Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments
Deep neural networks (DNNs) have shown prominent performance in the field of object detection. However, DNNs usually run on powerful devices with high computational ability and sufficient memory, which have greatly limited their deployment for constrained environments such as embedded devices. YOLO...
Saved in:
Published in | IEEE access Vol. 8; pp. 1935 - 1944 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep neural networks (DNNs) have shown prominent performance in the field of object detection. However, DNNs usually run on powerful devices with high computational ability and sufficient memory, which have greatly limited their deployment for constrained environments such as embedded devices. YOLO is one of the state-of-the-art DNN-based object detection approaches with good performance both on speed and accuracy and Tiny-YOLO-V3 is its latest variant with a small model that can run on embedded devices. In this paper, Tinier-YOLO, which is originated from Tiny-YOLO-V3, is proposed to further shrink the model size while achieving improved detection accuracy and real-time performance. In Tinier-YOLO, the fire module in SqueezeNet is appointed by investigating the number of fire modules as well as their positions in the model in order to reduce the number of model parameters and then reduce the model size. For further improving the proposed Tinier-YOLO in terms of detection accuracy and real-time performance, the connectivity style between fire modules in Tinier-YOLO differs from SqueezeNet in that dense connection is introduced and fine designed to strengthen the feature propagation and ensure the maximum information flow in the network. The object detection performance is enhanced in Tinier-YOLO by using the passthrough layer that merges feature maps from the front layers to get fine-grained features, which can counter the negative effect of reducing the model size. The resulting Tinier-YOLO yields a model size of 8.9MB (almost 4× smaller than Tiny-YOLO-V3) while achieving 25 FPS real-time performance on Jetson TX1 and an mAP of 65.7% on PASCAL VOC and 34.0% on COCO. Tinier-YOLO alse posses comparable results in mAP and faster runtime speed with smaller model size and BFLOP/s value compared with other lightweight models like SqueezeNet SSD and MobileNet SSD. |
---|---|
AbstractList | Deep neural networks (DNNs) have shown prominent performance in the field of object detection. However, DNNs usually run on powerful devices with high computational ability and sufficient memory, which have greatly limited their deployment for constrained environments such as embedded devices. YOLO is one of the state-of-the-art DNN-based object detection approaches with good performance both on speed and accuracy and Tiny-YOLO-V3 is its latest variant with a small model that can run on embedded devices. In this paper, Tinier-YOLO, which is originated from Tiny-YOLO-V3, is proposed to further shrink the model size while achieving improved detection accuracy and real-time performance. In Tinier-YOLO, the fire module in SqueezeNet is appointed by investigating the number of fire modules as well as their positions in the model in order to reduce the number of model parameters and then reduce the model size. For further improving the proposed Tinier-YOLO in terms of detection accuracy and real-time performance, the connectivity style between fire modules in Tinier-YOLO differs from SqueezeNet in that dense connection is introduced and fine designed to strengthen the feature propagation and ensure the maximum information flow in the network. The object detection performance is enhanced in Tinier-YOLO by using the passthrough layer that merges feature maps from the front layers to get fine-grained features, which can counter the negative effect of reducing the model size. The resulting Tinier-YOLO yields a model size of 8.9MB (almost 4× smaller than Tiny-YOLO-V3) while achieving 25 FPS real-time performance on Jetson TX1 and an mAP of 65.7% on PASCAL VOC and 34.0% on COCO. Tinier-YOLO alse posses comparable results in mAP and faster runtime speed with smaller model size and BFLOP/s value compared with other lightweight models like SqueezeNet SSD and MobileNet SSD. |
Author | Ren, Peiming Wang, Lin Fang, Wei |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0001-8052-0994 surname: Fang fullname: Fang, Wei email: fangwei@jiangnan.edu.cn organization: School of IoT Engineering, Jiangnan University, Wuxi, China – sequence: 2 givenname: Lin orcidid: 0000-0002-7779-5177 surname: Wang fullname: Wang, Lin organization: School of IoT Engineering, Jiangnan University, Wuxi, China – sequence: 3 givenname: Peiming orcidid: 0000-0002-1186-2170 surname: Ren fullname: Ren, Peiming organization: School of IoT Engineering, Jiangnan University, Wuxi, China |
BookMark | eNpNUV1r3DAQFCWF5usX5MXQZ1-1a8mW8nY41zZwx0FyfeiTkKV1o-NOSmUn0H9fXx1C92WWYWZ2YS7YWUyRGLsBvgDg-suybVePjwvkoBeoa9BSf2DnCLUuK1nVZ__tn9j1MOz5NGqiZHPONrsQA-Xy53a9vS2WxQPZQ7kLRyq23Z7cWNzROEFIsdjQ-JR80adctCkOY7Yhki9W8TXkFI8Ux-GKfeztYaDrN7xkP76udu33cr39dt8u16UTXI1lJ72zpABJoXK88V5oBBIWrEaNXIha9OBr2QvokDrnPKraOccr7ji66pLdz7k-2b15zuFo8x-TbDD_iJR_GZvH4A5kBCrludfCykYgyg4RVd9IXzedEtBPWZ_nrOecfr_QMJp9eslxet-gkEIhTLZJVc0ql9MwZOrfrwI3pxrMXIM51WDeaphcN7MrENG7Q2kBIKD6CwG3gw0 |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3356356 crossref_primary_10_3390_s21082618 crossref_primary_10_1109_ACCESS_2022_3223374 crossref_primary_10_1007_s11042_021_11480_0 crossref_primary_10_1007_s00330_023_10184_3 crossref_primary_10_1109_TMM_2023_3274369 crossref_primary_10_1109_JSEN_2022_3154479 crossref_primary_10_3390_electronics11172748 crossref_primary_10_1016_j_eswa_2023_121036 crossref_primary_10_1109_ACCESS_2024_3349978 crossref_primary_10_3390_s21238069 crossref_primary_10_1007_s11227_020_03578_3 crossref_primary_10_1007_s12652_022_03897_8 crossref_primary_10_3390_electronics10151780 crossref_primary_10_3390_ani13152428 crossref_primary_10_3390_app112311229 crossref_primary_10_3390_electronics13010148 crossref_primary_10_1109_TII_2021_3114296 crossref_primary_10_3390_act13030081 crossref_primary_10_3390_wevj15040158 crossref_primary_10_1109_ACCESS_2020_3047071 crossref_primary_10_1177_03611981231170591 crossref_primary_10_3390_s23167112 crossref_primary_10_1109_TVLSI_2023_3305937 crossref_primary_10_1007_s11119_024_10150_z crossref_primary_10_1109_TII_2021_3139348 crossref_primary_10_1002_sys_21606 crossref_primary_10_1007_s41870_022_00895_z crossref_primary_10_1016_j_ijmultiphaseflow_2021_103593 crossref_primary_10_1109_JIOT_2022_3188518 crossref_primary_10_1109_ACCESS_2024_3386826 crossref_primary_10_3390_s20216205 crossref_primary_10_1051_itmconf_20224403053 crossref_primary_10_1038_s41598_023_46693_w crossref_primary_10_1007_s11042_023_16852_2 crossref_primary_10_1016_j_neucom_2023_02_006 crossref_primary_10_2139_ssrn_4020403 crossref_primary_10_1016_j_bdr_2020_100182 crossref_primary_10_1007_s10489_023_04600_w crossref_primary_10_2139_ssrn_4624204 crossref_primary_10_1007_s11554_023_01293_9 crossref_primary_10_3233_JIFS_232645 crossref_primary_10_1007_s11554_021_01170_3 crossref_primary_10_1088_1742_6596_2370_1_012029 crossref_primary_10_1007_s11554_023_01268_w crossref_primary_10_1109_ACCESS_2021_3077499 crossref_primary_10_1109_ACCESS_2022_3221942 crossref_primary_10_1007_s42979_023_02131_2 crossref_primary_10_1109_ACCESS_2022_3174859 crossref_primary_10_1109_ACCESS_2021_3129474 crossref_primary_10_1016_j_bbrc_2021_05_073 crossref_primary_10_3390_jmse11030572 crossref_primary_10_1109_JBHI_2023_3271463 crossref_primary_10_3390_app112411957 crossref_primary_10_3390_electronics9060889 crossref_primary_10_1016_j_measurement_2021_109742 crossref_primary_10_1016_j_future_2022_04_018 crossref_primary_10_1007_s00779_021_01558_9 crossref_primary_10_1155_2022_2582687 crossref_primary_10_3390_app14062424 crossref_primary_10_3390_electronics12040877 crossref_primary_10_3390_en14051426 crossref_primary_10_1109_ACCESS_2022_3203443 crossref_primary_10_1016_j_aej_2021_11_027 crossref_primary_10_46604_aiti_2023_12682 crossref_primary_10_3390_s23042131 crossref_primary_10_3390_app14020731 crossref_primary_10_3390_fire6120446 crossref_primary_10_1016_j_ecoinf_2021_101485 crossref_primary_10_1016_j_matpr_2020_11_562 crossref_primary_10_1007_s12652_021_03580_4 crossref_primary_10_1007_s12652_021_03584_0 crossref_primary_10_3390_electronics13020420 crossref_primary_10_1016_j_psep_2022_06_037 crossref_primary_10_32604_iasc_2022_024890 crossref_primary_10_1007_s42979_024_02869_3 crossref_primary_10_3390_electronics12183907 crossref_primary_10_3390_sym15040951 crossref_primary_10_1007_s10055_023_00922_9 crossref_primary_10_1109_ACCESS_2021_3121309 crossref_primary_10_1109_LRA_2021_3125450 crossref_primary_10_3390_su141911930 crossref_primary_10_1007_s00521_021_06830_w crossref_primary_10_1109_JSTARS_2022_3140776 crossref_primary_10_1016_j_compag_2024_109078 crossref_primary_10_3390_biomimetics7040163 crossref_primary_10_1016_j_asoc_2021_107610 crossref_primary_10_12677_MOS_2023_125441 crossref_primary_10_3390_wevj15030104 crossref_primary_10_3390_electronics12071609 crossref_primary_10_1109_ACCESS_2023_3298369 crossref_primary_10_35940_ijrte_D7951_1112423 crossref_primary_10_35784_jcsi_2693 crossref_primary_10_1088_1757_899X_1098_3_032076 crossref_primary_10_1145_3631406 crossref_primary_10_3390_app14030989 crossref_primary_10_3390_app12189331 crossref_primary_10_1145_3583074 |
Cites_doi | 10.1007/s11263-009-0275-4 10.5244/C.31.76 10.1109/CVPR.2017.195 10.1109/CVPR.2018.00474 10.1007/978-3-319-10578-9_23 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2015.7298594 10.1007/978-3-319-10602-1_48 10.1007/978-3-030-01264-9_8 10.1109/TPAMI.2009.167 10.1109/CVPR.2017.690 10.1109/CVPR.2016.308 10.1109/CVPR.2017.106 10.1109/ICCV.2017.324 10.1109/CVPR.2017.243 10.1109/CVPR.2014.81 10.1109/CVPR.2016.91 10.1109/ICCV.2015.169 10.1109/CVPR.2018.00716 10.1109/CVPR.2017.754 10.1109/CVPR.2017.351 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2961959 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1944 |
ExternalDocumentID | oai_doaj_org_article_4288d0d94a574225b2228f75d67b841f 10_1109_ACCESS_2019_2961959 8941141 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key Research and Development Program of Jiangsu Province, China grantid: BE2017630 – fundername: China Postdoctoral Science Foundation grantid: 2014M560390 funderid: 10.13039/501100002858 – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2017YFC1601000; 2017YFC1601800 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61673194; 61672263 funderid: 10.13039/501100001809 – fundername: Blue Project in Jiangsu Universities |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-b5dcae812e828c07dd4921e4a1a929204464f1d65f41b2ebccd286ccc030c02c3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:15:44 EDT 2024 Thu Oct 10 18:18:20 EDT 2024 Fri Aug 23 03:24:20 EDT 2024 Mon Nov 04 12:02:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-b5dcae812e828c07dd4921e4a1a929204464f1d65f41b2ebccd286ccc030c02c3 |
ORCID | 0000-0002-1186-2170 0000-0001-8052-0994 0000-0002-7779-5177 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8941141 |
PQID | 2454821422 |
PQPubID | 4845423 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2454821422 crossref_primary_10_1109_ACCESS_2019_2961959 doaj_primary_oai_doaj_org_article_4288d0d94a574225b2228f75d67b841f ieee_primary_8941141 |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 krizhevsky (ref12) 2012 ref13 dauphin (ref38) 2013 ref14 iandola (ref31) 2016 dai (ref5) 2016 ref30 ref33 ref11 ref32 ref10 howard (ref36) 2019 ref2 zhu (ref18) 2019 ref1 ref17 tan (ref37) 2019 ref24 ref25 poole (ref40) 2016 ref42 ref41 ref43 duan (ref19) 2019 ioffe (ref27) 2015 ren (ref4) 2015 fu (ref15) 2018 courbariaux (ref21) 2015 ref28 han (ref20) 2015 hubara (ref23) 2017; 18 redmon (ref9) 2018 ref8 howard (ref34) 2017 ref7 li (ref16) 2017 ref3 szegedy (ref29) 2017; 4 ref6 ba (ref39) 2013 courbariaux (ref22) 2016 lin (ref26) 2013 |
References_xml | – ident: ref41 doi: 10.1007/s11263-009-0275-4 – ident: ref14 doi: 10.5244/C.31.76 – ident: ref30 doi: 10.1109/CVPR.2017.195 – start-page: 91 year: 2015 ident: ref4 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: ren – ident: ref35 doi: 10.1109/CVPR.2018.00474 – ident: ref2 doi: 10.1007/978-3-319-10578-9_23 – ident: ref13 doi: 10.1007/978-3-319-46448-0_2 – start-page: 3123 year: 2015 ident: ref21 article-title: BinaryConnect: Training deep neural networks with binary weights during propagations publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: courbariaux – year: 2018 ident: ref15 article-title: DSSD: Deconvolutional single shot detector publication-title: arXiv 1701 06659 contributor: fullname: fu – ident: ref25 doi: 10.1109/CVPR.2015.7298594 – ident: ref42 doi: 10.1007/978-3-319-10602-1_48 – ident: ref33 doi: 10.1007/978-3-030-01264-9_8 – year: 2019 ident: ref36 article-title: Searching for mobilenetv3 publication-title: arXiv preprint arXiv 1905 00571 contributor: fullname: howard – year: 2019 ident: ref18 article-title: Feature selective anchor-free module for single-shot object detection publication-title: arXiv 1903 00621 contributor: fullname: zhu – ident: ref11 doi: 10.1109/TPAMI.2009.167 – ident: ref8 doi: 10.1109/CVPR.2017.690 – volume: 18 start-page: 6869 year: 2017 ident: ref23 article-title: Quantized neural networks: Training neural networks with low precision weights and activations publication-title: J Mach Learn Res contributor: fullname: hubara – year: 2015 ident: ref20 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding publication-title: arXiv 1510 00149 [cs] contributor: fullname: han – ident: ref28 doi: 10.1109/CVPR.2016.308 – ident: ref6 doi: 10.1109/CVPR.2017.106 – year: 2018 ident: ref9 article-title: YOLOV3: An incremental improvement publication-title: arXiv 1804 02767 contributor: fullname: redmon – year: 2016 ident: ref22 article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or ?1 publication-title: arXiv 1602 02830 [cs] contributor: fullname: courbariaux – ident: ref17 doi: 10.1109/ICCV.2017.324 – year: 2017 ident: ref34 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv 1704 04861 contributor: fullname: howard – ident: ref10 doi: 10.1109/CVPR.2017.243 – start-page: 1097 year: 2012 ident: ref12 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: krizhevsky – ident: ref1 doi: 10.1109/CVPR.2014.81 – year: 2017 ident: ref16 article-title: FSSD: Feature fusion single shot multibox detector publication-title: arXiv 1712 00960 contributor: fullname: li – ident: ref7 doi: 10.1109/CVPR.2016.91 – ident: ref3 doi: 10.1109/ICCV.2015.169 – year: 2016 ident: ref40 article-title: Exponential expressivity in deep neural networks through transient chaos publication-title: Proc Adv Neural Inf Process Syst (NIPS) contributor: fullname: poole – year: 2013 ident: ref38 article-title: Big neural networks waste capacity publication-title: arXiv 1301 3583 contributor: fullname: dauphin – ident: ref32 doi: 10.1109/CVPR.2018.00716 – year: 2016 ident: ref31 article-title: SqueezeNet: AlexNet-level accuracy with 50 $\times$ fewer parameters and <0.5 MB model size publication-title: arXiv 1602 07360 contributor: fullname: iandola – volume: 4 start-page: 12 year: 2017 ident: ref29 article-title: Inception-V4, inception-resnet and the impact of residual connections on learning publication-title: Proc AAAI contributor: fullname: szegedy – year: 2013 ident: ref26 article-title: Network in network publication-title: arXiv 1312 4400 contributor: fullname: lin – start-page: 2820 year: 2019 ident: ref37 article-title: MnasNet: Platform-aware neural architecture search for mobile publication-title: Proc IEEE Conf Comput Vis Pattern Recognit contributor: fullname: tan – ident: ref24 doi: 10.1109/CVPR.2017.754 – year: 2013 ident: ref39 article-title: Do deep nets really need to be deep? publication-title: Proc Adv Neural Inf Process Syst (NIPS) contributor: fullname: ba – ident: ref43 doi: 10.1109/CVPR.2017.351 – start-page: 379 year: 2016 ident: ref5 article-title: R-FCN: Object detection via region-based fully convolutional networks publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: dai – year: 2015 ident: ref27 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: arXiv 1502 03167 contributor: fullname: ioffe – year: 2019 ident: ref19 article-title: CenterNet: Keypoint triplets for object detection publication-title: arXiv 1904 08189 contributor: fullname: duan |
SSID | ssj0000816957 |
Score | 2.5591962 |
Snippet | Deep neural networks (DNNs) have shown prominent performance in the field of object detection. However, DNNs usually run on powerful devices with high... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1935 |
SubjectTerms | Accuracy Artificial neural networks Computational modeling Constrained environments Convolution dense connection Detectors Electronic devices Embedded systems Feature extraction Feature maps fire modules Information flow Model accuracy Modules Object detection Object recognition passthrough layer Performance evaluation Real time Real-time systems YOLO |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIhAQR4YCbWNE8dspbSqEKUSaqUyWcnZkVgCgvD_OTtpFcTAwpIhsfJxl_t4lv0eIZe5hFTIgsUWmi05KtYMRKxBKFASLAs827OndLqUD6tk1ZH68mvCGnrgxnADbI8zy6yWeYIoTiSFn7IoVWJTVWSSlyH7Mt0BUyEHZzzViWpphvD6YDga4Rf5tVz6WujUc6r8KEWBsb-VWPmVl0OxmeyTvbZLpMPm7Q7IlqsOyW6HO7BHZovXCkta_DJ_nN_SIX3Gji_2GzrovPBzK_Te1WGZVUVnQSWaYntKvT5nUIVwlo47e9yOyHIyXoymcauNEINkWR0XiYXcYXV2CJmAKWulFtzJnOfaC1AhypMlt2lSSl4IVwBYkaUAgEENTMDNMdmu3ip3QijPGQ6RzFmMTSHyTILyB4TNXp5KReRqbSbz3lBgmAAdmDaNVY23qmmtGpE7b8rNUM9fHU6gV03rVfOXVyPS847Y3CTTEoEbj0h_7RjTxtqnERJRl2eOE6f_8egzsiM8pg7TLH2yXX98uXNsPOriIvxj38vqzpw priority: 102 providerName: Directory of Open Access Journals |
Title | Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments |
URI | https://ieeexplore.ieee.org/document/8941141 https://www.proquest.com/docview/2454821422 https://doaj.org/article/4288d0d94a574225b2228f75d67b841f |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTvRQKA91ecmHHsniGCeOuS1bEKq6rIRAgpMVj70SqpSt2uyFX8-Mk11R6KGXKIqcKPH4Md9k5vsAvtYaS6W9zAJ2JTkmsxJVZlEZNBqDTDzbk5vy-l5_fyge1uBkVQsTY0zJZ3HIp-lffpjjgkNlp5XV5L4T1vlgrO1qtVbxFBaQsIXpiYVyaU9H4zF9A2dv2aGyJbOo_LX5JI7-XlTl3UqctperTZgsX6zLKvk5XLR-iM9vOBv_98234FPvZ4pRNzA-w1pstuHjK_bBHZjcPTW0KWaP0x_TczESt-QzZlwSIqaeozPiW2xTolYjJklnWpCDK1jhM-lKxCAuX1XJ7cL91eXd-Drr1RUy1LJqM18ErCPt75FAF0oTgrYqj7rOa8sSVoQT9SwPZTHTuVfRIwZVlYhIywJKhWd7sN7Mm_gFRF5LaqJlDDS7laorjYYPBLxZ4MoM4GTZ7e5XR6LhEviQ1nVWcmwl11tpABdsmlVTZsBOF6hLXT-hHMGmKshgdV0QuleF51DWzBShNL7S-WwAO2yG1UN6CwzgcGlo18_WP05pwm3MPaf2_33XAWwoxtkp9HII6-3vRTwiZ6T1xwnEH6ex-ALmNdpY |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V7QE4lEdBLBTwgWOzdYwTx70tS6sFNl0JbaVysuKxV6qQUlSyl_76zjjZVXkcuERR5ESJx4_5JjPfB_C-0Vgq7WUWsC_JMZmVqDKLyqDRGGTi2a7Py9mF_nJZXO7A0bYWJsaYks_imE_Tv_xwjWsOlR1XVpP7Tlhnj_zqquyrtbYRFZaQsIUZqIVyaY8n0yl9Bedv2bGyJfOo_Lb9JJb-QVblr7U4bTBnj6HevFqfV_JjvO78GG__YG3833d_AvuDpykm_dB4CjuxfQaP7vEPHkC9vGppW8y-L-aLEzER38hrzLgoRCw8x2fEp9ilVK1W1ElpWpCLK1jjMylLxCBO79XJPYeLs9PldJYN-goZall1mS8CNpF2-EiwC6UJQVuVR93kjWURK0KKepWHsljp3KvoEYOqSkSkhQGlwg8vYLe9buNLEHkjqYmWMdD8VqqpNBo-EPRmiSszgqNNt7ufPY2GS_BDWtdbybGV3GClEXxk02ybMgd2ukBd6oYp5Qg4VUEGq5uC8L0qPAezVqYIpfGVzlcjOGAzbB8yWGAEhxtDu2G-_nJKE3Jj9jn16t93vYMHs2U9d_PP519fw0PFqDsFYg5ht7tZxzfkmnT-bRqRd1KS3K4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tinier-YOLO%3A+A+Real-Time+Object+Detection+Method+for+Constrained+Environments&rft.jtitle=IEEE+access&rft.au=Fang%2C+Wei&rft.au=Wang%2C+Lin&rft.au=Ren%2C+Peiming&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=1935&rft.epage=1944&rft_id=info:doi/10.1109%2FACCESS.2019.2961959&rft.externalDocID=8941141 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |