Cartilage biomechanics: A key factor for osteoarthritis regenerative medicine
Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA but without satisfactory long-term results in joint replacement. Recent evidences show how the cartilage biomechanics plays a crucial role in...
Saved in:
Published in | Biochimica et biophysica acta. Molecular basis of disease Vol. 1865; no. 6; pp. 1067 - 1075 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA but without satisfactory long-term results in joint replacement. Recent evidences show how the cartilage biomechanics plays a crucial role in tissue development. This review describes how physics alters cartilage and its extracellular matrix (ECM); and its role in OA development. The ECM of the articular cartilage (AC) is widely involved in cartilage turnover processes being crucial in regeneration and joint diseases. We also review the importance of physicochemical pathways following the external forces in AC. Moreover, new techniques probed in cartilage tissue engineering for biomechanical stimulation are reviewed. The final objective of these novel approaches is to create a cellular implant that maintains all the biochemical and biomechanical properties of the original tissue for long-term replacements in patients with OA.
•Biomechanics plays a crucial role in healthy articular cartilage (AC).•Osteoarthritis (OA) is preceded by mechanical and biochemical derangements of AC.•Biomechanical stimuli are necessaries for tissue engineering of OA.•Biomechanics is essential for building medical devices useful in OA treatment. |
---|---|
AbstractList | Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA but without satisfactory long-term results in joint replacement. Recent evidences show how the cartilage biomechanics plays a crucial role in tissue development. This review describes how physics alters cartilage and its extracellular matrix (ECM); and its role in OA development. The ECM of the articular cartilage (AC) is widely involved in cartilage turnover processes being crucial in regeneration and joint diseases. We also review the importance of physicochemical pathways following the external forces in AC. Moreover, new techniques probed in cartilage tissue engineering for biomechanical stimulation are reviewed. The final objective of these novel approaches is to create a cellular implant that maintains all the biochemical and biomechanical properties of the original tissue for long-term replacements in patients with OA.
•Biomechanics plays a crucial role in healthy articular cartilage (AC).•Osteoarthritis (OA) is preceded by mechanical and biochemical derangements of AC.•Biomechanical stimuli are necessaries for tissue engineering of OA.•Biomechanics is essential for building medical devices useful in OA treatment. Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA but without satisfactory long-term results in joint replacement. Recent evidences show how the cartilage biomechanics plays a crucial role in tissue development. This review describes how physics alters cartilage and its extracellular matrix (ECM); and its role in OA development. The ECM of the articular cartilage (AC) is widely involved in cartilage turnover processes being crucial in regeneration and joint diseases. We also review the importance of physicochemical pathways following the external forces in AC. Moreover, new techniques probed in cartilage tissue engineering for biomechanical stimulation are reviewed. The final objective of these novel approaches is to create a cellular implant that maintains all the biochemical and biomechanical properties of the original tissue for long-term replacements in patients with OA. |
Author | Jiménez, G. Marchal, J.A. Gálvez-Martín, P. Rus, G. Martínez-Moreno, D. |
Author_xml | – sequence: 1 givenname: D. surname: Martínez-Moreno fullname: Martínez-Moreno, D. organization: Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain – sequence: 2 givenname: G. surname: Jiménez fullname: Jiménez, G. organization: Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain – sequence: 3 givenname: P. surname: Gálvez-Martín fullname: Gálvez-Martín, P. organization: Advanced Therapies Area, Pharmascience Division, Bioibérica S.A.U., E-08029 Barcelona, Spain – sequence: 4 givenname: G. surname: Rus fullname: Rus, G. email: grus@ugr.es organization: Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain – sequence: 5 givenname: J.A. surname: Marchal fullname: Marchal, J.A. email: jmarchal@ugr.es organization: Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30910703$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKxDAUhoMoOjP6BiJdumk96SVtXAgyeIMRNwruQpKejBnbRpPOgG9vZEaXBg7ZfOfyf1OyP7gBCTmlkFGg7GKVKSVbG7IcKM-gyIDSPTKhTc3TnMHrPpkAz6u0LAt-RKYhrCA-VsMhOSqAU6ihmJDHufSj7eQSE2Vdj_pNDlaHy-Q6ecevxEg9Op-YWC6M6CL85u1oQ-JxiQN6OdoNJj22VtsBj8mBkV3Ak90_Iy-3N8_z-3TxdPcwv16kuoRmTFVeq4rxpjagZG3yCqQ2pqihNG1MUTbcAGOq4YoVpZFVVSqpWdu2qLAxyIsZOd_O_fDuc41hFL0NGrtODujWQeSU1w1nDPKIlltUexeCRyM-vO2l_xIUxI9IsRJbkeJHpIBCxBNi29luw1rFdH9Nv-YicLUFMObcWPQiaIuDjiY86lG0zv6_4RuJ_IjG |
CitedBy_id | crossref_primary_10_1515_biol_2022_0747 crossref_primary_10_3390_biomedicines11071942 crossref_primary_10_1007_s00167_022_07030_2 crossref_primary_10_1002_adem_202200304 crossref_primary_10_1016_j_cis_2023_103030 crossref_primary_10_1007_s10924_023_03024_4 crossref_primary_10_1016_j_acthis_2022_151936 crossref_primary_10_1007_s10067_023_06860_w crossref_primary_10_1002_adhm_202002030 crossref_primary_10_1186_s12951_023_02264_9 crossref_primary_10_1186_s13018_024_04667_2 crossref_primary_10_1002_ange_202311233 crossref_primary_10_1007_s00223_024_01242_z crossref_primary_10_3390_cells13060512 crossref_primary_10_1186_s13018_022_03233_y crossref_primary_10_1039_D3BM00703K crossref_primary_10_3389_fcell_2021_786546 crossref_primary_10_1002_adhm_202201305 crossref_primary_10_1016_j_arr_2023_102015 crossref_primary_10_1177_08853282211021692 crossref_primary_10_1007_s00018_021_03843_5 crossref_primary_10_1002_adhm_202200251 crossref_primary_10_1016_j_jmbbm_2022_105618 crossref_primary_10_1038_s41584_023_00979_5 crossref_primary_10_1007_s40778_023_00223_6 crossref_primary_10_3390_molecules26206122 crossref_primary_10_3389_fendo_2023_1168306 crossref_primary_10_1038_s41598_020_67518_0 crossref_primary_10_1097_MD_0000000000035854 crossref_primary_10_3389_fgene_2021_642097 crossref_primary_10_1002_mabi_202300557 crossref_primary_10_1002_adfm_202212561 crossref_primary_10_1007_s12551_021_00779_9 crossref_primary_10_1002_anie_202311233 crossref_primary_10_3390_pr11041014 crossref_primary_10_3389_fbioe_2022_862254 crossref_primary_10_1002_jbm_a_37478 |
Cites_doi | 10.1021/bp000082v 10.1074/jbc.274.33.23443 10.1016/j.joca.2016.09.023 10.1007/s11517-008-0409-9 10.1371/journal.pone.0161479 10.3109/03008209909005273 10.1371/journal.pone.0002341 10.1007/s10237-004-0058-3 10.1098/rsfs.2015.0084 10.1038/nrrheum.2014.44 10.1017/S1431927606060260 10.1016/j.ultrasmedbio.2015.01.014 10.1136/ard.56.5.287 10.1016/S0167-4838(01)00333-8 10.4049/jimmunol.161.1.467 10.1016/j.joca.2016.06.014 10.1096/fj.11-193649 10.1039/C6BM00068A 10.2519/jospt.1998.28.4.192 10.1016/j.ultrasmedbio.2012.06.002 10.1016/j.jbiomech.2013.09.020 10.1016/j.joca.2016.10.003 10.1002/ar.21330 10.1002/(SICI)1097-0290(19990120)62:2<166::AID-BIT6>3.0.CO;2-K 10.1007/s00018-012-0980-y 10.1152/ajpcell.00131.2004 10.1111/aor.12578 10.1006/abbi.1993.1062 10.1126/science.aaf7119 10.1089/ten.tea.2014.0107 10.1002/jor.1100060208 10.1111/j.1469-7580.2008.01021.x 10.1083/jcb.106.1.171 10.1243/09544119JEIM199 10.1016/S0021-9290(03)00231-8 10.1016/j.bone.2010.09.138 10.1016/0049-0172(91)90036-Y 10.1115/1.3138475 10.1016/j.joca.2012.04.017 10.1073/pnas.95.5.2515 10.1016/j.medcli.2016.11.033 10.1016/0092-8674(82)90027-7 10.1053/joca.1998.0163 10.1053/joca.1998.0219 10.1016/j.biocel.2017.08.018 10.1056/NEJMoa0800777 10.1089/ten.teb.2008.0435 10.1359/jbmr.2001.16.4.671 10.1038/srep32876 10.1073/pnas.83.9.2879 10.1007/s00249-007-0139-1 10.1359/jbmr.2000.15.11.2197 10.1053/joca.1998.0140 10.1016/j.ultrasmedbio.2014.03.002 10.1074/jbc.M113.473777 10.1016/j.ceb.2013.05.006 10.1007/s10555-005-5130-7 10.1007/s12079-012-0177-z 10.1002/art.24799 10.1038/nrrheum.2014.157 10.1115/1.3138202 10.20344/amp.5477 10.1006/abbi.1999.1543 10.1089/1076327041348437 10.1073/pnas.1319569111 10.1242/jcs.00912 10.1089/ten.tea.2008.0200 10.1007/978-1-59259-417-7_4 10.1016/j.cellsig.2013.12.001 10.1016/j.bone.2012.02.012 10.1007/978-1-4613-8425-0 10.1038/nature01323 10.1002/art.1780160416 10.1016/j.joca.2004.05.008 10.1002/jor.1100140110 10.1359/jbmr.1997.12.10.1626 10.1056/NEJMcp051726 10.1359/jbmr.081236 10.1007/s00018-011-0911-3 10.1002/anr.1780320302 10.1089/10763270260424169 10.1007/s11999-007-0060-z 10.1016/j.clinbiomech.2006.07.001 10.1002/art.23177 10.1186/s40634-014-0008-7 10.1016/B978-0-12-394311-8.00001-7 10.1007/s10439-008-9448-5 10.1038/35023621 10.1017/CBO9781107415324.004 10.1002/(SICI)1097-4652(199902)178:2<197::AID-JCP9>3.0.CO;2-3 10.1371/journal.pone.0023119 10.1016/j.lfs.2006.11.037 10.1016/j.actbio.2017.11.021 10.1016/B978-012088562-6/50005-4 10.1128/MCB.01779-08 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier B.V. |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier B.V. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1016/j.bbadis.2019.03.011 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1879-260X |
EndPage | 1075 |
ExternalDocumentID | 10_1016_j_bbadis_2019_03_011 30910703 S0925443919300857 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABGSF ABLVK ABMAC ABMZM ABUDA ABVKL ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEHWI AEKER AEXQZ AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IXB J1W KOM LCYCR LX3 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSH SSU SSZ T5K ~G- 0SF AAXKI ADVLN CGR CUY CVF ECM EIF NPM 3O- AAQXK AAYXX ABEFU ABFNM ABXDB ADMUD AFJKZ AGHFR ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HLW HVGLF HZ~ IHE NCXOZ R2- SBG SEW UQL WUQ XJT XPP 7X8 |
ID | FETCH-LOGICAL-c408t-b27b56987f0ba7f250acff3704fd011489f066b89b634fa554bac6dddebe8fe93 |
IEDL.DBID | AIKHN |
ISSN | 0925-4439 |
IngestDate | Fri Oct 25 03:01:59 EDT 2024 Thu Sep 26 18:49:41 EDT 2024 Wed Oct 16 00:47:54 EDT 2024 Fri Feb 23 02:49:22 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Biomechanics Mechanotransduction Tissue engineering Regenerative medicine Osteoarthritis Ultrasound |
Language | English |
License | Copyright © 2019. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-b27b56987f0ba7f250acff3704fd011489f066b89b634fa554bac6dddebe8fe93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://doi.org/10.1016/j.bbadis.2019.03.011 |
PMID | 30910703 |
PQID | 2197896602 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2197896602 crossref_primary_10_1016_j_bbadis_2019_03_011 pubmed_primary_30910703 elsevier_sciencedirect_doi_10_1016_j_bbadis_2019_03_011 |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 2019-06-00 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. Molecular basis of disease |
PublicationTitleAlternate | Biochim Biophys Acta Mol Basis Dis |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | T.E. Hardingham, A.J. Fosang, Proteoglycans: many forms and many functions., FASEB J. 6 (1992) 861–870. doi P.J. Roughley, J.S. Mort, The role of aggrecan in normal and osteoarthritic cartilage, J. Exp. Orthop. 1 (2014) 8. doi S. Camarero-Espinosa, B. Rothen-Rutishauser, E.J. Foster, C. Weder, Articular cartilage: from formation to tissue engineering, Biomater. Sci. 4 (2016) 734–767. doi A.B. Yeatts, J.P. Fisher, Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress, Bone. 48 (2011) 171–181. doi J.C.Y. Hu, K.A. Athanasiou, structure and function of articular cartilage, in: Handb. Histol. Methods Bone Cartil., Humana Press, Totowa, NJ, 2003: pp. 73–95. doi E. a Makris, A.H. Gomoll, K.N. Malizos, J.C. Hu, K. a Athanasiou, Repair and tissue engineering techniques for articular cartilage., Nat. Rev. Rheumatol. 11 (2015) 21–34. doi G.P. Dowthwaite, The surface of articular cartilage contains a progenitor cell population, J. Cell Sci. 117 (2004) 889–897. doi R. Mayne, Cartilage collagens. What is their function, and are they involved in articular disease?, Arthritis Rheum. 32 (1989) 241–246. doi N.Y. Afoke, P.D. Byers, W.C. Hutton, Contact pressures in the human hip joint., J. Bone Joint Surg. Br. 69 (1987) 536–541. doi Y. Wang, Z. Huang, P.S. Nayak, B.D. Matthews, D. Warburton, W. Shi, J. Sanchez-Esteban, Strain-induced differentiation of fetal type II epithelial cells is mediated via integrin α6β1-ADAM17/TACE signaling pathway., J. Biol. Chem. 02905 (2013) 820–828. doi J.W. Fuseler, D.M. Merrill, J. a Rogers, M.B. Grisham, R.E. Wolf, Analysis and quantitation of NF-kappaB nuclear translocation in tumor necrosis factor alpha (TNF-alpha) activated vascular endothelial cells., Microsc. Microanal. 12 (2006) 269–76. doi T. Honjo, S. Kubota, H. Kamioka, Y. Sugawara, Y. Ishihara, T. Yamashiro, M. Takigawa, T. Takano-Yamamoto, Promotion of Ccn2 expression and osteoblastic differentiation by actin polymerization, which is induced by laminar fluid flow stress, J. Cell Commun. Signal. 6 (2012) 225–232. doi M.O. Jortikka, J.J. Parkkinen, R.I. Inkinen, J. Kärner, H.T. Järveläinen, L.O. Nelimarkka, M.I. Tammi, M.J. Lammi, The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure., Arch. Biochem. Biophys. 374 (2000) 172–80. doi J. Wang, N. Tang, Q. Xiao, L. Zhao, Y. Li, J. Li, The potential application of pulsed ultrasound on bone defect repair via developmental engineering: an in vitro study, Artificial. 40 (2015) 505–513. doi D. Heinegrd, P. Lorenzo, T. Saxne, Noncollagenous proteins; glycoproteins and related proteins, in: Dyn. Bone Cartil. Metab., 2006: pp. 71–84. doi S. Park, R. Krishnan, S.B. Nicoll, G.A. Ateshian, Cartilage interstitial fluid load support in unconfined compression, J. Biomech. 36 (2003) 1785–1796. doi J. Guadix, J. Zugaza, P. Gálvez-Martín, Characteristics, applications and prospects of mesenchymal stem cells in cell therapy., Med Clin (Barc). 10 (2017) 408–414. doi J.A. Buckwalter, H.J. Mankin, Articular cartilage: tissue design and chondrocyte-matrix interactions., Instr. Course Lect. 47 (1998) 477–86. . C.H. Mckenna, G.G. Hunder, Arthritis and allied conditions: a textbook of rheumatology, Arthritis Rheum. 16 (1973) 528–529. doi J.A. Buckwalter, Articular cartilage: injuries and potential for healing, J. Orthop. Sport. Phys. Ther. 28 (1998) 192–202. doi Z.-J. Luo, B.B. Seedhom, Light and low-frequency pulsatile hydrostatic pressure enhances extracellular matrix formation by bone marrow mesenchymal cells: an in-vitro study with special reference to cartilage repair., Proc. Inst. Mech. Eng. H. 221 (2007) 499–507. doi A.C. Hall, Differential effects of hydrostatic pressure on cation transport pathways of isolated articular chondrocytes, J. Cell. Physiol. 178 (1999) 197–204. doi:10.1002/(SICI)1097-4652(199902)178:2<197::AID-JCP9>3.0.CO;2-3. M. a Schwartz, R.K. Assoian, Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways., J. Cell Sci. 114 (2001) 2553–2560. doi A.R. Armiento, M.J. Stoddart, M. Alini, D. Eglin, Biomaterials for articular cartilage tissue engineering: learning from biology., Acta Biomater. (2017). doi Y. Azuma, M. Ito, Y. Harada, H. Takagi, T. Ohta, S. Jingushi, Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus., J. Bone Miner. Res. 16 (2001) 671–680. doi V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong, Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments, J. Biomech. Eng. 102 (1980) 73. doi J.K. Suh, G.H. Baek, A. Arøen, C.M. Malin, C. Niyibizi, C.H. Evans, A. Westerhausen-Larson, Intermittent sub-ambient interstitial hydrostatic pressure as a potential mechanical stimulator for chondrocyte metabolism, Osteoarthr. Cartil. 7 (1999) 71–80. doi C.J. Meyer, F.J. Alenghat, P. Rim, J.H.J. Fong, B. Fabry, D.E. Ingber, Mechanical control of cyclic AMP signalling and gene transcription through integrins, Nat. Cell Biol. 2 (2000) 666–668. doi M.N. Phan, H.A. Leddy, B.J. Votta, S. Kumar, D.S. Levy, D.B. Lipshutz, H.L. Suk, W. Liedtke, F. Guilak, Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes, Arthritis Rheum. 60 (2009) 3028–3037. doi R. Sunyer, V. Conte, J. Escribano, A. Elosegui-Artola, A. Labernadie, L. Valon, D. Navajas, J.M. Garcia-Aznar, J.J. Munoz, P. Roca-Cusachs, X. Trepat, Collective cell durotaxis emerges from long-range intercellular force transmission, Science (80-. ). 353 (2016) 1157–1161. doi A.C. Moore, D.L. Burris, An analytical model to predict interstitial lubrication of cartilage in migrating contact areas, J. Biomech. 47 (2014) 148–153. doi J.A. Kornblatt, M.J. Kornblatt, The effects of osmotic and hydrostatic pressures on macromolecular systems, Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 1595 (2002) 30–47. doi J. Martel-Pelletier, Pathophysiology of osteoarthritis., Osteoarthritis Cartilage. 12 Suppl A (2004) S31–S33. doi B.D. Elder, K.A. Athanasiou, Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration, Tissue Eng. Part B Rev. 15 (2009) 43–53. doi D. Kumar, A.B. Lassar, The transcriptional activity of Sox9 in chondrocytes is regulated by RhoA signaling and actin polymerization, Mol. Cell. Biol. 29 (2009) 4262–4273. doi C.E. Farnum, N.J. Wilsman, Orientation of primary cilia of articular chondrocytes in three-dimensional space, Anat. Rec. 294 (2011) 533–549. doi S. Gudi, J.P. Nolan, J.A. Frangos, Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 2515–2519. doi M.C.D. Trindade, J. Shida, T. Ikenoue, M.S. Lee, E.Y. Lin, B. Yaszay, S. Yerby, S.B. Goodman, D.J. Schurman, R.L. Smith, Intermittent hydrostatic pressure inhibits matrix metalloproteinase and pro-inflammatory mediator release from human osteoarthritic chondrocytes in vitro, Osteoarthr. Cartil. 12 (2004) 729–735. J. Fernandez, J. Zhang, T. Heidlauf, M. Sartori, T. Besier, O. Röhrle, D. Lloyd, Multiscale musculoskeletal modelling, data–model fusion and electromyography-informed modelling, Interface Focus. 6 (2016) 20150084. doi A. Subramanian, G. Budhiraja, N. Sahu, Chondrocyte primary cilium is mechanosensitive and responds to low-intensity-ultrasound by altering its length and orientation, Int. J. Biochem. Cell Biol. 91 (2017) 60–64. doi I. Abbaszade, R.Q. Liu, F. Yang, S.A. Rosenfeld, O.H. Ross, J.R. Link, D.M. Ellis, M.D. Tortorella, M.A. Pratta, J.M. Hollist, R. Wynn, J.L. Duke, H.J. George, M.C. Hillman, K. Murphy, B.H. Wiswall, R.A. Copeland, C.P. Decicco, R. Bruckner, H. Nagase, Y. Itoh, R.C. Newton, R.L. Magolda, J.M. Trzaskos, G.F. Hollis, E.C. Arner, T.C. Burn, Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family, J. Biol. Chem. 274 (1999) 23443–23450. doi D.J. Saxby, D.G. Lloyd, Osteoarthritis year in review 2016: mechanics, Osteoarthr. Cartil. 25 (2017) 190–198. doi C.G. Armstrong, W.M. Lai, V.C. Mow, An analysis of the unconfined compression of articular cartilage., J. Biomech. Eng. 106 (1984) 165–173. M. Englund, A. Guermazi, D. Gale, D.J. Hunter, P. Aliabadi, M. Clancy, D.T. Felson, Incidental meniscal findings on knee MRI in middle-aged and elderly persons, N. Engl. J. Med. 359 (2008) 1108–1115. doi S. Mizuno, A novel method for assessing effects of hydrostatic fluid pressure on intracellular calcium: a study with bovine articular chondrocytes., Am. J. Physiol. Cell Physiol. 288 (2005) C329–37. doi D.R. Wagner, D.P. Lindsey, K.W. Li, P. Tummala, S.E. Chandran, R.L. Smith, M.T. Longaker, D.R. Carter, G.S. Beaupre, Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium., Ann. Biomed. Eng. 36 (2008) 813–820. doi E.L. Radin, D.B. Burr, B. Caterson, D. Fyhrie, T.D. Brown, R.D. Boyd, Mechanical determinants of osteoarthrosis, Semin. Arthritis Rheum. 21 (1991) 12–21. doi C.R. Scanzello, S.R. Goldring, The role of synovitis in osteoarthritis pathogenesis, Bone. 51 (2012) 249–257. doi K. Cheng, P. Xia, Q. Lin, S. Shen, M. Gao, S. Ren, X. Li, Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes., Ultrasound Med. Biol. 40 (2014) 1609–18. doi R.M. Schulz, A. Bader, Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes, Eur. Biophys. J. 36 (2007) 539–568. doi P. Libby, Inflammation in atherosclerosis, Nature. 420 (2002) 868–874. doi R.L. Smith, S.F. Rusk, B.E. Ellison, P. Wessells, K. Tsuchiya, D.R. Carter, W.E. Caler, L.J. Sandell, D.J. Schurman, In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure, J. Orthop. Res. 14 (1996) 53–60. doi D.J. Hunter, D. Schofield, E. Callander, The individual and socioeconomic impa 10.1016/j.bbadis.2019.03.011_bb0150 10.1016/j.bbadis.2019.03.011_bb0270 10.1016/j.bbadis.2019.03.011_bb0390 10.1016/j.bbadis.2019.03.011_bb0315 10.1016/j.bbadis.2019.03.011_bb0435 10.1016/j.bbadis.2019.03.011_bb0275 10.1016/j.bbadis.2019.03.011_bb0395 10.1016/j.bbadis.2019.03.011_bb0030 10.1016/j.bbadis.2019.03.011_bb0035 10.1016/j.bbadis.2019.03.011_bb0310 10.1016/j.bbadis.2019.03.011_bb0155 10.1016/j.bbadis.2019.03.011_bb0430 10.1016/j.bbadis.2019.03.011_bb0040 10.1016/j.bbadis.2019.03.011_bb0160 10.1016/j.bbadis.2019.03.011_bb0280 10.1016/j.bbadis.2019.03.011_bb0205 10.1016/j.bbadis.2019.03.011_bb0325 10.1016/j.bbadis.2019.03.011_bb0445 10.1016/j.bbadis.2019.03.011_bb0165 10.1016/j.bbadis.2019.03.011_bb0440 10.1016/j.bbadis.2019.03.011_bb0285 10.1016/j.bbadis.2019.03.011_bb0200 10.1016/j.bbadis.2019.03.011_bb0045 10.1016/j.bbadis.2019.03.011_bb0320 10.1016/j.bbadis.2019.03.011_bb0090 10.1016/j.bbadis.2019.03.011_bb0490 10.1016/j.bbadis.2019.03.011_bb0095 10.1016/j.bbadis.2019.03.011_bb0370 10.1016/j.bbadis.2019.03.011_bb0415 10.1016/j.bbadis.2019.03.011_bb0010 10.1016/j.bbadis.2019.03.011_bb0130 10.1016/j.bbadis.2019.03.011_bb0250 10.1016/j.bbadis.2019.03.011_bb0015 10.1016/j.bbadis.2019.03.011_bb0135 10.1016/j.bbadis.2019.03.011_bb0410 10.1016/j.bbadis.2019.03.011_bb0255 10.1016/j.bbadis.2019.03.011_bb0375 10.1016/j.bbadis.2019.03.011_bb0495 10.1016/j.bbadis.2019.03.011_bb0260 10.1016/j.bbadis.2019.03.011_bb0380 10.1016/j.bbadis.2019.03.011_bb0305 10.1016/j.bbadis.2019.03.011_bb0425 10.1016/j.bbadis.2019.03.011_bb0385 10.1016/j.bbadis.2019.03.011_bb0020 10.1016/j.bbadis.2019.03.011_bb0140 10.1016/j.bbadis.2019.03.011_bb0025 10.1016/j.bbadis.2019.03.011_bb0300 10.1016/j.bbadis.2019.03.011_bb0145 10.1016/j.bbadis.2019.03.011_bb0420 10.1016/j.bbadis.2019.03.011_bb0265 10.1016/j.bbadis.2019.03.011_bb0190 10.1016/j.bbadis.2019.03.011_bb0070 10.1016/j.bbadis.2019.03.011_bb0115 10.1016/j.bbadis.2019.03.011_bb0110 10.1016/j.bbadis.2019.03.011_bb0230 10.1016/j.bbadis.2019.03.011_bb0075 10.1016/j.bbadis.2019.03.011_bb0350 10.1016/j.bbadis.2019.03.011_bb0195 10.1016/j.bbadis.2019.03.011_bb0470 10.1016/j.bbadis.2019.03.011_bb0235 10.1016/j.bbadis.2019.03.011_bb0355 10.1016/j.bbadis.2019.03.011_bb0475 10.1016/j.bbadis.2019.03.011_bb0080 10.1016/j.bbadis.2019.03.011_bb0480 10.1016/j.bbadis.2019.03.011_bb0005 10.1016/j.bbadis.2019.03.011_bb0405 10.1016/j.bbadis.2019.03.011_bb0120 10.1016/j.bbadis.2019.03.011_bb0240 10.1016/j.bbadis.2019.03.011_bb0085 10.1016/j.bbadis.2019.03.011_bb0360 10.1016/j.bbadis.2019.03.011_bb0125 10.1016/j.bbadis.2019.03.011_bb0400 10.1016/j.bbadis.2019.03.011_bb0245 10.1016/j.bbadis.2019.03.011_bb0365 10.1016/j.bbadis.2019.03.011_bb0485 10.1016/j.bbadis.2019.03.011_bb0050 10.1016/j.bbadis.2019.03.011_bb0170 10.1016/j.bbadis.2019.03.011_bb0290 10.1016/j.bbadis.2019.03.011_bb0215 10.1016/j.bbadis.2019.03.011_bb0335 10.1016/j.bbadis.2019.03.011_bb0055 10.1016/j.bbadis.2019.03.011_bb0330 10.1016/j.bbadis.2019.03.011_bb0175 10.1016/j.bbadis.2019.03.011_bb0450 10.1016/j.bbadis.2019.03.011_bb0295 10.1016/j.bbadis.2019.03.011_bb0455 10.1016/j.bbadis.2019.03.011_bb0210 10.1016/j.bbadis.2019.03.011_bb0060 10.1016/j.bbadis.2019.03.011_bb0180 10.1016/j.bbadis.2019.03.011_bb0105 10.1016/j.bbadis.2019.03.011_bb0225 10.1016/j.bbadis.2019.03.011_bb0220 10.1016/j.bbadis.2019.03.011_bb0065 10.1016/j.bbadis.2019.03.011_bb0340 10.1016/j.bbadis.2019.03.011_bb0185 10.1016/j.bbadis.2019.03.011_bb0460 10.1016/j.bbadis.2019.03.011_bb0345 10.1016/j.bbadis.2019.03.011_bb0465 10.1016/j.bbadis.2019.03.011_bb0100 |
References_xml | – ident: 10.1016/j.bbadis.2019.03.011_bb0405 doi: 10.1021/bp000082v – ident: 10.1016/j.bbadis.2019.03.011_bb0105 doi: 10.1074/jbc.274.33.23443 – ident: 10.1016/j.bbadis.2019.03.011_bb0065 doi: 10.1016/j.joca.2016.09.023 – ident: 10.1016/j.bbadis.2019.03.011_bb0450 doi: 10.1007/s11517-008-0409-9 – ident: 10.1016/j.bbadis.2019.03.011_bb0425 doi: 10.1371/journal.pone.0161479 – ident: 10.1016/j.bbadis.2019.03.011_bb0120 doi: 10.3109/03008209909005273 – ident: 10.1016/j.bbadis.2019.03.011_bb0280 doi: 10.1371/journal.pone.0002341 – ident: 10.1016/j.bbadis.2019.03.011_bb0275 doi: 10.1007/s10237-004-0058-3 – ident: 10.1016/j.bbadis.2019.03.011_bb0490 doi: 10.1098/rsfs.2015.0084 – ident: 10.1016/j.bbadis.2019.03.011_bb0045 doi: 10.1038/nrrheum.2014.44 – ident: 10.1016/j.bbadis.2019.03.011_bb0135 doi: 10.1017/S1431927606060260 – ident: 10.1016/j.bbadis.2019.03.011_bb0465 doi: 10.1016/j.ultrasmedbio.2015.01.014 – ident: 10.1016/j.bbadis.2019.03.011_bb0095 doi: 10.1136/ard.56.5.287 – ident: 10.1016/j.bbadis.2019.03.011_bb0210 doi: 10.1016/S0167-4838(01)00333-8 – ident: 10.1016/j.bbadis.2019.03.011_bb0130 doi: 10.4049/jimmunol.161.1.467 – ident: 10.1016/j.bbadis.2019.03.011_bb0430 doi: 10.1016/j.joca.2016.06.014 – ident: 10.1016/j.bbadis.2019.03.011_bb0360 doi: 10.1096/fj.11-193649 – ident: 10.1016/j.bbadis.2019.03.011_bb0075 – ident: 10.1016/j.bbadis.2019.03.011_bb0145 doi: 10.1039/C6BM00068A – ident: 10.1016/j.bbadis.2019.03.011_bb0225 doi: 10.2519/jospt.1998.28.4.192 – ident: 10.1016/j.bbadis.2019.03.011_bb0470 doi: 10.1016/j.ultrasmedbio.2012.06.002 – ident: 10.1016/j.bbadis.2019.03.011_bb0400 doi: 10.1016/j.jbiomech.2013.09.020 – ident: 10.1016/j.bbadis.2019.03.011_bb0475 doi: 10.1016/j.joca.2016.10.003 – ident: 10.1016/j.bbadis.2019.03.011_bb0365 doi: 10.1002/ar.21330 – ident: 10.1016/j.bbadis.2019.03.011_bb0255 doi: 10.1002/(SICI)1097-0290(19990120)62:2<166::AID-BIT6>3.0.CO;2-K – ident: 10.1016/j.bbadis.2019.03.011_bb0370 doi: 10.1007/s00018-012-0980-y – ident: 10.1016/j.bbadis.2019.03.011_bb0220 doi: 10.1152/ajpcell.00131.2004 – ident: 10.1016/j.bbadis.2019.03.011_bb0485 doi: 10.1111/aor.12578 – ident: 10.1016/j.bbadis.2019.03.011_bb0250 doi: 10.1006/abbi.1993.1062 – ident: 10.1016/j.bbadis.2019.03.011_bb0180 doi: 10.1126/science.aaf7119 – ident: 10.1016/j.bbadis.2019.03.011_bb0165 doi: 10.1089/ten.tea.2014.0107 – ident: 10.1016/j.bbadis.2019.03.011_bb0230 doi: 10.1002/jor.1100060208 – ident: 10.1016/j.bbadis.2019.03.011_bb0385 doi: 10.1111/j.1469-7580.2008.01021.x – ident: 10.1016/j.bbadis.2019.03.011_bb0155 doi: 10.1083/jcb.106.1.171 – ident: 10.1016/j.bbadis.2019.03.011_bb0265 doi: 10.1243/09544119JEIM199 – ident: 10.1016/j.bbadis.2019.03.011_bb0295 doi: 10.1016/S0021-9290(03)00231-8 – ident: 10.1016/j.bbadis.2019.03.011_bb0410 doi: 10.1016/j.bone.2010.09.138 – ident: 10.1016/j.bbadis.2019.03.011_bb0090 doi: 10.1016/0049-0172(91)90036-Y – ident: 10.1016/j.bbadis.2019.03.011_bb0305 doi: 10.1115/1.3138475 – ident: 10.1016/j.bbadis.2019.03.011_bb0395 doi: 10.1016/j.joca.2012.04.017 – ident: 10.1016/j.bbadis.2019.03.011_bb0215 – ident: 10.1016/j.bbadis.2019.03.011_bb0320 doi: 10.1073/pnas.95.5.2515 – ident: 10.1016/j.bbadis.2019.03.011_bb0175 doi: 10.1016/j.medcli.2016.11.033 – ident: 10.1016/j.bbadis.2019.03.011_bb0150 doi: 10.1016/0092-8674(82)90027-7 – ident: 10.1016/j.bbadis.2019.03.011_bb0235 doi: 10.1053/joca.1998.0163 – ident: 10.1016/j.bbadis.2019.03.011_bb0125 doi: 10.1053/joca.1998.0219 – ident: 10.1016/j.bbadis.2019.03.011_bb0350 doi: 10.1016/j.biocel.2017.08.018 – ident: 10.1016/j.bbadis.2019.03.011_bb0080 doi: 10.1056/NEJMoa0800777 – ident: 10.1016/j.bbadis.2019.03.011_bb0200 doi: 10.1089/ten.teb.2008.0435 – ident: 10.1016/j.bbadis.2019.03.011_bb0435 doi: 10.1359/jbmr.2001.16.4.671 – ident: 10.1016/j.bbadis.2019.03.011_bb0440 doi: 10.1038/srep32876 – ident: 10.1016/j.bbadis.2019.03.011_bb0290 doi: 10.1073/pnas.83.9.2879 – ident: 10.1016/j.bbadis.2019.03.011_bb0495 doi: 10.1007/s00249-007-0139-1 – ident: 10.1016/j.bbadis.2019.03.011_bb0330 doi: 10.1359/jbmr.2000.15.11.2197 – ident: 10.1016/j.bbadis.2019.03.011_bb0085 doi: 10.1053/joca.1998.0140 – ident: 10.1016/j.bbadis.2019.03.011_bb0460 doi: 10.1016/j.ultrasmedbio.2014.03.002 – ident: 10.1016/j.bbadis.2019.03.011_bb0345 doi: 10.1074/jbc.M113.473777 – ident: 10.1016/j.bbadis.2019.03.011_bb0185 doi: 10.1016/j.ceb.2013.05.006 – ident: 10.1016/j.bbadis.2019.03.011_bb0195 doi: 10.1007/s10555-005-5130-7 – ident: 10.1016/j.bbadis.2019.03.011_bb0480 doi: 10.1007/s12079-012-0177-z – ident: 10.1016/j.bbadis.2019.03.011_bb0375 doi: 10.1002/art.24799 – ident: 10.1016/j.bbadis.2019.03.011_bb0140 doi: 10.1038/nrrheum.2014.157 – ident: 10.1016/j.bbadis.2019.03.011_bb0300 doi: 10.1115/1.3138202 – ident: 10.1016/j.bbadis.2019.03.011_bb0110 doi: 10.20344/amp.5477 – ident: 10.1016/j.bbadis.2019.03.011_bb0240 doi: 10.1006/abbi.1999.1543 – ident: 10.1016/j.bbadis.2019.03.011_bb0455 doi: 10.1089/1076327041348437 – ident: 10.1016/j.bbadis.2019.03.011_bb0380 doi: 10.1073/pnas.1319569111 – ident: 10.1016/j.bbadis.2019.03.011_bb0160 doi: 10.1242/jcs.00912 – ident: 10.1016/j.bbadis.2019.03.011_bb0260 doi: 10.1089/ten.tea.2008.0200 – ident: 10.1016/j.bbadis.2019.03.011_bb0005 doi: 10.1007/978-1-59259-417-7_4 – ident: 10.1016/j.bbadis.2019.03.011_bb0335 doi: 10.1016/j.cellsig.2013.12.001 – ident: 10.1016/j.bbadis.2019.03.011_bb0115 doi: 10.1016/j.bone.2012.02.012 – ident: 10.1016/j.bbadis.2019.03.011_bb0015 doi: 10.1007/978-1-4613-8425-0 – ident: 10.1016/j.bbadis.2019.03.011_bb0050 doi: 10.1038/nature01323 – ident: 10.1016/j.bbadis.2019.03.011_bb0100 doi: 10.1002/art.1780160416 – ident: 10.1016/j.bbadis.2019.03.011_bb0285 doi: 10.1016/j.joca.2004.05.008 – ident: 10.1016/j.bbadis.2019.03.011_bb0245 doi: 10.1002/jor.1100140110 – ident: 10.1016/j.bbadis.2019.03.011_bb0390 doi: 10.1359/jbmr.1997.12.10.1626 – ident: 10.1016/j.bbadis.2019.03.011_bb0055 doi: 10.1056/NEJMcp051726 – ident: 10.1016/j.bbadis.2019.03.011_bb0340 doi: 10.1359/jbmr.081236 – ident: 10.1016/j.bbadis.2019.03.011_bb0355 doi: 10.1007/s00018-011-0911-3 – ident: 10.1016/j.bbadis.2019.03.011_bb0020 doi: 10.1002/anr.1780320302 – ident: 10.1016/j.bbadis.2019.03.011_bb0415 doi: 10.1089/10763270260424169 – ident: 10.1016/j.bbadis.2019.03.011_bb0060 doi: 10.1007/s11999-007-0060-z – ident: 10.1016/j.bbadis.2019.03.011_bb0070 doi: 10.1016/j.clinbiomech.2006.07.001 – ident: 10.1016/j.bbadis.2019.03.011_bb0040 doi: 10.1002/art.23177 – ident: 10.1016/j.bbadis.2019.03.011_bb0035 doi: 10.1186/s40634-014-0008-7 – ident: 10.1016/j.bbadis.2019.03.011_bb0190 doi: 10.1016/B978-0-12-394311-8.00001-7 – ident: 10.1016/j.bbadis.2019.03.011_bb0270 doi: 10.1007/s10439-008-9448-5 – ident: 10.1016/j.bbadis.2019.03.011_bb0315 doi: 10.1038/35023621 – ident: 10.1016/j.bbadis.2019.03.011_bb0025 doi: 10.1017/CBO9781107415324.004 – ident: 10.1016/j.bbadis.2019.03.011_bb0205 doi: 10.1002/(SICI)1097-4652(199902)178:2<197::AID-JCP9>3.0.CO;2-3 – ident: 10.1016/j.bbadis.2019.03.011_bb0420 doi: 10.1371/journal.pone.0023119 – ident: 10.1016/j.bbadis.2019.03.011_bb0010 – ident: 10.1016/j.bbadis.2019.03.011_bb0445 doi: 10.1016/j.lfs.2006.11.037 – ident: 10.1016/j.bbadis.2019.03.011_bb0170 doi: 10.1016/j.actbio.2017.11.021 – ident: 10.1016/j.bbadis.2019.03.011_bb0310 – ident: 10.1016/j.bbadis.2019.03.011_bb0030 doi: 10.1016/B978-012088562-6/50005-4 – ident: 10.1016/j.bbadis.2019.03.011_bb0325 doi: 10.1128/MCB.01779-08 |
SSID | ssj0000670 |
Score | 2.5160348 |
SecondaryResourceType | review_article |
Snippet | Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1067 |
SubjectTerms | Biomechanical Phenomena - physiology Biomechanics Cartilage, Articular - cytology Cartilage, Articular - physiology Chondrocytes - cytology Extracellular Matrix - metabolism Extracellular Matrix - physiology Humans Mechanotransduction Models, Biological Osteoarthritis Osteoarthritis - physiopathology Regenerative medicine Regenerative Medicine - methods Regenerative Medicine - trends Tissue engineering Tissue Engineering - methods Tissue Engineering - trends Ultrasound |
Title | Cartilage biomechanics: A key factor for osteoarthritis regenerative medicine |
URI | https://dx.doi.org/10.1016/j.bbadis.2019.03.011 https://www.ncbi.nlm.nih.gov/pubmed/30910703 https://search.proquest.com/docview/2197896602 |
Volume | 1865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RVggWBOVVHpWRWEOTOM2DrVRU5dEuUNTNshMbglBblXZg4bdzthMEQ4XEGMuWnbPz-XN89x3AObJQD4lDimcTLapNue-IVKZOyKkKhIqCROjY4cEw7I-C23F7vAbdMhZGu1UW2G8x3aB1UdIqrNma5XnrwU20vBZNkIIYnfYK1HA78uMq1Do3d_3hT0A2v1qwvqMblBF0xs1LCJ7lWrfbs2qnnrdqh1rFQM1O1NuGrYJCko4d5Q6syUkd1m1SyY86bHTLHG67MOjqd3lDzCAmzl6H-ebp-yXpEPx4iU22Q5C3Eh3rMcXKL0bkiMzls9Gj1mBIyvv3PRj1rh-7fadIoOCkgRsvHOFHoh0mcaRcwSOFbIenStHIDVRmDkKJQsYh4kSENFAcmYXgaZgh4gkZK5nQfahOphN5CMQLeZDpdOShL_AMmMZBkkVcIGD4kmL1Bjil0djM6mSw0oHslVkjM21k5lKGfTcgKi3Lfs03Qyj_o-VZOREMranvN_hETpdYycMjsVYb9RtwYGfoeyxU8yJEt6N_93sMm_rJuomdQHUxX8pTJCQL0YTKxafXxGV39XR33yyWH5bejK--AEr04Z4 |
link.rule.ids | 315,783,787,3513,4509,24128,27581,27936,27937,45597,45675,45691,45886 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFD5BiMEXo3jDa018XdjWsYtvSCQolxfB8Na0W6sYAwThwX_vabsZfSAmvm5t2p1uX7-znvMdgBtkoR4ShxR9Ey2qTbnviFSmTsipCoSKgkTo3OHBMOyOg8dJc1KCdpELo8Mqc-y3mG7QOr_SyK3ZWEynjSc30fJaNEEKYnTat6CCbCBqlqHSunvu9X8CsvnVgu0d3aHIoDNhXkLwbKp1uz2rdup5m3aoTQzU7ESdPdjNKSRp2VnuQ0nOarBti0p-1qDaLmq4HcCgrZ_lHTGDmDx7neY7TT9uSYvgx0tssR2CvJXoXI85Nn41IkdkKV-MHrUGQ1Kcvx_CuHM_anedvICCkwZuvHKEH4lmmMSRcgWPFLIdnipFIzdQmXGEEoWMQ8SJCGmgODILwdMwQ8QTMlYyoUdQns1n8gSIF_Ig0-XIQ1-gD5jGQZJFXCBg-JJi8zo4hdHYwupksCKA7I1ZIzNtZOZShmPXISosy36tN0Mo_6PndbEQDK2pzzf4TM7X2MhDl1irjfp1OLYr9D0XqnkRotvpv8e9gmp3NOiz_sOwdwY7-o4NGTuH8mq5lhdITlbiMn_5vgB_deEH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cartilage+biomechanics%3A+A+key+factor+for+osteoarthritis+regenerative+medicine&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+basis+of+disease&rft.au=Mart%C3%ADnez-Moreno%2C+D.&rft.au=Jim%C3%A9nez%2C+G.&rft.au=G%C3%A1lvez-Mart%C3%ADn%2C+P.&rft.au=Rus%2C+G.&rft.date=2019-06-01&rft.issn=0925-4439&rft.volume=1865&rft.issue=6&rft.spage=1067&rft.epage=1075&rft_id=info:doi/10.1016%2Fj.bbadis.2019.03.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbadis_2019_03_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4439&client=summon |