Recursive Conditional Generative Adversarial Networks for Video Transformation

Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising, and image inpainting. So far, cGANs have been applied to the transformation of still images, but their use could be extended to the transforma...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 37807 - 37821
Main Authors Kim, San, Suh, Doug Young
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising, and image inpainting. So far, cGANs have been applied to the transformation of still images, but their use could be extended to the transformation of video contents, which has a much larger market. This paper considers problems with the cGAN-based transformation of video contents. The major problem is flickering caused by the discontinuity between adjacent image frames. Several postprocessing algorithms have been proposed to reduce that effect after transformation. We propose a recursive cGAN in which the previous output frame is used as an input in addition to the current input frame to reduce the flickering effect without losing the objective quality of each image. Compared with previous postprocessing algorithms, our approach performed better in terms of various evaluation metrics for video contents.
AbstractList Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising, and image inpainting. So far, cGANs have been applied to the transformation of still images, but their use could be extended to the transformation of video contents, which has a much larger market. This paper considers problems with the cGAN-based transformation of video contents. The major problem is flickering caused by the discontinuity between adjacent image frames. Several postprocessing algorithms have been proposed to reduce that effect after transformation. We propose a recursive cGAN in which the previous output frame is used as an input in addition to the current input frame to reduce the flickering effect without losing the objective quality of each image. Compared with previous postprocessing algorithms, our approach performed better in terms of various evaluation metrics for video contents.
Author Suh, Doug Young
Kim, San
Author_xml – sequence: 1
  givenname: San
  orcidid: 0000-0001-9851-5464
  surname: Kim
  fullname: Kim, San
  organization: Department of Electrical Engineering, Kyung Hee University, Seoul, South Korea
– sequence: 2
  givenname: Doug Young
  surname: Suh
  fullname: Suh, Doug Young
  email: suh@khu.ac.kr
  organization: Department of Electrical Engineering, Kyung Hee University, Seoul, South Korea
BookMark eNpNUdtKAzEQDaJgvXyBLws-t-ae3ceyeANRsNXXkE1mJbXdaLJV_HuzbilmCDM5zDkz5Jygwy50gNAFwTNCcHU1r-vrxWJGMalmtMKSK3qAJpTIasoEk4f_6mN0ntIK51NmSKgJenwGu43Jf0FRh8753ofOrItb6CCafoDn7gtiMtFn-BH67xDfU9GGWLx6B6FYRtOl_NyYgXqGjlqzTnC-y6fo5eZ6Wd9NH55u7-v5w9RyXPbTRoocVeWs5K0jGFMumXANdwpkRRwo7igXkjBqrGJKNg2hkmFVWWvaxrBTdD_qumBW-iP6jYk_Ohiv_4AQ37SJvbdr0KqxtjWEQIkJl0BNS5yylpdCYEvVoHU5an3E8LmF1OtV2Mb8C0nnHYTECgucu9jYZWNIKUK7n0qwHnzQow968EHvfMisi5HlAWDPKKViIt9fLhyFqg
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_patrec_2023_03_023
crossref_primary_10_3390_rs13010128
crossref_primary_10_1016_j_patrec_2022_04_010
Cites_doi 10.1109/TCE.2005.1405722
10.1109/ICCV.2015.304
10.1109/CVPR.2015.7298965
10.1145/383259.383296
10.1109/TIP.2005.860328
10.1109/CVPR.2017.19
10.1109/ICCV.2015.164
10.1007/978-3-319-46487-9_40
10.1109/TIP.2003.819861
10.1109/CVPR.2017.632
10.1109/TCSVT.2008.919114
10.1145/1661412.1618470
10.1007/s00138-014-0623-4
10.1007/978-3-319-46493-0_20
10.1109/IEEESTD.2015.7118618
10.1145/344779.344972
10.1007/978-3-642-40602-7_39
10.1109/CVPR.2005.38
10.1109/TIP.2006.881969
10.1109/CVPR.2016.350
10.1109/TIP.2005.859378
10.1023/B:JMIV.0000035178.72139.2d
10.1137/090766371
10.1109/ICCV.2017.244
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2906472
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 37821
ExternalDocumentID oai_doaj_org_article_7bccfa11e80146e2af1d7cc48550c27a
10_1109_ACCESS_2019_2906472
8673567
Genre orig-research
GrantInformation_xml – fundername: Korea Electric Power Corporation
  grantid: R18XA02
  funderid: 10.13039/501100010193
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-b6565699dc64fd10024635db4d7e691de74d2456132ac7376bb1263079ccafba3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:14:30 EDT 2024
Thu Oct 10 18:28:35 EDT 2024
Fri Aug 23 00:50:44 EDT 2024
Wed Jun 26 19:27:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-b6565699dc64fd10024635db4d7e691de74d2456132ac7376bb1263079ccafba3
ORCID 0000-0001-9851-5464
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8673567
PQID 2455607050
PQPubID 4845423
PageCount 15
ParticipantIDs crossref_primary_10_1109_ACCESS_2019_2906472
doaj_primary_oai_doaj_org_article_7bccfa11e80146e2af1d7cc48550c27a
ieee_primary_8673567
proquest_journals_2455607050
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
luan (ref4) 2007
ref14
kim (ref17) 2017
choi (ref18) 2017
ref31
poplawski (ref19) 0
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ronneberger (ref34) 2015
barratt (ref24) 2018
abadi (ref36) 2016
kingma (ref37) 2014
radford (ref40) 0
mirza (ref16) 2019
vondrick (ref20) 2016
ref23
ref26
ref22
(ref35) 2018
ref21
goodfellow (ref15) 2014
ref28
ref27
ref29
ref8
ref7
borji (ref25) 2018
ref9
ref3
ref6
ref5
karras (ref38) 2018
zhao (ref39) 2017
References_xml – year: 0
  ident: ref40
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  contributor:
    fullname: radford
– start-page: 1
  year: 2018
  ident: ref38
  article-title: Progressive growing of GANs for improved Quality, Stability, and Variation
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: karras
– start-page: 309
  year: 2007
  ident: ref4
  article-title: Natural image colorization
  publication-title: Proc 18th Eurograph Conf Rendering Techn
  contributor:
    fullname: luan
– year: 2019
  ident: ref16
  publication-title: Conditional generative adversarial nets
  contributor:
    fullname: mirza
– start-page: 1
  year: 2017
  ident: ref39
  article-title: Energy-based generative adversarial network
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: zhao
– ident: ref21
  doi: 10.1109/TCE.2005.1405722
– year: 2018
  ident: ref35
  publication-title: Pexels Videos
– ident: ref9
  doi: 10.1109/ICCV.2015.304
– ident: ref10
  doi: 10.1109/CVPR.2015.7298965
– ident: ref3
  doi: 10.1145/383259.383296
– year: 0
  ident: ref19
  article-title: Flicker in solid-state lighting: measurement techniques, and proposed reporting and application criteria
  contributor:
    fullname: poplawski
– ident: ref22
  doi: 10.1109/TIP.2005.860328
– year: 2018
  ident: ref24
  publication-title: A note on the inception score
  contributor:
    fullname: barratt
– ident: ref13
  doi: 10.1109/CVPR.2017.19
– ident: ref8
  doi: 10.1109/ICCV.2015.164
– ident: ref7
  doi: 10.1007/978-3-319-46487-9_40
– start-page: 234
  year: 2015
  ident: ref34
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc MICCAI
  contributor:
    fullname: ronneberger
– ident: ref30
  doi: 10.1109/TIP.2003.819861
– year: 2017
  ident: ref17
  publication-title: Learning to discover cross-domain relations with generative adversarial networks
  contributor:
    fullname: kim
– start-page: 2672
  year: 2014
  ident: ref15
  article-title: Generative adversarial nets
  publication-title: Proc 27th Int Conf Neural Inf Process Syst (NIPS)
  contributor:
    fullname: goodfellow
– ident: ref12
  doi: 10.1109/CVPR.2017.632
– ident: ref26
  doi: 10.1109/TCSVT.2008.919114
– start-page: 1
  year: 2014
  ident: ref37
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
  contributor:
    fullname: kingma
– ident: ref11
  doi: 10.1145/1661412.1618470
– ident: ref5
  doi: 10.1007/s00138-014-0623-4
– ident: ref29
  doi: 10.1007/978-3-319-46493-0_20
– ident: ref27
  doi: 10.1109/IEEESTD.2015.7118618
– ident: ref2
  doi: 10.1145/344779.344972
– year: 2018
  ident: ref25
  publication-title: Pros and cons of gan evaluation measures
  contributor:
    fullname: borji
– start-page: 1
  year: 2016
  ident: ref36
  article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI)
  contributor:
    fullname: abadi
– ident: ref33
  doi: 10.1007/978-3-642-40602-7_39
– year: 2017
  ident: ref18
  publication-title: StarGAN Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
  contributor:
    fullname: choi
– ident: ref6
  doi: 10.1109/CVPR.2005.38
– ident: ref1
  doi: 10.1109/TIP.2006.881969
– start-page: 613
  year: 2016
  ident: ref20
  article-title: Generating videos with scene dynamics
  publication-title: Proc Int Conf Neural Inf Process Syst (NIPS)
  contributor:
    fullname: vondrick
– ident: ref32
  doi: 10.1109/CVPR.2016.350
– ident: ref31
  doi: 10.1109/TIP.2005.859378
– ident: ref28
  doi: 10.1023/B:JMIV.0000035178.72139.2d
– ident: ref23
  doi: 10.1137/090766371
– ident: ref14
  doi: 10.1109/ICCV.2017.244
SSID ssj0000816957
Score 2.2047572
Snippet Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 37807
SubjectTerms Algorithms
Data models
Gallium nitride
generative adversarial network
Generative adversarial networks
Histograms
Image quality
Image resolution
Image sequences
Image-to-image transformation
Noise reduction
reducing flicker
Task analysis
Transformations
video transformation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIhAQR4YCY1jx67HUlFVDB1Qi7pZ_orEkiBa_j8-O62CGFhYkyjJ3fnO786ndwjdS-qroqYm-Le1OSsJz41hMqdc-FprFyBIbJBd8PmKvayrdW_UF_SEJXrgpLiRMNbWmhAfaU58qWvihLWRiMuWIkGjQvaSqRiDx4TLSnQ0Q-H-aDKdBomgl0s-AsU5E-WPrSgy9ncjVn7F5bjZzE7RSYcS8ST93Rk68M05Ou5xBw7Q4hUq5dB8jqctnDvHmh5ONNIQw3CctbzRsMLwInV7b3DAqPjt3fkWL3uQtW0u0Gr2vJzO8244Qm5ZMd7mhgMUk9JZzmoHRKosYAdnmBOeS-K8YA4ONUO2qa0IYcQYUvLg0TLYrDaaXqLDpm38FcLSaE-DM5fcUpi8ERCjo5oKIwpiS2oy9LDTk_pIHBgq5g6FVEmtCtSqOrVm6Al0uX8UCKzjhWBW1ZlV_WXWDA3AEvuXjLmgFRcZGu4sozpn26ggZsBtoqiK6__49A06AnFSnWWIDrefX_42II-tuYuL7Bv00tPd
  priority: 102
  providerName: Directory of Open Access Journals
Title Recursive Conditional Generative Adversarial Networks for Video Transformation
URI https://ieeexplore.ieee.org/document/8673567
https://www.proquest.com/docview/2455607050
https://doaj.org/article/7bccfa11e80146e2af1d7cc48550c27a
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8CqI8Kg-MTZvEjl2PUIEqJDqgFnWz_IqEkBpE24Vfj89JK14DWxTFke3PPn8-n78DuJbUF2lJTZjf1iYsz3hiDJMJ5cKXWrtAQWKA7JiPpuxhVsy2oLu5C-O9j8FnvoeP8SzfVXaFrrL-gAtacLEN20LK-q7Wxp-CCSRkIRphoSyV_ZvhMLQBo7dkD0XNmci_LT5Ro79JqvLLEsfl5f4AHtcVq6NKXnurpenZjx-ajf-t-SHsNzyT3NQD4wi2_PwY9r6oD7Zg_IS-dgxfJ8MKT66jV5DUQtRoBUnM1rzQOEbJuI4XX5DAcsnzi_MVmXwhvdX8BKb3d5PhKGnSKySWpYNlYjiSOSmd5ax0KMXKAvtwhjnhucycF8zhsWjYr2orgiEyJst5sAkyoF4aTU9hZ17N_RkQabSnwRzk3FLM3RE4p6OaCiPSzObUtKG77nf1VqtoqLj7SKWqYVIIk2pgasMtYrP5FCWw44vQp6qZUUoYa0udZT7q3_hcl5kT1kaFNpsL3YYW4rD5SQNBGy7XSKtmui5UaGZgfiIt0vO_S13ALlaw9r1cws7yfeWvAhtZmk7cxXfiYPwEMEfdtw
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnAkJYkduz5CBSpbD6ggbpa3SAipQbS98PV4nLRiO3CLojiy_ezx83j8BuBEUl-kJTVhflubsDzjiTFMJpQLX2rtAgWJAbJ93ntkN8_F8xyczu7CeO9j8Jlv42M8y3eVnaCr7KzDBS24mIfFwKs7vL6tNfOoYAoJWYhGWihL5dl5txtagfFbso2y5kzk35afqNLfpFX5ZYvjAnO1BvfTqtVxJa_tydi07ccP1cb_1n0dVhumSc7robEBc364CStf9Ae3oP-A3nYMYCfdCs-uo1-Q1FLUaAdJzNc80jhKSb-OGB-RwHPJ04vzFRl8ob3VcBsery4H3V7SJFhILEs748RwpHNSOstZ6VCMlQX-4QxzwnOZOS-Yw4PRsGPVVgRTZEyW82AVZMC9NJruwMKwGvpdINJoT4NByLmlmL0jsE5HNRVGpJnNqWnB6bTf1Vuto6Hi_iOVqoZJIUyqgakFF4jN7FMUwY4vQp-qZk4pYawtdZb5qIDjc11mTlgbNdpsLnQLthCH2U8aCFpwMEVaNRN2pEIzA_cTaZHu_V3qGJZ6g_s7dXfdv92HZaxs7Yk5gIXx-8QfBm4yNkdxSH4CsbzgDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+Conditional+Generative+Adversarial+Networks+for+Video+Transformation&rft.jtitle=IEEE+access&rft.au=Kim%2C+San&rft.au=Suh%2C+Doug+Young&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=37807&rft.epage=37821&rft_id=info:doi/10.1109%2FACCESS.2019.2906472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2906472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon