Cartilage biomechanics: A key factor for osteoarthritis regenerative medicine

Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA but without satisfactory long-term results in joint replacement. Recent evidences show how the cartilage biomechanics plays a crucial role in...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. Molecular basis of disease Vol. 1865; no. 6; pp. 1067 - 1075
Main Authors Martínez-Moreno, D., Jiménez, G., Gálvez-Martín, P., Rus, G., Marchal, J.A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA but without satisfactory long-term results in joint replacement. Recent evidences show how the cartilage biomechanics plays a crucial role in tissue development. This review describes how physics alters cartilage and its extracellular matrix (ECM); and its role in OA development. The ECM of the articular cartilage (AC) is widely involved in cartilage turnover processes being crucial in regeneration and joint diseases. We also review the importance of physicochemical pathways following the external forces in AC. Moreover, new techniques probed in cartilage tissue engineering for biomechanical stimulation are reviewed. The final objective of these novel approaches is to create a cellular implant that maintains all the biochemical and biomechanical properties of the original tissue for long-term replacements in patients with OA. •Biomechanics plays a crucial role in healthy articular cartilage (AC).•Osteoarthritis (OA) is preceded by mechanical and biochemical derangements of AC.•Biomechanical stimuli are necessaries for tissue engineering of OA.•Biomechanics is essential for building medical devices useful in OA treatment.
AbstractList Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA but without satisfactory long-term results in joint replacement. Recent evidences show how the cartilage biomechanics plays a crucial role in tissue development. This review describes how physics alters cartilage and its extracellular matrix (ECM); and its role in OA development. The ECM of the articular cartilage (AC) is widely involved in cartilage turnover processes being crucial in regeneration and joint diseases. We also review the importance of physicochemical pathways following the external forces in AC. Moreover, new techniques probed in cartilage tissue engineering for biomechanical stimulation are reviewed. The final objective of these novel approaches is to create a cellular implant that maintains all the biochemical and biomechanical properties of the original tissue for long-term replacements in patients with OA. •Biomechanics plays a crucial role in healthy articular cartilage (AC).•Osteoarthritis (OA) is preceded by mechanical and biochemical derangements of AC.•Biomechanical stimuli are necessaries for tissue engineering of OA.•Biomechanics is essential for building medical devices useful in OA treatment.
Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA but without satisfactory long-term results in joint replacement. Recent evidences show how the cartilage biomechanics plays a crucial role in tissue development. This review describes how physics alters cartilage and its extracellular matrix (ECM); and its role in OA development. The ECM of the articular cartilage (AC) is widely involved in cartilage turnover processes being crucial in regeneration and joint diseases. We also review the importance of physicochemical pathways following the external forces in AC. Moreover, new techniques probed in cartilage tissue engineering for biomechanical stimulation are reviewed. The final objective of these novel approaches is to create a cellular implant that maintains all the biochemical and biomechanical properties of the original tissue for long-term replacements in patients with OA.
Author Jiménez, G.
Marchal, J.A.
Gálvez-Martín, P.
Rus, G.
Martínez-Moreno, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Martínez-Moreno
  fullname: Martínez-Moreno, D.
  organization: Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain
– sequence: 2
  givenname: G.
  surname: Jiménez
  fullname: Jiménez, G.
  organization: Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain
– sequence: 3
  givenname: P.
  surname: Gálvez-Martín
  fullname: Gálvez-Martín, P.
  organization: Advanced Therapies Area, Pharmascience Division, Bioibérica S.A.U., E-08029 Barcelona, Spain
– sequence: 4
  givenname: G.
  surname: Rus
  fullname: Rus, G.
  email: grus@ugr.es
  organization: Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain
– sequence: 5
  givenname: J.A.
  surname: Marchal
  fullname: Marchal, J.A.
  email: jmarchal@ugr.es
  organization: Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30910703$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKxDAUhoMoOjP6BiJdumk96SVtXAgyeIMRNwruQpKejBnbRpPOgG9vZEaXBg7ZfOfyf1OyP7gBCTmlkFGg7GKVKSVbG7IcKM-gyIDSPTKhTc3TnMHrPpkAz6u0LAt-RKYhrCA-VsMhOSqAU6ihmJDHufSj7eQSE2Vdj_pNDlaHy-Q6ecevxEg9Op-YWC6M6CL85u1oQ-JxiQN6OdoNJj22VtsBj8mBkV3Ak90_Iy-3N8_z-3TxdPcwv16kuoRmTFVeq4rxpjagZG3yCqQ2pqihNG1MUTbcAGOq4YoVpZFVVSqpWdu2qLAxyIsZOd_O_fDuc41hFL0NGrtODujWQeSU1w1nDPKIlltUexeCRyM-vO2l_xIUxI9IsRJbkeJHpIBCxBNi29luw1rFdH9Nv-YicLUFMObcWPQiaIuDjiY86lG0zv6_4RuJ_IjG
CitedBy_id crossref_primary_10_1515_biol_2022_0747
crossref_primary_10_3390_biomedicines11071942
crossref_primary_10_1007_s00167_022_07030_2
crossref_primary_10_1002_adem_202200304
crossref_primary_10_1016_j_cis_2023_103030
crossref_primary_10_1007_s10924_023_03024_4
crossref_primary_10_1016_j_acthis_2022_151936
crossref_primary_10_1007_s10067_023_06860_w
crossref_primary_10_1002_adhm_202002030
crossref_primary_10_1186_s12951_023_02264_9
crossref_primary_10_1186_s13018_024_04667_2
crossref_primary_10_1002_ange_202311233
crossref_primary_10_1007_s00223_024_01242_z
crossref_primary_10_3390_cells13060512
crossref_primary_10_1186_s13018_022_03233_y
crossref_primary_10_1039_D3BM00703K
crossref_primary_10_3389_fcell_2021_786546
crossref_primary_10_1002_adhm_202201305
crossref_primary_10_1016_j_arr_2023_102015
crossref_primary_10_1177_08853282211021692
crossref_primary_10_1007_s00018_021_03843_5
crossref_primary_10_1002_adhm_202200251
crossref_primary_10_1016_j_jmbbm_2022_105618
crossref_primary_10_1038_s41584_023_00979_5
crossref_primary_10_1007_s40778_023_00223_6
crossref_primary_10_3390_molecules26206122
crossref_primary_10_3389_fendo_2023_1168306
crossref_primary_10_1038_s41598_020_67518_0
crossref_primary_10_1097_MD_0000000000035854
crossref_primary_10_3389_fgene_2021_642097
crossref_primary_10_1002_mabi_202300557
crossref_primary_10_1002_adfm_202212561
crossref_primary_10_1007_s12551_021_00779_9
crossref_primary_10_1002_anie_202311233
crossref_primary_10_3390_pr11041014
crossref_primary_10_3389_fbioe_2022_862254
crossref_primary_10_1002_jbm_a_37478
Cites_doi 10.1021/bp000082v
10.1074/jbc.274.33.23443
10.1016/j.joca.2016.09.023
10.1007/s11517-008-0409-9
10.1371/journal.pone.0161479
10.3109/03008209909005273
10.1371/journal.pone.0002341
10.1007/s10237-004-0058-3
10.1098/rsfs.2015.0084
10.1038/nrrheum.2014.44
10.1017/S1431927606060260
10.1016/j.ultrasmedbio.2015.01.014
10.1136/ard.56.5.287
10.1016/S0167-4838(01)00333-8
10.4049/jimmunol.161.1.467
10.1016/j.joca.2016.06.014
10.1096/fj.11-193649
10.1039/C6BM00068A
10.2519/jospt.1998.28.4.192
10.1016/j.ultrasmedbio.2012.06.002
10.1016/j.jbiomech.2013.09.020
10.1016/j.joca.2016.10.003
10.1002/ar.21330
10.1002/(SICI)1097-0290(19990120)62:2<166::AID-BIT6>3.0.CO;2-K
10.1007/s00018-012-0980-y
10.1152/ajpcell.00131.2004
10.1111/aor.12578
10.1006/abbi.1993.1062
10.1126/science.aaf7119
10.1089/ten.tea.2014.0107
10.1002/jor.1100060208
10.1111/j.1469-7580.2008.01021.x
10.1083/jcb.106.1.171
10.1243/09544119JEIM199
10.1016/S0021-9290(03)00231-8
10.1016/j.bone.2010.09.138
10.1016/0049-0172(91)90036-Y
10.1115/1.3138475
10.1016/j.joca.2012.04.017
10.1073/pnas.95.5.2515
10.1016/j.medcli.2016.11.033
10.1016/0092-8674(82)90027-7
10.1053/joca.1998.0163
10.1053/joca.1998.0219
10.1016/j.biocel.2017.08.018
10.1056/NEJMoa0800777
10.1089/ten.teb.2008.0435
10.1359/jbmr.2001.16.4.671
10.1038/srep32876
10.1073/pnas.83.9.2879
10.1007/s00249-007-0139-1
10.1359/jbmr.2000.15.11.2197
10.1053/joca.1998.0140
10.1016/j.ultrasmedbio.2014.03.002
10.1074/jbc.M113.473777
10.1016/j.ceb.2013.05.006
10.1007/s10555-005-5130-7
10.1007/s12079-012-0177-z
10.1002/art.24799
10.1038/nrrheum.2014.157
10.1115/1.3138202
10.20344/amp.5477
10.1006/abbi.1999.1543
10.1089/1076327041348437
10.1073/pnas.1319569111
10.1242/jcs.00912
10.1089/ten.tea.2008.0200
10.1007/978-1-59259-417-7_4
10.1016/j.cellsig.2013.12.001
10.1016/j.bone.2012.02.012
10.1007/978-1-4613-8425-0
10.1038/nature01323
10.1002/art.1780160416
10.1016/j.joca.2004.05.008
10.1002/jor.1100140110
10.1359/jbmr.1997.12.10.1626
10.1056/NEJMcp051726
10.1359/jbmr.081236
10.1007/s00018-011-0911-3
10.1002/anr.1780320302
10.1089/10763270260424169
10.1007/s11999-007-0060-z
10.1016/j.clinbiomech.2006.07.001
10.1002/art.23177
10.1186/s40634-014-0008-7
10.1016/B978-0-12-394311-8.00001-7
10.1007/s10439-008-9448-5
10.1038/35023621
10.1017/CBO9781107415324.004
10.1002/(SICI)1097-4652(199902)178:2<197::AID-JCP9>3.0.CO;2-3
10.1371/journal.pone.0023119
10.1016/j.lfs.2006.11.037
10.1016/j.actbio.2017.11.021
10.1016/B978-012088562-6/50005-4
10.1128/MCB.01779-08
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier B.V.
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier B.V.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.bbadis.2019.03.011
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1879-260X
EndPage 1075
ExternalDocumentID 10_1016_j_bbadis_2019_03_011
30910703
S0925443919300857
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABBQC
ABGSF
ABLVK
ABMAC
ABMZM
ABUDA
ABVKL
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AEXQZ
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IXB
J1W
KOM
LCYCR
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSH
SSU
SSZ
T5K
~G-
0SF
AAXKI
ADVLN
CGR
CUY
CVF
ECM
EIF
NPM
3O-
AAQXK
AAYXX
ABEFU
ABFNM
ABXDB
ADMUD
AFJKZ
AGHFR
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
IHE
NCXOZ
R2-
SBG
SEW
UQL
WUQ
XJT
XPP
7X8
ID FETCH-LOGICAL-c408t-b27b56987f0ba7f250acff3704fd011489f066b89b634fa554bac6dddebe8fe93
IEDL.DBID AIKHN
ISSN 0925-4439
IngestDate Fri Oct 25 03:01:59 EDT 2024
Thu Sep 26 18:49:41 EDT 2024
Wed Oct 16 00:47:54 EDT 2024
Fri Feb 23 02:49:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Biomechanics
Mechanotransduction
Tissue engineering
Regenerative medicine
Osteoarthritis
Ultrasound
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-b27b56987f0ba7f250acff3704fd011489f066b89b634fa554bac6dddebe8fe93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://doi.org/10.1016/j.bbadis.2019.03.011
PMID 30910703
PQID 2197896602
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2197896602
crossref_primary_10_1016_j_bbadis_2019_03_011
pubmed_primary_30910703
elsevier_sciencedirect_doi_10_1016_j_bbadis_2019_03_011
PublicationCentury 2000
PublicationDate 2019-06-01
2019-06-00
20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. Molecular basis of disease
PublicationTitleAlternate Biochim Biophys Acta Mol Basis Dis
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References T.E. Hardingham, A.J. Fosang, Proteoglycans: many forms and many functions., FASEB J. 6 (1992) 861–870. doi
P.J. Roughley, J.S. Mort, The role of aggrecan in normal and osteoarthritic cartilage, J. Exp. Orthop. 1 (2014) 8. doi
S. Camarero-Espinosa, B. Rothen-Rutishauser, E.J. Foster, C. Weder, Articular cartilage: from formation to tissue engineering, Biomater. Sci. 4 (2016) 734–767. doi
A.B. Yeatts, J.P. Fisher, Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress, Bone. 48 (2011) 171–181. doi
J.C.Y. Hu, K.A. Athanasiou, structure and function of articular cartilage, in: Handb. Histol. Methods Bone Cartil., Humana Press, Totowa, NJ, 2003: pp. 73–95. doi
E. a Makris, A.H. Gomoll, K.N. Malizos, J.C. Hu, K. a Athanasiou, Repair and tissue engineering techniques for articular cartilage., Nat. Rev. Rheumatol. 11 (2015) 21–34. doi
G.P. Dowthwaite, The surface of articular cartilage contains a progenitor cell population, J. Cell Sci. 117 (2004) 889–897. doi
R. Mayne, Cartilage collagens. What is their function, and are they involved in articular disease?, Arthritis Rheum. 32 (1989) 241–246. doi
N.Y. Afoke, P.D. Byers, W.C. Hutton, Contact pressures in the human hip joint., J. Bone Joint Surg. Br. 69 (1987) 536–541. doi
Y. Wang, Z. Huang, P.S. Nayak, B.D. Matthews, D. Warburton, W. Shi, J. Sanchez-Esteban, Strain-induced differentiation of fetal type II epithelial cells is mediated via integrin α6β1-ADAM17/TACE signaling pathway., J. Biol. Chem. 02905 (2013) 820–828. doi
J.W. Fuseler, D.M. Merrill, J. a Rogers, M.B. Grisham, R.E. Wolf, Analysis and quantitation of NF-kappaB nuclear translocation in tumor necrosis factor alpha (TNF-alpha) activated vascular endothelial cells., Microsc. Microanal. 12 (2006) 269–76. doi
T. Honjo, S. Kubota, H. Kamioka, Y. Sugawara, Y. Ishihara, T. Yamashiro, M. Takigawa, T. Takano-Yamamoto, Promotion of Ccn2 expression and osteoblastic differentiation by actin polymerization, which is induced by laminar fluid flow stress, J. Cell Commun. Signal. 6 (2012) 225–232. doi
M.O. Jortikka, J.J. Parkkinen, R.I. Inkinen, J. Kärner, H.T. Järveläinen, L.O. Nelimarkka, M.I. Tammi, M.J. Lammi, The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure., Arch. Biochem. Biophys. 374 (2000) 172–80. doi
J. Wang, N. Tang, Q. Xiao, L. Zhao, Y. Li, J. Li, The potential application of pulsed ultrasound on bone defect repair via developmental engineering: an in vitro study, Artificial. 40 (2015) 505–513. doi
D. Heinegrd, P. Lorenzo, T. Saxne, Noncollagenous proteins; glycoproteins and related proteins, in: Dyn. Bone Cartil. Metab., 2006: pp. 71–84. doi
S. Park, R. Krishnan, S.B. Nicoll, G.A. Ateshian, Cartilage interstitial fluid load support in unconfined compression, J. Biomech. 36 (2003) 1785–1796. doi
J. Guadix, J. Zugaza, P. Gálvez-Martín, Characteristics, applications and prospects of mesenchymal stem cells in cell therapy., Med Clin (Barc). 10 (2017) 408–414. doi
J.A. Buckwalter, H.J. Mankin, Articular cartilage: tissue design and chondrocyte-matrix interactions., Instr. Course Lect. 47 (1998) 477–86.
.
C.H. Mckenna, G.G. Hunder, Arthritis and allied conditions: a textbook of rheumatology, Arthritis Rheum. 16 (1973) 528–529. doi
J.A. Buckwalter, Articular cartilage: injuries and potential for healing, J. Orthop. Sport. Phys. Ther. 28 (1998) 192–202. doi
Z.-J. Luo, B.B. Seedhom, Light and low-frequency pulsatile hydrostatic pressure enhances extracellular matrix formation by bone marrow mesenchymal cells: an in-vitro study with special reference to cartilage repair., Proc. Inst. Mech. Eng. H. 221 (2007) 499–507. doi
A.C. Hall, Differential effects of hydrostatic pressure on cation transport pathways of isolated articular chondrocytes, J. Cell. Physiol. 178 (1999) 197–204. doi:10.1002/(SICI)1097-4652(199902)178:2<197::AID-JCP9>3.0.CO;2-3.
M. a Schwartz, R.K. Assoian, Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways., J. Cell Sci. 114 (2001) 2553–2560. doi
A.R. Armiento, M.J. Stoddart, M. Alini, D. Eglin, Biomaterials for articular cartilage tissue engineering: learning from biology., Acta Biomater. (2017). doi
Y. Azuma, M. Ito, Y. Harada, H. Takagi, T. Ohta, S. Jingushi, Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus., J. Bone Miner. Res. 16 (2001) 671–680. doi
V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong, Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments, J. Biomech. Eng. 102 (1980) 73. doi
J.K. Suh, G.H. Baek, A. Arøen, C.M. Malin, C. Niyibizi, C.H. Evans, A. Westerhausen-Larson, Intermittent sub-ambient interstitial hydrostatic pressure as a potential mechanical stimulator for chondrocyte metabolism, Osteoarthr. Cartil. 7 (1999) 71–80. doi
C.J. Meyer, F.J. Alenghat, P. Rim, J.H.J. Fong, B. Fabry, D.E. Ingber, Mechanical control of cyclic AMP signalling and gene transcription through integrins, Nat. Cell Biol. 2 (2000) 666–668. doi
M.N. Phan, H.A. Leddy, B.J. Votta, S. Kumar, D.S. Levy, D.B. Lipshutz, H.L. Suk, W. Liedtke, F. Guilak, Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes, Arthritis Rheum. 60 (2009) 3028–3037. doi
R. Sunyer, V. Conte, J. Escribano, A. Elosegui-Artola, A. Labernadie, L. Valon, D. Navajas, J.M. Garcia-Aznar, J.J. Munoz, P. Roca-Cusachs, X. Trepat, Collective cell durotaxis emerges from long-range intercellular force transmission, Science (80-. ). 353 (2016) 1157–1161. doi
A.C. Moore, D.L. Burris, An analytical model to predict interstitial lubrication of cartilage in migrating contact areas, J. Biomech. 47 (2014) 148–153. doi
J.A. Kornblatt, M.J. Kornblatt, The effects of osmotic and hydrostatic pressures on macromolecular systems, Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 1595 (2002) 30–47. doi
J. Martel-Pelletier, Pathophysiology of osteoarthritis., Osteoarthritis Cartilage. 12 Suppl A (2004) S31–S33. doi
B.D. Elder, K.A. Athanasiou, Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration, Tissue Eng. Part B Rev. 15 (2009) 43–53. doi
D. Kumar, A.B. Lassar, The transcriptional activity of Sox9 in chondrocytes is regulated by RhoA signaling and actin polymerization, Mol. Cell. Biol. 29 (2009) 4262–4273. doi
C.E. Farnum, N.J. Wilsman, Orientation of primary cilia of articular chondrocytes in three-dimensional space, Anat. Rec. 294 (2011) 533–549. doi
S. Gudi, J.P. Nolan, J.A. Frangos, Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 2515–2519. doi
M.C.D. Trindade, J. Shida, T. Ikenoue, M.S. Lee, E.Y. Lin, B. Yaszay, S. Yerby, S.B. Goodman, D.J. Schurman, R.L. Smith, Intermittent hydrostatic pressure inhibits matrix metalloproteinase and pro-inflammatory mediator release from human osteoarthritic chondrocytes in vitro, Osteoarthr. Cartil. 12 (2004) 729–735.
J. Fernandez, J. Zhang, T. Heidlauf, M. Sartori, T. Besier, O. Röhrle, D. Lloyd, Multiscale musculoskeletal modelling, data–model fusion and electromyography-informed modelling, Interface Focus. 6 (2016) 20150084. doi
A. Subramanian, G. Budhiraja, N. Sahu, Chondrocyte primary cilium is mechanosensitive and responds to low-intensity-ultrasound by altering its length and orientation, Int. J. Biochem. Cell Biol. 91 (2017) 60–64. doi
I. Abbaszade, R.Q. Liu, F. Yang, S.A. Rosenfeld, O.H. Ross, J.R. Link, D.M. Ellis, M.D. Tortorella, M.A. Pratta, J.M. Hollist, R. Wynn, J.L. Duke, H.J. George, M.C. Hillman, K. Murphy, B.H. Wiswall, R.A. Copeland, C.P. Decicco, R. Bruckner, H. Nagase, Y. Itoh, R.C. Newton, R.L. Magolda, J.M. Trzaskos, G.F. Hollis, E.C. Arner, T.C. Burn, Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family, J. Biol. Chem. 274 (1999) 23443–23450. doi
D.J. Saxby, D.G. Lloyd, Osteoarthritis year in review 2016: mechanics, Osteoarthr. Cartil. 25 (2017) 190–198. doi
C.G. Armstrong, W.M. Lai, V.C. Mow, An analysis of the unconfined compression of articular cartilage., J. Biomech. Eng. 106 (1984) 165–173.
M. Englund, A. Guermazi, D. Gale, D.J. Hunter, P. Aliabadi, M. Clancy, D.T. Felson, Incidental meniscal findings on knee MRI in middle-aged and elderly persons, N. Engl. J. Med. 359 (2008) 1108–1115. doi
S. Mizuno, A novel method for assessing effects of hydrostatic fluid pressure on intracellular calcium: a study with bovine articular chondrocytes., Am. J. Physiol. Cell Physiol. 288 (2005) C329–37. doi
D.R. Wagner, D.P. Lindsey, K.W. Li, P. Tummala, S.E. Chandran, R.L. Smith, M.T. Longaker, D.R. Carter, G.S. Beaupre, Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium., Ann. Biomed. Eng. 36 (2008) 813–820. doi
E.L. Radin, D.B. Burr, B. Caterson, D. Fyhrie, T.D. Brown, R.D. Boyd, Mechanical determinants of osteoarthrosis, Semin. Arthritis Rheum. 21 (1991) 12–21. doi
C.R. Scanzello, S.R. Goldring, The role of synovitis in osteoarthritis pathogenesis, Bone. 51 (2012) 249–257. doi
K. Cheng, P. Xia, Q. Lin, S. Shen, M. Gao, S. Ren, X. Li, Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes., Ultrasound Med. Biol. 40 (2014) 1609–18. doi
R.M. Schulz, A. Bader, Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes, Eur. Biophys. J. 36 (2007) 539–568. doi
P. Libby, Inflammation in atherosclerosis, Nature. 420 (2002) 868–874. doi
R.L. Smith, S.F. Rusk, B.E. Ellison, P. Wessells, K. Tsuchiya, D.R. Carter, W.E. Caler, L.J. Sandell, D.J. Schurman, In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure, J. Orthop. Res. 14 (1996) 53–60. doi
D.J. Hunter, D. Schofield, E. Callander, The individual and socioeconomic impa
10.1016/j.bbadis.2019.03.011_bb0150
10.1016/j.bbadis.2019.03.011_bb0270
10.1016/j.bbadis.2019.03.011_bb0390
10.1016/j.bbadis.2019.03.011_bb0315
10.1016/j.bbadis.2019.03.011_bb0435
10.1016/j.bbadis.2019.03.011_bb0275
10.1016/j.bbadis.2019.03.011_bb0395
10.1016/j.bbadis.2019.03.011_bb0030
10.1016/j.bbadis.2019.03.011_bb0035
10.1016/j.bbadis.2019.03.011_bb0310
10.1016/j.bbadis.2019.03.011_bb0155
10.1016/j.bbadis.2019.03.011_bb0430
10.1016/j.bbadis.2019.03.011_bb0040
10.1016/j.bbadis.2019.03.011_bb0160
10.1016/j.bbadis.2019.03.011_bb0280
10.1016/j.bbadis.2019.03.011_bb0205
10.1016/j.bbadis.2019.03.011_bb0325
10.1016/j.bbadis.2019.03.011_bb0445
10.1016/j.bbadis.2019.03.011_bb0165
10.1016/j.bbadis.2019.03.011_bb0440
10.1016/j.bbadis.2019.03.011_bb0285
10.1016/j.bbadis.2019.03.011_bb0200
10.1016/j.bbadis.2019.03.011_bb0045
10.1016/j.bbadis.2019.03.011_bb0320
10.1016/j.bbadis.2019.03.011_bb0090
10.1016/j.bbadis.2019.03.011_bb0490
10.1016/j.bbadis.2019.03.011_bb0095
10.1016/j.bbadis.2019.03.011_bb0370
10.1016/j.bbadis.2019.03.011_bb0415
10.1016/j.bbadis.2019.03.011_bb0010
10.1016/j.bbadis.2019.03.011_bb0130
10.1016/j.bbadis.2019.03.011_bb0250
10.1016/j.bbadis.2019.03.011_bb0015
10.1016/j.bbadis.2019.03.011_bb0135
10.1016/j.bbadis.2019.03.011_bb0410
10.1016/j.bbadis.2019.03.011_bb0255
10.1016/j.bbadis.2019.03.011_bb0375
10.1016/j.bbadis.2019.03.011_bb0495
10.1016/j.bbadis.2019.03.011_bb0260
10.1016/j.bbadis.2019.03.011_bb0380
10.1016/j.bbadis.2019.03.011_bb0305
10.1016/j.bbadis.2019.03.011_bb0425
10.1016/j.bbadis.2019.03.011_bb0385
10.1016/j.bbadis.2019.03.011_bb0020
10.1016/j.bbadis.2019.03.011_bb0140
10.1016/j.bbadis.2019.03.011_bb0025
10.1016/j.bbadis.2019.03.011_bb0300
10.1016/j.bbadis.2019.03.011_bb0145
10.1016/j.bbadis.2019.03.011_bb0420
10.1016/j.bbadis.2019.03.011_bb0265
10.1016/j.bbadis.2019.03.011_bb0190
10.1016/j.bbadis.2019.03.011_bb0070
10.1016/j.bbadis.2019.03.011_bb0115
10.1016/j.bbadis.2019.03.011_bb0110
10.1016/j.bbadis.2019.03.011_bb0230
10.1016/j.bbadis.2019.03.011_bb0075
10.1016/j.bbadis.2019.03.011_bb0350
10.1016/j.bbadis.2019.03.011_bb0195
10.1016/j.bbadis.2019.03.011_bb0470
10.1016/j.bbadis.2019.03.011_bb0235
10.1016/j.bbadis.2019.03.011_bb0355
10.1016/j.bbadis.2019.03.011_bb0475
10.1016/j.bbadis.2019.03.011_bb0080
10.1016/j.bbadis.2019.03.011_bb0480
10.1016/j.bbadis.2019.03.011_bb0005
10.1016/j.bbadis.2019.03.011_bb0405
10.1016/j.bbadis.2019.03.011_bb0120
10.1016/j.bbadis.2019.03.011_bb0240
10.1016/j.bbadis.2019.03.011_bb0085
10.1016/j.bbadis.2019.03.011_bb0360
10.1016/j.bbadis.2019.03.011_bb0125
10.1016/j.bbadis.2019.03.011_bb0400
10.1016/j.bbadis.2019.03.011_bb0245
10.1016/j.bbadis.2019.03.011_bb0365
10.1016/j.bbadis.2019.03.011_bb0485
10.1016/j.bbadis.2019.03.011_bb0050
10.1016/j.bbadis.2019.03.011_bb0170
10.1016/j.bbadis.2019.03.011_bb0290
10.1016/j.bbadis.2019.03.011_bb0215
10.1016/j.bbadis.2019.03.011_bb0335
10.1016/j.bbadis.2019.03.011_bb0055
10.1016/j.bbadis.2019.03.011_bb0330
10.1016/j.bbadis.2019.03.011_bb0175
10.1016/j.bbadis.2019.03.011_bb0450
10.1016/j.bbadis.2019.03.011_bb0295
10.1016/j.bbadis.2019.03.011_bb0455
10.1016/j.bbadis.2019.03.011_bb0210
10.1016/j.bbadis.2019.03.011_bb0060
10.1016/j.bbadis.2019.03.011_bb0180
10.1016/j.bbadis.2019.03.011_bb0105
10.1016/j.bbadis.2019.03.011_bb0225
10.1016/j.bbadis.2019.03.011_bb0220
10.1016/j.bbadis.2019.03.011_bb0065
10.1016/j.bbadis.2019.03.011_bb0340
10.1016/j.bbadis.2019.03.011_bb0185
10.1016/j.bbadis.2019.03.011_bb0460
10.1016/j.bbadis.2019.03.011_bb0345
10.1016/j.bbadis.2019.03.011_bb0465
10.1016/j.bbadis.2019.03.011_bb0100
References_xml – ident: 10.1016/j.bbadis.2019.03.011_bb0405
  doi: 10.1021/bp000082v
– ident: 10.1016/j.bbadis.2019.03.011_bb0105
  doi: 10.1074/jbc.274.33.23443
– ident: 10.1016/j.bbadis.2019.03.011_bb0065
  doi: 10.1016/j.joca.2016.09.023
– ident: 10.1016/j.bbadis.2019.03.011_bb0450
  doi: 10.1007/s11517-008-0409-9
– ident: 10.1016/j.bbadis.2019.03.011_bb0425
  doi: 10.1371/journal.pone.0161479
– ident: 10.1016/j.bbadis.2019.03.011_bb0120
  doi: 10.3109/03008209909005273
– ident: 10.1016/j.bbadis.2019.03.011_bb0280
  doi: 10.1371/journal.pone.0002341
– ident: 10.1016/j.bbadis.2019.03.011_bb0275
  doi: 10.1007/s10237-004-0058-3
– ident: 10.1016/j.bbadis.2019.03.011_bb0490
  doi: 10.1098/rsfs.2015.0084
– ident: 10.1016/j.bbadis.2019.03.011_bb0045
  doi: 10.1038/nrrheum.2014.44
– ident: 10.1016/j.bbadis.2019.03.011_bb0135
  doi: 10.1017/S1431927606060260
– ident: 10.1016/j.bbadis.2019.03.011_bb0465
  doi: 10.1016/j.ultrasmedbio.2015.01.014
– ident: 10.1016/j.bbadis.2019.03.011_bb0095
  doi: 10.1136/ard.56.5.287
– ident: 10.1016/j.bbadis.2019.03.011_bb0210
  doi: 10.1016/S0167-4838(01)00333-8
– ident: 10.1016/j.bbadis.2019.03.011_bb0130
  doi: 10.4049/jimmunol.161.1.467
– ident: 10.1016/j.bbadis.2019.03.011_bb0430
  doi: 10.1016/j.joca.2016.06.014
– ident: 10.1016/j.bbadis.2019.03.011_bb0360
  doi: 10.1096/fj.11-193649
– ident: 10.1016/j.bbadis.2019.03.011_bb0075
– ident: 10.1016/j.bbadis.2019.03.011_bb0145
  doi: 10.1039/C6BM00068A
– ident: 10.1016/j.bbadis.2019.03.011_bb0225
  doi: 10.2519/jospt.1998.28.4.192
– ident: 10.1016/j.bbadis.2019.03.011_bb0470
  doi: 10.1016/j.ultrasmedbio.2012.06.002
– ident: 10.1016/j.bbadis.2019.03.011_bb0400
  doi: 10.1016/j.jbiomech.2013.09.020
– ident: 10.1016/j.bbadis.2019.03.011_bb0475
  doi: 10.1016/j.joca.2016.10.003
– ident: 10.1016/j.bbadis.2019.03.011_bb0365
  doi: 10.1002/ar.21330
– ident: 10.1016/j.bbadis.2019.03.011_bb0255
  doi: 10.1002/(SICI)1097-0290(19990120)62:2<166::AID-BIT6>3.0.CO;2-K
– ident: 10.1016/j.bbadis.2019.03.011_bb0370
  doi: 10.1007/s00018-012-0980-y
– ident: 10.1016/j.bbadis.2019.03.011_bb0220
  doi: 10.1152/ajpcell.00131.2004
– ident: 10.1016/j.bbadis.2019.03.011_bb0485
  doi: 10.1111/aor.12578
– ident: 10.1016/j.bbadis.2019.03.011_bb0250
  doi: 10.1006/abbi.1993.1062
– ident: 10.1016/j.bbadis.2019.03.011_bb0180
  doi: 10.1126/science.aaf7119
– ident: 10.1016/j.bbadis.2019.03.011_bb0165
  doi: 10.1089/ten.tea.2014.0107
– ident: 10.1016/j.bbadis.2019.03.011_bb0230
  doi: 10.1002/jor.1100060208
– ident: 10.1016/j.bbadis.2019.03.011_bb0385
  doi: 10.1111/j.1469-7580.2008.01021.x
– ident: 10.1016/j.bbadis.2019.03.011_bb0155
  doi: 10.1083/jcb.106.1.171
– ident: 10.1016/j.bbadis.2019.03.011_bb0265
  doi: 10.1243/09544119JEIM199
– ident: 10.1016/j.bbadis.2019.03.011_bb0295
  doi: 10.1016/S0021-9290(03)00231-8
– ident: 10.1016/j.bbadis.2019.03.011_bb0410
  doi: 10.1016/j.bone.2010.09.138
– ident: 10.1016/j.bbadis.2019.03.011_bb0090
  doi: 10.1016/0049-0172(91)90036-Y
– ident: 10.1016/j.bbadis.2019.03.011_bb0305
  doi: 10.1115/1.3138475
– ident: 10.1016/j.bbadis.2019.03.011_bb0395
  doi: 10.1016/j.joca.2012.04.017
– ident: 10.1016/j.bbadis.2019.03.011_bb0215
– ident: 10.1016/j.bbadis.2019.03.011_bb0320
  doi: 10.1073/pnas.95.5.2515
– ident: 10.1016/j.bbadis.2019.03.011_bb0175
  doi: 10.1016/j.medcli.2016.11.033
– ident: 10.1016/j.bbadis.2019.03.011_bb0150
  doi: 10.1016/0092-8674(82)90027-7
– ident: 10.1016/j.bbadis.2019.03.011_bb0235
  doi: 10.1053/joca.1998.0163
– ident: 10.1016/j.bbadis.2019.03.011_bb0125
  doi: 10.1053/joca.1998.0219
– ident: 10.1016/j.bbadis.2019.03.011_bb0350
  doi: 10.1016/j.biocel.2017.08.018
– ident: 10.1016/j.bbadis.2019.03.011_bb0080
  doi: 10.1056/NEJMoa0800777
– ident: 10.1016/j.bbadis.2019.03.011_bb0200
  doi: 10.1089/ten.teb.2008.0435
– ident: 10.1016/j.bbadis.2019.03.011_bb0435
  doi: 10.1359/jbmr.2001.16.4.671
– ident: 10.1016/j.bbadis.2019.03.011_bb0440
  doi: 10.1038/srep32876
– ident: 10.1016/j.bbadis.2019.03.011_bb0290
  doi: 10.1073/pnas.83.9.2879
– ident: 10.1016/j.bbadis.2019.03.011_bb0495
  doi: 10.1007/s00249-007-0139-1
– ident: 10.1016/j.bbadis.2019.03.011_bb0330
  doi: 10.1359/jbmr.2000.15.11.2197
– ident: 10.1016/j.bbadis.2019.03.011_bb0085
  doi: 10.1053/joca.1998.0140
– ident: 10.1016/j.bbadis.2019.03.011_bb0460
  doi: 10.1016/j.ultrasmedbio.2014.03.002
– ident: 10.1016/j.bbadis.2019.03.011_bb0345
  doi: 10.1074/jbc.M113.473777
– ident: 10.1016/j.bbadis.2019.03.011_bb0185
  doi: 10.1016/j.ceb.2013.05.006
– ident: 10.1016/j.bbadis.2019.03.011_bb0195
  doi: 10.1007/s10555-005-5130-7
– ident: 10.1016/j.bbadis.2019.03.011_bb0480
  doi: 10.1007/s12079-012-0177-z
– ident: 10.1016/j.bbadis.2019.03.011_bb0375
  doi: 10.1002/art.24799
– ident: 10.1016/j.bbadis.2019.03.011_bb0140
  doi: 10.1038/nrrheum.2014.157
– ident: 10.1016/j.bbadis.2019.03.011_bb0300
  doi: 10.1115/1.3138202
– ident: 10.1016/j.bbadis.2019.03.011_bb0110
  doi: 10.20344/amp.5477
– ident: 10.1016/j.bbadis.2019.03.011_bb0240
  doi: 10.1006/abbi.1999.1543
– ident: 10.1016/j.bbadis.2019.03.011_bb0455
  doi: 10.1089/1076327041348437
– ident: 10.1016/j.bbadis.2019.03.011_bb0380
  doi: 10.1073/pnas.1319569111
– ident: 10.1016/j.bbadis.2019.03.011_bb0160
  doi: 10.1242/jcs.00912
– ident: 10.1016/j.bbadis.2019.03.011_bb0260
  doi: 10.1089/ten.tea.2008.0200
– ident: 10.1016/j.bbadis.2019.03.011_bb0005
  doi: 10.1007/978-1-59259-417-7_4
– ident: 10.1016/j.bbadis.2019.03.011_bb0335
  doi: 10.1016/j.cellsig.2013.12.001
– ident: 10.1016/j.bbadis.2019.03.011_bb0115
  doi: 10.1016/j.bone.2012.02.012
– ident: 10.1016/j.bbadis.2019.03.011_bb0015
  doi: 10.1007/978-1-4613-8425-0
– ident: 10.1016/j.bbadis.2019.03.011_bb0050
  doi: 10.1038/nature01323
– ident: 10.1016/j.bbadis.2019.03.011_bb0100
  doi: 10.1002/art.1780160416
– ident: 10.1016/j.bbadis.2019.03.011_bb0285
  doi: 10.1016/j.joca.2004.05.008
– ident: 10.1016/j.bbadis.2019.03.011_bb0245
  doi: 10.1002/jor.1100140110
– ident: 10.1016/j.bbadis.2019.03.011_bb0390
  doi: 10.1359/jbmr.1997.12.10.1626
– ident: 10.1016/j.bbadis.2019.03.011_bb0055
  doi: 10.1056/NEJMcp051726
– ident: 10.1016/j.bbadis.2019.03.011_bb0340
  doi: 10.1359/jbmr.081236
– ident: 10.1016/j.bbadis.2019.03.011_bb0355
  doi: 10.1007/s00018-011-0911-3
– ident: 10.1016/j.bbadis.2019.03.011_bb0020
  doi: 10.1002/anr.1780320302
– ident: 10.1016/j.bbadis.2019.03.011_bb0415
  doi: 10.1089/10763270260424169
– ident: 10.1016/j.bbadis.2019.03.011_bb0060
  doi: 10.1007/s11999-007-0060-z
– ident: 10.1016/j.bbadis.2019.03.011_bb0070
  doi: 10.1016/j.clinbiomech.2006.07.001
– ident: 10.1016/j.bbadis.2019.03.011_bb0040
  doi: 10.1002/art.23177
– ident: 10.1016/j.bbadis.2019.03.011_bb0035
  doi: 10.1186/s40634-014-0008-7
– ident: 10.1016/j.bbadis.2019.03.011_bb0190
  doi: 10.1016/B978-0-12-394311-8.00001-7
– ident: 10.1016/j.bbadis.2019.03.011_bb0270
  doi: 10.1007/s10439-008-9448-5
– ident: 10.1016/j.bbadis.2019.03.011_bb0315
  doi: 10.1038/35023621
– ident: 10.1016/j.bbadis.2019.03.011_bb0025
  doi: 10.1017/CBO9781107415324.004
– ident: 10.1016/j.bbadis.2019.03.011_bb0205
  doi: 10.1002/(SICI)1097-4652(199902)178:2<197::AID-JCP9>3.0.CO;2-3
– ident: 10.1016/j.bbadis.2019.03.011_bb0420
  doi: 10.1371/journal.pone.0023119
– ident: 10.1016/j.bbadis.2019.03.011_bb0010
– ident: 10.1016/j.bbadis.2019.03.011_bb0445
  doi: 10.1016/j.lfs.2006.11.037
– ident: 10.1016/j.bbadis.2019.03.011_bb0170
  doi: 10.1016/j.actbio.2017.11.021
– ident: 10.1016/j.bbadis.2019.03.011_bb0310
– ident: 10.1016/j.bbadis.2019.03.011_bb0030
  doi: 10.1016/B978-012088562-6/50005-4
– ident: 10.1016/j.bbadis.2019.03.011_bb0325
  doi: 10.1128/MCB.01779-08
SSID ssj0000670
Score 2.5160348
SecondaryResourceType review_article
Snippet Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1067
SubjectTerms Biomechanical Phenomena - physiology
Biomechanics
Cartilage, Articular - cytology
Cartilage, Articular - physiology
Chondrocytes - cytology
Extracellular Matrix - metabolism
Extracellular Matrix - physiology
Humans
Mechanotransduction
Models, Biological
Osteoarthritis
Osteoarthritis - physiopathology
Regenerative medicine
Regenerative Medicine - methods
Regenerative Medicine - trends
Tissue engineering
Tissue Engineering - methods
Tissue Engineering - trends
Ultrasound
Title Cartilage biomechanics: A key factor for osteoarthritis regenerative medicine
URI https://dx.doi.org/10.1016/j.bbadis.2019.03.011
https://www.ncbi.nlm.nih.gov/pubmed/30910703
https://search.proquest.com/docview/2197896602
Volume 1865
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RVggWBOVVHpWRWEOTOM2DrVRU5dEuUNTNshMbglBblXZg4bdzthMEQ4XEGMuWnbPz-XN89x3AObJQD4lDimcTLapNue-IVKZOyKkKhIqCROjY4cEw7I-C23F7vAbdMhZGu1UW2G8x3aB1UdIqrNma5XnrwU20vBZNkIIYnfYK1HA78uMq1Do3d_3hT0A2v1qwvqMblBF0xs1LCJ7lWrfbs2qnnrdqh1rFQM1O1NuGrYJCko4d5Q6syUkd1m1SyY86bHTLHG67MOjqd3lDzCAmzl6H-ebp-yXpEPx4iU22Q5C3Eh3rMcXKL0bkiMzls9Gj1mBIyvv3PRj1rh-7fadIoOCkgRsvHOFHoh0mcaRcwSOFbIenStHIDVRmDkKJQsYh4kSENFAcmYXgaZgh4gkZK5nQfahOphN5CMQLeZDpdOShL_AMmMZBkkVcIGD4kmL1Bjil0djM6mSw0oHslVkjM21k5lKGfTcgKi3Lfs03Qyj_o-VZOREMranvN_hETpdYycMjsVYb9RtwYGfoeyxU8yJEt6N_93sMm_rJuomdQHUxX8pTJCQL0YTKxafXxGV39XR33yyWH5bejK--AEr04Z4
link.rule.ids 315,783,787,3513,4509,24128,27581,27936,27937,45597,45675,45691,45886
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFD5BiMEXo3jDa018XdjWsYtvSCQolxfB8Na0W6sYAwThwX_vabsZfSAmvm5t2p1uX7-znvMdgBtkoR4ShxR9Ey2qTbnviFSmTsipCoSKgkTo3OHBMOyOg8dJc1KCdpELo8Mqc-y3mG7QOr_SyK3ZWEynjSc30fJaNEEKYnTat6CCbCBqlqHSunvu9X8CsvnVgu0d3aHIoDNhXkLwbKp1uz2rdup5m3aoTQzU7ESdPdjNKSRp2VnuQ0nOarBti0p-1qDaLmq4HcCgrZ_lHTGDmDx7neY7TT9uSYvgx0tssR2CvJXoXI85Nn41IkdkKV-MHrUGQ1Kcvx_CuHM_anedvICCkwZuvHKEH4lmmMSRcgWPFLIdnipFIzdQmXGEEoWMQ8SJCGmgODILwdMwQ8QTMlYyoUdQns1n8gSIF_Ig0-XIQ1-gD5jGQZJFXCBg-JJi8zo4hdHYwupksCKA7I1ZIzNtZOZShmPXISosy36tN0Mo_6PndbEQDK2pzzf4TM7X2MhDl1irjfp1OLYr9D0XqnkRotvpv8e9gmp3NOiz_sOwdwY7-o4NGTuH8mq5lhdITlbiMn_5vgB_deEH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cartilage+biomechanics%3A+A+key+factor+for+osteoarthritis+regenerative+medicine&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+basis+of+disease&rft.au=Mart%C3%ADnez-Moreno%2C+D.&rft.au=Jim%C3%A9nez%2C+G.&rft.au=G%C3%A1lvez-Mart%C3%ADn%2C+P.&rft.au=Rus%2C+G.&rft.date=2019-06-01&rft.issn=0925-4439&rft.volume=1865&rft.issue=6&rft.spage=1067&rft.epage=1075&rft_id=info:doi/10.1016%2Fj.bbadis.2019.03.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbadis_2019_03_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4439&client=summon