Small-Object Detection Based on YOLO and Dense Block via Image Super-Resolution

Small-object detection is a basic and challenging problem in computer vision tasks. It is widely used in pedestrian detection, traffic sign detection, and other fields. This paper proposes a deep learning small-object detection method based on image super-resolution to improve the speed and accuracy...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 56416 - 56429
Main Authors Wang, Zhuang-Zhuang, Xie, Kai, Zhang, Xin-Yu, Chen, Hua-Quan, Wen, Chang, He, Jian-Biao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Small-object detection is a basic and challenging problem in computer vision tasks. It is widely used in pedestrian detection, traffic sign detection, and other fields. This paper proposes a deep learning small-object detection method based on image super-resolution to improve the speed and accuracy of small-object detection. First, we add a feature texture transfer (FTT) module at the input end to improve the image resolution at this end as well as to remove the noise in the image. Then, in the backbone network, using the Darknet53 framework, we use dense blocks to replace residual blocks to reduce the number of network structure parameters to avoid unnecessary calculations. Then, to make full use of the features of small targets in the image, the neck uses a combination of SPPnet and PANnet to complete this part of the multi-scale feature fusion work. Finally, the problem of image background and foreground imbalance is solved by adding the foreground and background balance loss function to the YOLOv4 loss function part. The results of the experiment conducted using our self-built dataset show that the proposed method has higher accuracy and speed compared with the currently available small-target detection methods.
AbstractList Small-object detection is a basic and challenging problem in computer vision tasks. It is widely used in pedestrian detection, traffic sign detection, and other fields. This paper proposes a deep learning small-object detection method based on image super-resolution to improve the speed and accuracy of small-object detection. First, we add a feature texture transfer (FTT) module at the input end to improve the image resolution at this end as well as to remove the noise in the image. Then, in the backbone network, using the Darknet53 framework, we use dense blocks to replace residual blocks to reduce the number of network structure parameters to avoid unnecessary calculations. Then, to make full use of the features of small targets in the image, the neck uses a combination of SPPnet and PANnet to complete this part of the multi-scale feature fusion work. Finally, the problem of image background and foreground imbalance is solved by adding the foreground and background balance loss function to the YOLOv4 loss function part. The results of the experiment conducted using our self-built dataset show that the proposed method has higher accuracy and speed compared with the currently available small-target detection methods.
Author Xie, Kai
Wang, Zhuang-Zhuang
Wen, Chang
Zhang, Xin-Yu
He, Jian-Biao
Chen, Hua-Quan
Author_xml – sequence: 1
  givenname: Zhuang-Zhuang
  orcidid: 0000-0002-3744-9261
  surname: Wang
  fullname: Wang, Zhuang-Zhuang
  organization: School of Electronic Information, Yangtze University, Jingzhou, China
– sequence: 2
  givenname: Kai
  orcidid: 0000-0003-3991-2771
  surname: Xie
  fullname: Xie, Kai
  email: pami2009@163.com
  organization: School of Electronic Information, Yangtze University, Jingzhou, China
– sequence: 3
  givenname: Xin-Yu
  orcidid: 0000-0002-2838-1445
  surname: Zhang
  fullname: Zhang, Xin-Yu
  organization: School of Electronic Information, Yangtze University, Jingzhou, China
– sequence: 4
  givenname: Hua-Quan
  orcidid: 0000-0001-9993-3406
  surname: Chen
  fullname: Chen, Hua-Quan
  organization: School of Electronic Information, Yangtze University, Jingzhou, China
– sequence: 5
  givenname: Chang
  orcidid: 0000-0001-7339-3130
  surname: Wen
  fullname: Wen, Chang
  organization: Western Institute of Yangtze University, Karamay, China
– sequence: 6
  givenname: Jian-Biao
  orcidid: 0000-0002-4057-6712
  surname: He
  fullname: He, Jian-Biao
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
BookMark eNp9kU1v1DAQhi1UJErpL-glEucs_kzsY7sUutJKkVg4cLLG9qTKko0XO4vEv8fbFIQ4MJcZzczzakbva3IxxQkJuWF0xRg1727X6_vdbsUpZytBW84Ze0EuOWtMLZRoLv6qX5HrnPe0hC4t1V6SbneAcaw7t0c_V-9xLmmIU3UHGUNViq_dtqtgCmU2Zazuxui_VT8GqDYHeMRqdzpiqj9hjuPpDL4hL3sYM14_5yvy5cP95_VDve0-bta329pLqufaCc1EY6jgzLXeqZ4L5wKHvglKhiC0KzNwveY9p0EpaLRpBPdIsRWOC3FFNotuiLC3xzQcIP20EQb71Ijp0UKaBz-ilY0WRvvADeNSA3VaKtkYKXtgDKgqWm8XrWOK30-YZ7uPpzSV8y1XTLWKMS3Lllm2fIo5J-ytH2Y4_zwnGEbLqD3bYRc77NkO-2xHYcU_7O-L_0_dLNSAiH8II4yRSotfPtyUyg
CODEN IAECCG
CitedBy_id crossref_primary_10_1088_1538_3873_ac67b1
crossref_primary_10_1186_s40494_024_01227_z
crossref_primary_10_1016_j_cogr_2023_03_002
crossref_primary_10_1049_ipr2_12770
crossref_primary_10_1016_j_engappai_2025_110092
crossref_primary_10_1016_j_autcon_2024_105701
crossref_primary_10_1016_j_autcon_2023_105103
crossref_primary_10_1016_j_patrec_2023_03_009
crossref_primary_10_1016_j_bspc_2023_104768
crossref_primary_10_3390_rs15122959
crossref_primary_10_3390_s23031248
crossref_primary_10_3390_electronics12132950
crossref_primary_10_1016_j_jestch_2025_102003
crossref_primary_10_3390_app14177665
crossref_primary_10_7717_peerj_cs_2381
crossref_primary_10_1007_s00371_024_03342_1
crossref_primary_10_3390_s22155502
crossref_primary_10_3390_electronics13020409
crossref_primary_10_3390_app131911114
crossref_primary_10_3390_electronics11152348
crossref_primary_10_1007_s10043_025_00957_0
crossref_primary_10_1007_s11042_023_15808_w
crossref_primary_10_1016_j_imavis_2022_104471
crossref_primary_10_1109_ACCESS_2022_3180796
crossref_primary_10_3390_data9020036
crossref_primary_10_1038_s41598_023_36868_w
crossref_primary_10_1038_s41598_023_47716_2
crossref_primary_10_1142_S0218001423500027
Cites_doi 10.3390/s19204370
10.1109/CVPR.2015.7298965
10.1109/CVPR.2018.00644
10.1109/TCYB.2019.2933224
10.1049/iet-bmt.2018.5235
10.1109/CVPRW.2017.151
10.1049/iet-ipr.2018.6380
10.1016/j.neucom.2018.08.009
10.1109/CVPRW50498.2020.00203
10.1109/ICCV.2017.522
10.1109/ACCESS.2019.2963045
10.1109/CVPR.2017.211
10.1109/TCYB.2018.2856821
10.1109/ACCESS.2020.3014508
10.3390/s18072080
10.1109/ACCESS.2020.2992578
10.3390/s18124237
10.1109/TPAMI.2015.2439281
10.1109/CVPR.2017.19
10.1109/CVPR.2017.243
10.1049/el.2013.3834
10.1109/MIPR49039.2020.00066
10.1109/TPAMI.2015.2389824
10.1109/CVPR.2018.00377
10.1109/CVPR.2017.106
10.3390/s20051399
10.1109/CVPR.2018.00913
10.1109/CVPRW.2018.00281
10.1049/iet-spr.2016.0492
10.1109/CVPR.2016.90
10.1609/aaai.v34i07.6999
10.1109/ICIP.2019.8803666
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3072211
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 56429
ExternalDocumentID oai_doaj_org_article_468398cd291248a0b84546944fa11a05
10_1109_ACCESS_2021_3072211
9399458
Genre orig-research
GrantInformation_xml – fundername: Graduate Teaching and Research Fund of Yangtze University
  grantid: YJY201909
  funderid: 10.13039/501100007923
– fundername: Fund of Hubei Ministry of Education
  grantid: B2019039
– fundername: National College Student Innovation and Entrepreneurship Training Program
  grantid: 202010489007
  funderid: 10.13039/501100013254
– fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region
  grantid: 2020D01A131
– fundername: Teaching and Research Fund of Yangtze University
  grantid: JY2019011
  funderid: 10.13039/501100007923
– fundername: Undergraduate Training Programs for Innovation and Entrepreneurship of Yangtze University
  grantid: 2019099
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-b3813690321b7cb5f23bbd2af6d54dd38b903abf82f20d55a689632ce0e73b233
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:31:18 EDT 2025
Mon Jun 30 03:06:17 EDT 2025
Tue Jul 01 04:03:26 EDT 2025
Thu Apr 24 23:44:01 EDT 2025
Wed Aug 27 02:30:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-b3813690321b7cb5f23bbd2af6d54dd38b903abf82f20d55a689632ce0e73b233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3744-9261
0000-0003-3991-2771
0000-0002-2838-1445
0000-0002-4057-6712
0000-0001-7339-3130
0000-0001-9993-3406
OpenAccessLink https://doaj.org/article/468398cd291248a0b84546944fa11a05
PQID 2515751184
PQPubID 4845423
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2021_3072211
ieee_primary_9399458
crossref_primary_10_1109_ACCESS_2021_3072211
proquest_journals_2515751184
doaj_primary_oai_doaj_org_article_468398cd291248a0b84546944fa11a05
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref15
ref36
ref14
ref33
ref32
ref10
ren (ref29) 2015
goodfellow (ref16) 2014
kisantal (ref5) 2019
ref2
ref1
ref39
ref38
jiang (ref6) 2018
krizhevsky (ref24) 2012; 25
deng (ref17) 2020
khan (ref37) 2020; 20
dong (ref12) 2014
redmon (ref18) 2018
ref46
ref45
ref23
simonyan (ref30) 2014
ref47
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
bochkovskiy (ref19) 2020
szegedy (ref26) 2017; 31
pinheiro (ref9) 2015
ref27
ref8
ref7
ref4
liu (ref28) 2016
ref3
ghiasi (ref31) 2018
singh (ref11) 2018
ref40
References_xml – year: 2014
  ident: ref30
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– start-page: 184
  year: 2014
  ident: ref12
  article-title: Learning a deep convolutional network for image super-resolution
  publication-title: Proc Eur Conf Comput Vis
– year: 2019
  ident: ref5
  article-title: Augmentation for small object detection
  publication-title: arXiv 1902 07296
– ident: ref46
  doi: 10.3390/s19204370
– year: 2018
  ident: ref31
  article-title: DropBlock: A regularization method for convolutional networks
  publication-title: arXiv 1810 12890
– ident: ref8
  doi: 10.1109/CVPR.2015.7298965
– ident: ref33
  doi: 10.1109/CVPR.2018.00644
– ident: ref36
  doi: 10.1109/TCYB.2019.2933224
– start-page: 784
  year: 2018
  ident: ref6
  article-title: Acquisition of localization confidence for accurate object detection
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– year: 2018
  ident: ref11
  article-title: SNIPER: Efficient multi-scale training
  publication-title: arXiv 1805 09300
– ident: ref45
  doi: 10.1049/iet-bmt.2018.5235
– volume: 31
  year: 2017
  ident: ref26
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref13
  doi: 10.1109/CVPRW.2017.151
– ident: ref44
  doi: 10.1049/iet-ipr.2018.6380
– ident: ref1
  doi: 10.1016/j.neucom.2018.08.009
– start-page: 21
  year: 2016
  ident: ref28
  article-title: SSD: Single shot multibox detector
  publication-title: Proc Eur Conf Comput Vis
– ident: ref23
  doi: 10.1109/CVPRW50498.2020.00203
– ident: ref7
  doi: 10.1109/ICCV.2017.522
– ident: ref38
  doi: 10.1109/ACCESS.2019.2963045
– ident: ref34
  doi: 10.1109/CVPR.2017.211
– year: 2014
  ident: ref16
  article-title: Generative adversarial networks
  publication-title: arXiv 1406 2661
– ident: ref35
  doi: 10.1109/TCYB.2018.2856821
– ident: ref39
  doi: 10.1109/ACCESS.2020.3014508
– ident: ref41
  doi: 10.3390/s18072080
– ident: ref40
  doi: 10.1109/ACCESS.2020.2992578
– ident: ref43
  doi: 10.3390/s18124237
– ident: ref14
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref15
  doi: 10.1109/CVPR.2017.19
– year: 2020
  ident: ref19
  article-title: YOLOv4: Optimal speed and accuracy of object detection
  publication-title: arXiv 2004 10934
– ident: ref22
  doi: 10.1109/CVPR.2017.243
– ident: ref47
  doi: 10.1049/el.2013.3834
– ident: ref27
  doi: 10.1109/MIPR49039.2020.00066
– year: 2015
  ident: ref29
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: arXiv 1506 01497
– ident: ref20
  doi: 10.1109/TPAMI.2015.2389824
– year: 2020
  ident: ref17
  article-title: Extended feature pyramid network for small object detection
  publication-title: arXiv 2003 07021
– year: 2015
  ident: ref9
  article-title: Learning to segment object candidates
  publication-title: arXiv 1506 06204
– ident: ref10
  doi: 10.1109/CVPR.2018.00377
– ident: ref4
  doi: 10.1109/CVPR.2017.106
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref24
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 20
  start-page: 1399
  year: 2020
  ident: ref37
  article-title: Towards efficient electricity forecasting in residential and commercial buildings: A novel hybrid CNN with a LSTM-AE based framework
  publication-title: SENSORS
  doi: 10.3390/s20051399
– year: 2018
  ident: ref18
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv 1804 02767
– ident: ref21
  doi: 10.1109/CVPR.2018.00913
– ident: ref3
  doi: 10.1109/CVPRW.2018.00281
– ident: ref42
  doi: 10.1049/iet-spr.2016.0492
– ident: ref25
  doi: 10.1109/CVPR.2016.90
– ident: ref32
  doi: 10.1609/aaai.v34i07.6999
– ident: ref2
  doi: 10.1109/ICIP.2019.8803666
SSID ssj0000816957
Score 2.3795283
Snippet Small-object detection is a basic and challenging problem in computer vision tasks. It is widely used in pedestrian detection, traffic sign detection, and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 56416
SubjectTerms balance loss function
Computer networks
Computer vision
dense block
Detectors
Feature extraction
foreground and background
Head
Image resolution
image super-resolution
multi-scale feature fusion
Object detection
Object recognition
Small-object detection
Superresolution
Target detection
Target recognition
Task analysis
Traffic signs
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJzjQAq1YoMiHHsmSOLbjHHe3RYBa9gBI9GT5FaliCYjN9sCv7zjxRoUixM2K7cjJzPibGY9nAL5ai0oAAmfiKdomgUMSjbiReIvmhNUmFLcK0RYX4vSand_wmxU46u_CeO_b4DM_DM32LN_d20VwlR2XiKaMy1VYRcOtu6vV-1NCAYmSFzGxUJaWx6PJBL8BTUCaDZGTKc2yZ-DT5uiPRVX-24lbeDn5AD-XC-uiSm6Hi8YM7dOLnI3vXflH2Ix6Jhl1jLEFK77eho1_sg_uwPTyTs9mydQEVwz55ps2KqsmYwQ2R7Dxa_pjSnTtsK-eezJG3Lslf35rcnaHuxC5XDz4xyT4_zvu_QTXJ9-vJqdJrK-QWJbKJjGI1jlaxznNTGENr2hujKO6Eo4z53JpsE-bStKKpo5zLSSKK7U-9UVuaJ5_hrX6vva7QISw1jBTCI8qmUfM04XAjVOkkunSSTsAuvzxysbk46EGxky1Rkhaqo5aKlBLRWoN4Kif9NDl3nh7-DhQtB8aEme3D5ASKsqhYgI1QmkdLVGxkTo1knEmSsYqnWU65QPYCdTrXxIJN4CDJX-oKORzhaphOLVCpt57fdY-rIcFdh6bA1hrHhf-C-owjTlsmfcvlJLqWg
  priority: 102
  providerName: IEEE
Title Small-Object Detection Based on YOLO and Dense Block via Image Super-Resolution
URI https://ieeexplore.ieee.org/document/9399458
https://www.proquest.com/docview/2515751184
https://doaj.org/article/468398cd291248a0b84546944fa11a05
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG4MJz0YFY0okh48Otm6ruuOgBI0xh2QBE9Nfy0xwiQw_Pt93QbBmOjF27J2P_r6td97Xfc9hK61BicAiNOzBGIThxBPAm94VkM4oaVyya3cbotnNprQx2k03Un15faEVfLAleG6lAGFc21IAkzEpa84jSCkozSTQSAr9VLgvJ1gqpyDecCSKK5lhgI_6fYGA2gRBIQkuAVcExIE36ioVOyvU6z8mJdLshkeocPaS8S96u2O0Z7NT9DBjnZgE6XjuZzNvFS5hRR8Z4tyT1WO-0BLBsPBa_qUYpkbKMtXFveBtd7x55vED3OYQ_B4vbBLz63eV9g7RZPh_ctg5NXZETxNfV54Crg2hNg2JIGKtYoyEipliMyYiagxIVdQJlXGSUZ8E0WScRhsRFvfxqEiYXiGGvlHbs8RZkxrRVXMLDhUFhhLxgymPeZzKhPDdQuRjaGErqXDXQaLmShDCD8RlXWFs66ordtCN9uLFpVyxu_V-64HtlWd7HV5AsAgajCIv8DQQk3Xf9ubJOB-0Yi3UHvTn6IeoisBjp375gSQvPiPR1-ifdecanWmjRrFcm2vwF8pVKeEZqf8tfALWi_f7Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V7QE4UKCgLhTwAW5kmzi24xw4dLdUu3TpHtpK5WT8Fwl1m1bdXRA8C6_CuzFOvBF_4laJmxU7UWJ_nm9mPJkBeGEtKgFInImnaJsEhCQaeSPxFs0Jq00obhWiLY7E6JS9PeNna_Ct-xfGe98En_l-aDZn-e7SLoOrbLdENmVcxhDKQ__lMxpo89fjfVzNl5QevDkZjpJYQyCxLJWLxCAj5WgB5jQzhTW8orkxjupKOM6cy6XBPm0qSSuaOs61kAhJan3qi9zQ4O5EAb-Began7d9hnQcnlKwoeRFTGWVpubs3HOKsodFJsz7uHUqz7Be6a6oCxDIuf8j-htAONuH7airaOJbz_nJh-vbrb1ki_9e5ugd3oyZN9lro34c1Xz-AOz_lV9yC6fGFns2SqQnOJrLvF03cWU0GSN2OYOP9dDIlunbYV889GSCzn5NPHzUZX6CcJcfLK3-dhBOOdn8-hNMb-aJHsF5f1n4biBDWGmYK4VHp9MjquhBIDSKVTJdO2h7Q1UIrG9OrhyofM9WYWWmpWnSogA4V0dGDV91NV212kX8PHwQEdUNDavDmAq68ipJGMYE6r7SOlqi6SZ0ayTgTJWOVzjKd8h5sBbR0D4lA6cHOCo8qirG5QuU3nMvhtn3897uew63RybuJmoyPDp_A7fCyrX9qB9YX10v_FDW2hXnWbBwCH24afT8AA3hHXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-Object+Detection+Based+on+YOLO+and+Dense+Block+via+Image+Super-Resolution&rft.jtitle=IEEE+access&rft.au=Wang%2C+Zhuang-Zhuang&rft.au=Xie%2C+Kai&rft.au=Zhang%2C+Xin-Yu&rft.au=Chen%2C+Hua-Quan&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=56416&rft.epage=56429&rft_id=info:doi/10.1109%2FACCESS.2021.3072211&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3072211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon