Small-Object Detection Based on YOLO and Dense Block via Image Super-Resolution
Small-object detection is a basic and challenging problem in computer vision tasks. It is widely used in pedestrian detection, traffic sign detection, and other fields. This paper proposes a deep learning small-object detection method based on image super-resolution to improve the speed and accuracy...
Saved in:
Published in | IEEE access Vol. 9; pp. 56416 - 56429 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Small-object detection is a basic and challenging problem in computer vision tasks. It is widely used in pedestrian detection, traffic sign detection, and other fields. This paper proposes a deep learning small-object detection method based on image super-resolution to improve the speed and accuracy of small-object detection. First, we add a feature texture transfer (FTT) module at the input end to improve the image resolution at this end as well as to remove the noise in the image. Then, in the backbone network, using the Darknet53 framework, we use dense blocks to replace residual blocks to reduce the number of network structure parameters to avoid unnecessary calculations. Then, to make full use of the features of small targets in the image, the neck uses a combination of SPPnet and PANnet to complete this part of the multi-scale feature fusion work. Finally, the problem of image background and foreground imbalance is solved by adding the foreground and background balance loss function to the YOLOv4 loss function part. The results of the experiment conducted using our self-built dataset show that the proposed method has higher accuracy and speed compared with the currently available small-target detection methods. |
---|---|
AbstractList | Small-object detection is a basic and challenging problem in computer vision tasks. It is widely used in pedestrian detection, traffic sign detection, and other fields. This paper proposes a deep learning small-object detection method based on image super-resolution to improve the speed and accuracy of small-object detection. First, we add a feature texture transfer (FTT) module at the input end to improve the image resolution at this end as well as to remove the noise in the image. Then, in the backbone network, using the Darknet53 framework, we use dense blocks to replace residual blocks to reduce the number of network structure parameters to avoid unnecessary calculations. Then, to make full use of the features of small targets in the image, the neck uses a combination of SPPnet and PANnet to complete this part of the multi-scale feature fusion work. Finally, the problem of image background and foreground imbalance is solved by adding the foreground and background balance loss function to the YOLOv4 loss function part. The results of the experiment conducted using our self-built dataset show that the proposed method has higher accuracy and speed compared with the currently available small-target detection methods. |
Author | Xie, Kai Wang, Zhuang-Zhuang Wen, Chang Zhang, Xin-Yu He, Jian-Biao Chen, Hua-Quan |
Author_xml | – sequence: 1 givenname: Zhuang-Zhuang orcidid: 0000-0002-3744-9261 surname: Wang fullname: Wang, Zhuang-Zhuang organization: School of Electronic Information, Yangtze University, Jingzhou, China – sequence: 2 givenname: Kai orcidid: 0000-0003-3991-2771 surname: Xie fullname: Xie, Kai email: pami2009@163.com organization: School of Electronic Information, Yangtze University, Jingzhou, China – sequence: 3 givenname: Xin-Yu orcidid: 0000-0002-2838-1445 surname: Zhang fullname: Zhang, Xin-Yu organization: School of Electronic Information, Yangtze University, Jingzhou, China – sequence: 4 givenname: Hua-Quan orcidid: 0000-0001-9993-3406 surname: Chen fullname: Chen, Hua-Quan organization: School of Electronic Information, Yangtze University, Jingzhou, China – sequence: 5 givenname: Chang orcidid: 0000-0001-7339-3130 surname: Wen fullname: Wen, Chang organization: Western Institute of Yangtze University, Karamay, China – sequence: 6 givenname: Jian-Biao orcidid: 0000-0002-4057-6712 surname: He fullname: He, Jian-Biao organization: School of Computer Science and Engineering, Central South University, Changsha, China |
BookMark | eNp9kU1v1DAQhi1UJErpL-glEucs_kzsY7sUutJKkVg4cLLG9qTKko0XO4vEv8fbFIQ4MJcZzczzakbva3IxxQkJuWF0xRg1727X6_vdbsUpZytBW84Ze0EuOWtMLZRoLv6qX5HrnPe0hC4t1V6SbneAcaw7t0c_V-9xLmmIU3UHGUNViq_dtqtgCmU2Zazuxui_VT8GqDYHeMRqdzpiqj9hjuPpDL4hL3sYM14_5yvy5cP95_VDve0-bta329pLqufaCc1EY6jgzLXeqZ4L5wKHvglKhiC0KzNwveY9p0EpaLRpBPdIsRWOC3FFNotuiLC3xzQcIP20EQb71Ijp0UKaBz-ilY0WRvvADeNSA3VaKtkYKXtgDKgqWm8XrWOK30-YZ7uPpzSV8y1XTLWKMS3Lllm2fIo5J-ytH2Y4_zwnGEbLqD3bYRc77NkO-2xHYcU_7O-L_0_dLNSAiH8II4yRSotfPtyUyg |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1088_1538_3873_ac67b1 crossref_primary_10_1186_s40494_024_01227_z crossref_primary_10_1016_j_cogr_2023_03_002 crossref_primary_10_1049_ipr2_12770 crossref_primary_10_1016_j_engappai_2025_110092 crossref_primary_10_1016_j_autcon_2024_105701 crossref_primary_10_1016_j_autcon_2023_105103 crossref_primary_10_1016_j_patrec_2023_03_009 crossref_primary_10_1016_j_bspc_2023_104768 crossref_primary_10_3390_rs15122959 crossref_primary_10_3390_s23031248 crossref_primary_10_3390_electronics12132950 crossref_primary_10_1016_j_jestch_2025_102003 crossref_primary_10_3390_app14177665 crossref_primary_10_7717_peerj_cs_2381 crossref_primary_10_1007_s00371_024_03342_1 crossref_primary_10_3390_s22155502 crossref_primary_10_3390_electronics13020409 crossref_primary_10_3390_app131911114 crossref_primary_10_3390_electronics11152348 crossref_primary_10_1007_s10043_025_00957_0 crossref_primary_10_1007_s11042_023_15808_w crossref_primary_10_1016_j_imavis_2022_104471 crossref_primary_10_1109_ACCESS_2022_3180796 crossref_primary_10_3390_data9020036 crossref_primary_10_1038_s41598_023_36868_w crossref_primary_10_1038_s41598_023_47716_2 crossref_primary_10_1142_S0218001423500027 |
Cites_doi | 10.3390/s19204370 10.1109/CVPR.2015.7298965 10.1109/CVPR.2018.00644 10.1109/TCYB.2019.2933224 10.1049/iet-bmt.2018.5235 10.1109/CVPRW.2017.151 10.1049/iet-ipr.2018.6380 10.1016/j.neucom.2018.08.009 10.1109/CVPRW50498.2020.00203 10.1109/ICCV.2017.522 10.1109/ACCESS.2019.2963045 10.1109/CVPR.2017.211 10.1109/TCYB.2018.2856821 10.1109/ACCESS.2020.3014508 10.3390/s18072080 10.1109/ACCESS.2020.2992578 10.3390/s18124237 10.1109/TPAMI.2015.2439281 10.1109/CVPR.2017.19 10.1109/CVPR.2017.243 10.1049/el.2013.3834 10.1109/MIPR49039.2020.00066 10.1109/TPAMI.2015.2389824 10.1109/CVPR.2018.00377 10.1109/CVPR.2017.106 10.3390/s20051399 10.1109/CVPR.2018.00913 10.1109/CVPRW.2018.00281 10.1049/iet-spr.2016.0492 10.1109/CVPR.2016.90 10.1609/aaai.v34i07.6999 10.1109/ICIP.2019.8803666 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3072211 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 56429 |
ExternalDocumentID | oai_doaj_org_article_468398cd291248a0b84546944fa11a05 10_1109_ACCESS_2021_3072211 9399458 |
Genre | orig-research |
GrantInformation_xml | – fundername: Graduate Teaching and Research Fund of Yangtze University grantid: YJY201909 funderid: 10.13039/501100007923 – fundername: Fund of Hubei Ministry of Education grantid: B2019039 – fundername: National College Student Innovation and Entrepreneurship Training Program grantid: 202010489007 funderid: 10.13039/501100013254 – fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region grantid: 2020D01A131 – fundername: Teaching and Research Fund of Yangtze University grantid: JY2019011 funderid: 10.13039/501100007923 – fundername: Undergraduate Training Programs for Innovation and Entrepreneurship of Yangtze University grantid: 2019099 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-b3813690321b7cb5f23bbd2af6d54dd38b903abf82f20d55a689632ce0e73b233 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:31:18 EDT 2025 Mon Jun 30 03:06:17 EDT 2025 Tue Jul 01 04:03:26 EDT 2025 Thu Apr 24 23:44:01 EDT 2025 Wed Aug 27 02:30:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-b3813690321b7cb5f23bbd2af6d54dd38b903abf82f20d55a689632ce0e73b233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3744-9261 0000-0003-3991-2771 0000-0002-2838-1445 0000-0002-4057-6712 0000-0001-7339-3130 0000-0001-9993-3406 |
OpenAccessLink | https://doaj.org/article/468398cd291248a0b84546944fa11a05 |
PQID | 2515751184 |
PQPubID | 4845423 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2021_3072211 ieee_primary_9399458 crossref_primary_10_1109_ACCESS_2021_3072211 proquest_journals_2515751184 doaj_primary_oai_doaj_org_article_468398cd291248a0b84546944fa11a05 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref15 ref36 ref14 ref33 ref32 ref10 ren (ref29) 2015 goodfellow (ref16) 2014 kisantal (ref5) 2019 ref2 ref1 ref39 ref38 jiang (ref6) 2018 krizhevsky (ref24) 2012; 25 deng (ref17) 2020 khan (ref37) 2020; 20 dong (ref12) 2014 redmon (ref18) 2018 ref46 ref45 ref23 simonyan (ref30) 2014 ref47 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 bochkovskiy (ref19) 2020 szegedy (ref26) 2017; 31 pinheiro (ref9) 2015 ref27 ref8 ref7 ref4 liu (ref28) 2016 ref3 ghiasi (ref31) 2018 singh (ref11) 2018 ref40 |
References_xml | – year: 2014 ident: ref30 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – start-page: 184 year: 2014 ident: ref12 article-title: Learning a deep convolutional network for image super-resolution publication-title: Proc Eur Conf Comput Vis – year: 2019 ident: ref5 article-title: Augmentation for small object detection publication-title: arXiv 1902 07296 – ident: ref46 doi: 10.3390/s19204370 – year: 2018 ident: ref31 article-title: DropBlock: A regularization method for convolutional networks publication-title: arXiv 1810 12890 – ident: ref8 doi: 10.1109/CVPR.2015.7298965 – ident: ref33 doi: 10.1109/CVPR.2018.00644 – ident: ref36 doi: 10.1109/TCYB.2019.2933224 – start-page: 784 year: 2018 ident: ref6 article-title: Acquisition of localization confidence for accurate object detection publication-title: Proc Eur Conf Comput Vis (ECCV) – year: 2018 ident: ref11 article-title: SNIPER: Efficient multi-scale training publication-title: arXiv 1805 09300 – ident: ref45 doi: 10.1049/iet-bmt.2018.5235 – volume: 31 year: 2017 ident: ref26 article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning publication-title: Proc AAAI Conf Artif Intell – ident: ref13 doi: 10.1109/CVPRW.2017.151 – ident: ref44 doi: 10.1049/iet-ipr.2018.6380 – ident: ref1 doi: 10.1016/j.neucom.2018.08.009 – start-page: 21 year: 2016 ident: ref28 article-title: SSD: Single shot multibox detector publication-title: Proc Eur Conf Comput Vis – ident: ref23 doi: 10.1109/CVPRW50498.2020.00203 – ident: ref7 doi: 10.1109/ICCV.2017.522 – ident: ref38 doi: 10.1109/ACCESS.2019.2963045 – ident: ref34 doi: 10.1109/CVPR.2017.211 – year: 2014 ident: ref16 article-title: Generative adversarial networks publication-title: arXiv 1406 2661 – ident: ref35 doi: 10.1109/TCYB.2018.2856821 – ident: ref39 doi: 10.1109/ACCESS.2020.3014508 – ident: ref41 doi: 10.3390/s18072080 – ident: ref40 doi: 10.1109/ACCESS.2020.2992578 – ident: ref43 doi: 10.3390/s18124237 – ident: ref14 doi: 10.1109/TPAMI.2015.2439281 – ident: ref15 doi: 10.1109/CVPR.2017.19 – year: 2020 ident: ref19 article-title: YOLOv4: Optimal speed and accuracy of object detection publication-title: arXiv 2004 10934 – ident: ref22 doi: 10.1109/CVPR.2017.243 – ident: ref47 doi: 10.1049/el.2013.3834 – ident: ref27 doi: 10.1109/MIPR49039.2020.00066 – year: 2015 ident: ref29 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: arXiv 1506 01497 – ident: ref20 doi: 10.1109/TPAMI.2015.2389824 – year: 2020 ident: ref17 article-title: Extended feature pyramid network for small object detection publication-title: arXiv 2003 07021 – year: 2015 ident: ref9 article-title: Learning to segment object candidates publication-title: arXiv 1506 06204 – ident: ref10 doi: 10.1109/CVPR.2018.00377 – ident: ref4 doi: 10.1109/CVPR.2017.106 – volume: 25 start-page: 1097 year: 2012 ident: ref24 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – volume: 20 start-page: 1399 year: 2020 ident: ref37 article-title: Towards efficient electricity forecasting in residential and commercial buildings: A novel hybrid CNN with a LSTM-AE based framework publication-title: SENSORS doi: 10.3390/s20051399 – year: 2018 ident: ref18 article-title: YOLOv3: An incremental improvement publication-title: arXiv 1804 02767 – ident: ref21 doi: 10.1109/CVPR.2018.00913 – ident: ref3 doi: 10.1109/CVPRW.2018.00281 – ident: ref42 doi: 10.1049/iet-spr.2016.0492 – ident: ref25 doi: 10.1109/CVPR.2016.90 – ident: ref32 doi: 10.1609/aaai.v34i07.6999 – ident: ref2 doi: 10.1109/ICIP.2019.8803666 |
SSID | ssj0000816957 |
Score | 2.3795283 |
Snippet | Small-object detection is a basic and challenging problem in computer vision tasks. It is widely used in pedestrian detection, traffic sign detection, and... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 56416 |
SubjectTerms | balance loss function Computer networks Computer vision dense block Detectors Feature extraction foreground and background Head Image resolution image super-resolution multi-scale feature fusion Object detection Object recognition Small-object detection Superresolution Target detection Target recognition Task analysis Traffic signs Training |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJzjQAq1YoMiHHsmSOLbjHHe3RYBa9gBI9GT5FaliCYjN9sCv7zjxRoUixM2K7cjJzPibGY9nAL5ai0oAAmfiKdomgUMSjbiReIvmhNUmFLcK0RYX4vSand_wmxU46u_CeO_b4DM_DM32LN_d20VwlR2XiKaMy1VYRcOtu6vV-1NCAYmSFzGxUJaWx6PJBL8BTUCaDZGTKc2yZ-DT5uiPRVX-24lbeDn5AD-XC-uiSm6Hi8YM7dOLnI3vXflH2Ix6Jhl1jLEFK77eho1_sg_uwPTyTs9mydQEVwz55ps2KqsmYwQ2R7Dxa_pjSnTtsK-eezJG3Lslf35rcnaHuxC5XDz4xyT4_zvu_QTXJ9-vJqdJrK-QWJbKJjGI1jlaxznNTGENr2hujKO6Eo4z53JpsE-bStKKpo5zLSSKK7U-9UVuaJ5_hrX6vva7QISw1jBTCI8qmUfM04XAjVOkkunSSTsAuvzxysbk46EGxky1Rkhaqo5aKlBLRWoN4Kif9NDl3nh7-DhQtB8aEme3D5ASKsqhYgI1QmkdLVGxkTo1knEmSsYqnWU65QPYCdTrXxIJN4CDJX-oKORzhaphOLVCpt57fdY-rIcFdh6bA1hrHhf-C-owjTlsmfcvlJLqWg priority: 102 providerName: IEEE |
Title | Small-Object Detection Based on YOLO and Dense Block via Image Super-Resolution |
URI | https://ieeexplore.ieee.org/document/9399458 https://www.proquest.com/docview/2515751184 https://doaj.org/article/468398cd291248a0b84546944fa11a05 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG4MJz0YFY0okh48Otm6ruuOgBI0xh2QBE9Nfy0xwiQw_Pt93QbBmOjF27J2P_r6td97Xfc9hK61BicAiNOzBGIThxBPAm94VkM4oaVyya3cbotnNprQx2k03Un15faEVfLAleG6lAGFc21IAkzEpa84jSCkozSTQSAr9VLgvJ1gqpyDecCSKK5lhgI_6fYGA2gRBIQkuAVcExIE36ioVOyvU6z8mJdLshkeocPaS8S96u2O0Z7NT9DBjnZgE6XjuZzNvFS5hRR8Z4tyT1WO-0BLBsPBa_qUYpkbKMtXFveBtd7x55vED3OYQ_B4vbBLz63eV9g7RZPh_ctg5NXZETxNfV54Crg2hNg2JIGKtYoyEipliMyYiagxIVdQJlXGSUZ8E0WScRhsRFvfxqEiYXiGGvlHbs8RZkxrRVXMLDhUFhhLxgymPeZzKhPDdQuRjaGErqXDXQaLmShDCD8RlXWFs66ordtCN9uLFpVyxu_V-64HtlWd7HV5AsAgajCIv8DQQk3Xf9ubJOB-0Yi3UHvTn6IeoisBjp375gSQvPiPR1-ifdecanWmjRrFcm2vwF8pVKeEZqf8tfALWi_f7Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V7QE4UKCgLhTwAW5kmzi24xw4dLdUu3TpHtpK5WT8Fwl1m1bdXRA8C6_CuzFOvBF_4laJmxU7UWJ_nm9mPJkBeGEtKgFInImnaJsEhCQaeSPxFs0Jq00obhWiLY7E6JS9PeNna_Ct-xfGe98En_l-aDZn-e7SLoOrbLdENmVcxhDKQ__lMxpo89fjfVzNl5QevDkZjpJYQyCxLJWLxCAj5WgB5jQzhTW8orkxjupKOM6cy6XBPm0qSSuaOs61kAhJan3qi9zQ4O5EAb-Began7d9hnQcnlKwoeRFTGWVpubs3HOKsodFJsz7uHUqz7Be6a6oCxDIuf8j-htAONuH7airaOJbz_nJh-vbrb1ki_9e5ugd3oyZN9lro34c1Xz-AOz_lV9yC6fGFns2SqQnOJrLvF03cWU0GSN2OYOP9dDIlunbYV889GSCzn5NPHzUZX6CcJcfLK3-dhBOOdn8-hNMb-aJHsF5f1n4biBDWGmYK4VHp9MjquhBIDSKVTJdO2h7Q1UIrG9OrhyofM9WYWWmpWnSogA4V0dGDV91NV212kX8PHwQEdUNDavDmAq68ipJGMYE6r7SOlqi6SZ0ayTgTJWOVzjKd8h5sBbR0D4lA6cHOCo8qirG5QuU3nMvhtn3897uew63RybuJmoyPDp_A7fCyrX9qB9YX10v_FDW2hXnWbBwCH24afT8AA3hHXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-Object+Detection+Based+on+YOLO+and+Dense+Block+via+Image+Super-Resolution&rft.jtitle=IEEE+access&rft.au=Wang%2C+Zhuang-Zhuang&rft.au=Xie%2C+Kai&rft.au=Zhang%2C+Xin-Yu&rft.au=Chen%2C+Hua-Quan&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=56416&rft.epage=56429&rft_id=info:doi/10.1109%2FACCESS.2021.3072211&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3072211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |