RSYcS8ST93Rk68M05Ou5xBw7Q4hUq5dB8jqctnDvHmh5ONNIQw3CctbzRsMLwInV7b3DAqPjt3fkWL3uQtW0u0Gr2vJzO8244Qm5ZMd7mhgMUk9JZzmoHRKosYAdnmBOeS-K8YA4ONUO2qa0IYcQYUvLg0TLYrDaaXqLDpm38FcLSaE-DM5fcUpi8ERCjo5oKIwpiS2oy9LDTk_pIHBgq5g6FVEmtCtSqOrVm6Al0uX8UCKzjhWBW1ZlV_WXWDA3AEvuXjLmgFRcZGu4sozpn26ggZsBtoqiK6__49A06AnFSnWWIDrefX_42II-tuYuL7Bv00tPd priority: 102 providerName: Directory of Open Access Journals |
Title | Recursive Conditional Generative Adversarial Networks for Video Transformation |
URI | https://ieeexplore.ieee.org/document/8673567 https://www.proquest.com/docview/2455607050 https://doaj.org/article/7bccfa11e80146e2af1d7cc48550c27a |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8CqI8Kg-MTZvEjl2PUIEqJDqgFnWz_IqEkBpE24Vfj89JK14DWxTFke3PPn8-n78DuJbUF2lJTZjf1iYsz3hiDJMJ5cKXWrtAQWKA7JiPpuxhVsy2oLu5C-O9j8FnvoeP8SzfVXaFrrL-gAtacLEN20LK-q7Wxp-CCSRkIRphoSyV_ZvhMLQBo7dkD0XNmci_LT5Ro79JqvLLEsfl5f4AHtcVq6NKXnurpenZjx-ajf-t-SHsNzyT3NQD4wi2_PwY9r6oD7Zg_IS-dgxfJ8MKT66jV5DUQtRoBUnM1rzQOEbJuI4XX5DAcsnzi_MVmXwhvdX8BKb3d5PhKGnSKySWpYNlYjiSOSmd5ax0KMXKAvtwhjnhucycF8zhsWjYr2orgiEyJst5sAkyoF4aTU9hZ17N_RkQabSnwRzk3FLM3RE4p6OaCiPSzObUtKG77nf1VqtoqLj7SKWqYVIIk2pgasMtYrP5FCWw44vQp6qZUUoYa0udZT7q3_hcl5kT1kaFNpsL3YYW4rD5SQNBGy7XSKtmui5UaGZgfiIt0vO_S13ALlaw9r1cws7yfeWvAhtZmk7cxXfiYPwEMEfdtw |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnAkJYkduz5CBSpbD6ggbpa3SAipQbS98PV4nLRiO3CLojiy_ezx83j8BuBEUl-kJTVhflubsDzjiTFMJpQLX2rtAgWJAbJ93ntkN8_F8xyczu7CeO9j8Jlv42M8y3eVnaCr7KzDBS24mIfFwKs7vL6tNfOoYAoJWYhGWihL5dl5txtagfFbso2y5kzk35afqNLfpFX5ZYvjAnO1BvfTqtVxJa_tydi07ccP1cb_1n0dVhumSc7robEBc364CStf9Ae3oP-A3nYMYCfdCs-uo1-Q1FLUaAdJzNc80jhKSb-OGB-RwHPJ04vzFRl8ob3VcBsery4H3V7SJFhILEs748RwpHNSOstZ6VCMlQX-4QxzwnOZOS-Yw4PRsGPVVgRTZEyW82AVZMC9NJruwMKwGvpdINJoT4NByLmlmL0jsE5HNRVGpJnNqWnB6bTf1Vuto6Hi_iOVqoZJIUyqgakFF4jN7FMUwY4vQp-qZk4pYawtdZb5qIDjc11mTlgbNdpsLnQLthCH2U8aCFpwMEVaNRN2pEIzA_cTaZHu_V3qGJZ6g_s7dXfdv92HZaxs7Yk5gIXx-8QfBm4yNkdxSH4CsbzgDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+Conditional+Generative+Adversarial+Networks+for+Video+Transformation&rft.jtitle=IEEE+access&rft.au=Kim%2C+San&rft.au=Suh%2C+Doug+Young&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=37807&rft.epage=37821&rft_id=info:doi/10.1109%2FACCESS.2019.2906472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2906472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |