Exclusive Feature Constrained Class Activation Mapping for Better Visual Explanation

Whereas Deep Neural Network(DNN) shows wonderful performance on large scale data, lacking interpretability limits their usage in scenarios relevant to security. To make visual explanations less noisy and more class-discriminative, in this work, we propose a visual explanation method of DNN, named Ex...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 61417 - 61428
Main Authors Wang, Pengda, Kong, Xiangwei, Guo, Weikuo, Zhang, Xunpeng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Whereas Deep Neural Network(DNN) shows wonderful performance on large scale data, lacking interpretability limits their usage in scenarios relevant to security. To make visual explanations less noisy and more class-discriminative, in this work, we propose a visual explanation method of DNN, named Exclusive Feature Constrained Class Activation Mapping(EFC-CAM). A new exclusive feature constraint is introduced to optimize the weight calculated from Grad-CAM or initialized from a constant vector. To better measure visual explanation methods, we design an effective evaluation metric which does not need bounding boxes as auxiliary information. Extensive quantitative experiments and visual inspection on ImageNet and Fashion validation set show the effectiveness of the proposed method.
AbstractList Whereas Deep Neural Network(DNN) shows wonderful performance on large scale data, lacking interpretability limits their usage in scenarios relevant to security. To make visual explanations less noisy and more class-discriminative, in this work, we propose a visual explanation method of DNN, named Exclusive Feature Constrained Class Activation Mapping(EFC-CAM). A new exclusive feature constraint is introduced to optimize the weight calculated from Grad-CAM or initialized from a constant vector. To better measure visual explanation methods, we design an effective evaluation metric which does not need bounding boxes as auxiliary information. Extensive quantitative experiments and visual inspection on ImageNet and Fashion validation set show the effectiveness of the proposed method.
Author Kong, Xiangwei
Guo, Weikuo
Zhang, Xunpeng
Wang, Pengda
Author_xml – sequence: 1
  givenname: Pengda
  orcidid: 0000-0001-6779-574X
  surname: Wang
  fullname: Wang, Pengda
  organization: School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Xiangwei
  orcidid: 0000-0002-0851-6752
  surname: Kong
  fullname: Kong, Xiangwei
  email: kongxiangwei@zju.edu.cn
  organization: School of Management, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Weikuo
  surname: Guo
  fullname: Guo, Weikuo
  organization: School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
– sequence: 4
  givenname: Xunpeng
  surname: Zhang
  fullname: Zhang, Xunpeng
  organization: School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
BookMark eNp9kUtP3DAUha0KpFLgF7CJ1PVM_X4sp9HQIlF1Ae3Wcpwb5FGIU9tB8O-bTCiquqg3tq7Od-71PR_QyRAHQOiK4C0h2Hza1fX-7m5LMSVbhhXjUrxDZ5RIs2GCyZO_3u_RZc4HPB89l4Q6Q_f7Z99POTxBdQ2uTAmqOg65JBcGaKu6dzlXO1_CkyshDtU3N45heKi6mKrPUAqk6mfIk-ur_fPYu-GoukCnneszXL7e5-jH9f6-_rq5_f7lpt7dbjzHumwaxkEqRRtBOsyZAtEIxYAwyonk0HHjtZKc4Ea2VLqGCiw8bbXBiniDNTtHN6tvG93Bjik8uvRiowv2WIjpwbpUgu_BNli7hnPhuTZcUKk702q87AyUJ6SdvT6uXmOKvybIxR7ilIZ5fEsFWboRLGaVWVU-xZwTdNaHcvzzsrHeEmyXTOyaiV387WsmM8v-Yf9M_H_qaqUCALwRhmMhFWW_AZVZl5Y
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11036_022_02021_6
crossref_primary_10_1109_ACCESS_2024_3413859
crossref_primary_10_1007_s10994_023_06373_2
crossref_primary_10_3390_bioengineering10091070
crossref_primary_10_3390_s22176516
crossref_primary_10_3390_make7010012
crossref_primary_10_3390_ai4030033
Cites_doi 10.1109/CVPR.2014.81
10.1109/ICCV.2017.74
10.1145/3219819.3220099
10.1109/ACCESS.2018.2870052
10.1109/CVPR.2016.90
10.1109/CVPR.2018.00920
10.1109/CVPR.2015.7298965
10.1109/ICCV.2017.371
10.1109/CVPR.2017.660
10.1145/2939672.2939778
10.1109/ICCVW.2019.00513
10.1007/s11263-015-0816-y
10.1016/0167-2789(92)90242-F
10.1007/s11263-017-1059-x
10.1145/3359786
10.1109/CVPR.2016.319
10.1109/ICCV.2017.322
10.1109/WACV.2018.00097
10.1371/journal.pone.0130140
10.1007/978-3-030-01234-2_49
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3073465
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 61428
ExternalDocumentID oai_doaj_org_article_b08ab445c48945268f9d802021e7c11d
10_1109_ACCESS_2021_3073465
9405672
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61772111
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-b34e6772b51f0437e5b573e1324164ef49c876410b6d26ab2505c2d89071c9083
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:20:45 EDT 2025
Sun Jun 29 15:37:16 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Tue Jul 01 04:03:26 EDT 2025
Wed Aug 27 02:30:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-b34e6772b51f0437e5b573e1324164ef49c876410b6d26ab2505c2d89071c9083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6779-574X
0000-0002-0851-6752
OpenAccessLink https://doaj.org/article/b08ab445c48945268f9d802021e7c11d
PQID 2519083105
PQPubID 4845423
PageCount 12
ParticipantIDs proquest_journals_2519083105
crossref_citationtrail_10_1109_ACCESS_2021_3073465
ieee_primary_9405672
crossref_primary_10_1109_ACCESS_2021_3073465
doaj_primary_oai_doaj_org_article_b08ab445c48945268f9d802021e7c11d
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref30
smilkov (ref33) 2017
ref10
simonyan (ref31) 2013
ghorbani (ref11) 2019
dabkowski (ref7) 2017
wang (ref38) 2019
szegedy (ref37) 2013
springenberg (ref34) 2014
ref1
sundararajan (ref36) 2017; 70
ref17
ren (ref25) 2015
redmon (ref24) 2018
kim (ref18) 2018
krizhevsky (ref21) 2012
gu (ref13) 2018
ref26
aggarwal (ref2) 2019
chen (ref5) 2019
ref42
ref41
ref22
ref43
kingma (ref20) 2015
ref28
simonyan (ref32) 2014
ref27
schulz (ref29) 2019
ref8
ioffe (ref16) 2015
srinivas (ref35) 2019
ref9
kim (ref19) 2017
ref4
ref3
ref6
ref40
zeiler (ref39) 2014
petsiuk (ref23) 2018
References_xml – year: 2014
  ident: ref32
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref12
  doi: 10.1109/CVPR.2014.81
– ident: ref30
  doi: 10.1109/ICCV.2017.74
– ident: ref9
  doi: 10.1145/3219819.3220099
– start-page: 91
  year: 2015
  ident: ref25
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2015
  ident: ref16
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv 1502 03167
– year: 2017
  ident: ref33
  article-title: SmoothGrad: Removing noise by adding noise
  publication-title: arXiv 1706 03825
– start-page: 119
  year: 2018
  ident: ref13
  article-title: Understanding individual decisions of CNNs via contrastive backpropagation
  publication-title: Proc Asian Conf Comput Vis
– year: 2019
  ident: ref38
  article-title: Score-CAM: Score-weighted visual explanations for convolutional neural networks
  publication-title: arXiv 1910 01279
– year: 2014
  ident: ref34
  article-title: Striving for simplicity: The all convolutional net
  publication-title: arXiv 1412 6806
– start-page: 4126
  year: 2019
  ident: ref35
  article-title: Full-gradient representation for neural network visualization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref1
  doi: 10.1109/ACCESS.2018.2870052
– ident: ref15
  doi: 10.1109/CVPR.2016.90
– ident: ref41
  doi: 10.1109/CVPR.2018.00920
– ident: ref22
  doi: 10.1109/CVPR.2015.7298965
– ident: ref10
  doi: 10.1109/ICCV.2017.371
– ident: ref42
  doi: 10.1109/CVPR.2017.660
– year: 2013
  ident: ref31
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
  publication-title: arXiv 1312 6034
– ident: ref26
  doi: 10.1145/2939672.2939778
– year: 2019
  ident: ref2
  publication-title: Fashion Product Images (Small)
– start-page: 1097
  year: 2012
  ident: ref21
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 818
  year: 2014
  ident: ref39
  article-title: Visualizing and understanding convolutional networks
  publication-title: Proc Eur Conf Comput Vis
– year: 2013
  ident: ref37
  article-title: Intriguing properties of neural networks
  publication-title: arXiv 1312 6199
– ident: ref17
  doi: 10.1109/ICCVW.2019.00513
– ident: ref28
  doi: 10.1007/s11263-015-0816-y
– year: 2018
  ident: ref24
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv 1804 02767
– year: 2019
  ident: ref29
  article-title: DeepView: Visualizing classification boundaries of deep neural networks in a part of the data space
  publication-title: arXiv 1909 09154
– year: 2018
  ident: ref23
  article-title: RISE: Randomized input sampling for explanation of black-box models
  publication-title: arXiv 1806 07421
– ident: ref27
  doi: 10.1016/0167-2789(92)90242-F
– ident: ref40
  doi: 10.1007/s11263-017-1059-x
– ident: ref8
  doi: 10.1145/3359786
– start-page: 8928
  year: 2019
  ident: ref5
  article-title: This looks like that: Deep learning for interpretable image recognition
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref19
  article-title: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV)
  publication-title: arXiv 1711 11279
– ident: ref43
  doi: 10.1109/CVPR.2016.319
– volume: 70
  start-page: 3319
  year: 2017
  ident: ref36
  article-title: Axiomatic attribution for deep networks
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref14
  doi: 10.1109/ICCV.2017.322
– start-page: 2668
  year: 2018
  ident: ref18
  article-title: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV)
  publication-title: Proc Int Conf Mach Learn
– ident: ref4
  doi: 10.1109/WACV.2018.00097
– start-page: 6967
  year: 2017
  ident: ref7
  article-title: Real time image saliency for black box classifiers
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref3
  doi: 10.1371/journal.pone.0130140
– ident: ref6
  doi: 10.1007/978-3-030-01234-2_49
– start-page: 1
  year: 2015
  ident: ref20
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Represent
– start-page: 9273
  year: 2019
  ident: ref11
  article-title: Towards automatic concept-based explanations
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0000816957
Score 2.2463717
Snippet Whereas Deep Neural Network(DNN) shows wonderful performance on large scale data, lacking interpretability limits their usage in scenarios relevant to...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 61417
SubjectTerms Artificial neural networks
class activation mapping
Constraints
Inspection
Interpretability
interpretability evaluation
Mapping
Noise measurement
Optimization
Pipelines
Predictive models
Semantics
Task analysis
Visual discrimination
visual explanation
Visualization
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH5inOCwDRhaN4Z84EjaJLWT-FiqVgipnGDqzYrtV4RWtag00rRfv_ccN0IMTdyiyHbivGf7e47f9wFceAKpWKU20ZWnAIVWxMTa0ifKDrX1i7zWIet9dltc38ubuZrvwWWXC4OI4fAZ9vky_Mv3a9fwVtlAE7ooSppwP1Dg1uZqdfspLCChVRmJhbJUD0bjMfWBQsA867MnS15AXiw-gaM_iqr8MxOH5WX6CWa7F2tPlfzqN1vbd39ecTa-980_w8eIM8WodYwj2MPVMRy-YB88gbvJb7ds-Pi6YCDYbFCwfGcQjUAvglymGLmd_pmY1czl8CAI5oqrkAUkfj4-N_QUPshXt9uKX-B-OrkbXydRZCFxMq22iR1KLAhiW5UtmOcIlVXlEClIJagmcSG1owlTZqktfF7UliGTy31FQXXmNAG4U9hfrVf4FUTtqTI65bCqpZXOSi1zarWmsAdLnfYg33194yIDOfdpaUIkkmrTmsywyUw0WQ8uu0pPLQHH_4tfsVm7osyeHW6QOUwcjMamVW2lVI58kyXWq4X2VcrNYOmyzPfghE3YNRKt14OznZOYONKfDWf-BrU29e3tWt_hgFtut23OYH-7afAHAZmtPQ8e_BcsAe4L
  priority: 102
  providerName: IEEE
Title Exclusive Feature Constrained Class Activation Mapping for Better Visual Explanation
URI https://ieeexplore.ieee.org/document/9405672
https://www.proquest.com/docview/2519083105
https://doaj.org/article/b08ab445c48945268f9d802021e7c11d
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx5EnWJ1jhw82q3tkjY5bmNjCPO0yW6h-VERxpRtBf9830u7URD04rElP5qX17zvheT7CHm0AFKdiHQohYUEBSJiqHVmQ64HUtsiyaW_9T5_SWdL9rziq4bUF54Jq-iBK8P1dSRyzRg30A7KYYtCWgEYJ4ldZuLY4uoLMa-RTPk1WMSp5FlNMxRHsj8cj2FEPazYQ79mGE4aocgz9tcSKz_WZR9sphfkvEaJdFh93SU5cZsrctbgDmyTxeTLrEs8fE4RxpVbR1F800s-OEu92CUdmoN6GZ3nyMTwRgGk0pG_w0Nf33cl9ILH8PJqU_CaLKeTxXgW1hIJoWGR2Id6wFwKAFnzuECWIsc1zwYOUkwAWswVTBpY7lgc6dQmaa4R8JjECkiJYyMBft2Q1uZj424JzS1UdoYbJ3KmmdFMsgRazSFpcZmMApIcrKVMzR-OY1orn0dEUlUmVmhiVZs4IE_HSp8VfcbvxUc4DceiyH3tX4BHqNoj1F8eEZA2TuKxEQmYNM2SgHQOk6rq_3Sn8N6u11rjd__R9T05xYdqi6ZDWvtt6R4AtOx11_tn198v_AZa2uR-
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwEB0hOBQOpS2gLtDWhx7JkmTtJD4uK9BCWU4L4mbF9myFQEsFG6ni65lxvBECVPUWRbETZyaeN47nPYCfnkAqVqlNdOUpQaGImFhb-kTZgbZ-ltc6VL1PLorxpTy7VtcrcNDVwiBi2HyGfT4M__L9vWt4qexQE7ooSppw1yjuq6yt1upWVFhCQqsyUgtlqT4cjkY0CkoC86zPviw5hLwIP4GlP8qqvJmLQ4A52YTJ8tHafSW3_WZh--7pFWvj_z77J_gYkaYYtq7xGVZw_gU2XvAPbsH0-K-7a3gDu2Ao2DygYAHPIBuBXgTBTDF0SwU0MamZzeG3IKArjkIdkLi6eWzoLryVr24XFrfh8uR4OhonUWYhcTKtFokdSCwIZFuVzZjpCJVV5QApTSWwJnEmtaMpU2apLXxe1JZBk8t9RWl15jRBuB1Ynd_P8SuI2lNjdMphVUsrnZVa5tRrTYkPljrtQb58-8ZFDnIe050JuUiqTWsywyYz0WQ9OOga_WkpOP59-RGbtbuU-bPDCTKHiZ-jsWlVWymVI-9kkfVqpn2VcjdYuizzPdhiE3adROv1YH_pJCZ-64-Ga3-DXpvafb_VD_gwnk7Ozfnpxa89WOe7tIs4-7C6eGjwG8Gahf0evPkZvR3xVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exclusive+Feature+Constrained+Class+Activation+Mapping+for+Better+Visual+Explanation&rft.jtitle=IEEE+access&rft.au=Wang%2C+Pengda&rft.au=Kong%2C+Xiangwei&rft.au=Guo%2C+Weikuo&rft.au=Zhang%2C+Xunpeng&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=61417&rft.epage=61428&rft_id=info:doi/10.1109%2FACCESS.2021.3073465&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3073465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon