Peak-Load Reduction by Coordinated Response of Photovoltaics, Battery Storage, and Electric Vehicles

Peak-load management is an important process that allows energy providers to reshape load profiles, increase energy efficiency, and reduce overall operational costs and carbon emissions. This paper presents an improved decision-tree-based algorithm to reduce the peak load in residential distribution...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 6; pp. 29353 - 29365
Main Authors Mahmud, Khizir, Hossain, M. Jahangir, Town, Graham E.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Peak-load management is an important process that allows energy providers to reshape load profiles, increase energy efficiency, and reduce overall operational costs and carbon emissions. This paper presents an improved decision-tree-based algorithm to reduce the peak load in residential distribution networks by coordinated control of electric vehicles (EVs), photovoltaic (PV) units, and battery energy-storage systems (BESSs). The peak-load reduction is achieved by reading the domestic load in real time through a smart meter and taking appropriate coordinated action by a controller using the proposed algorithm. The proposed control algorithm was tested on a real distribution network using real load patterns and load dynamics, and validated in a laboratory experiment. Two types of EVs with fast and flexible charging capability, a PV unit, and BESSs were used to test the performance of the proposed control algorithm, which is compared with that of an artificial-neural-network technique. The results show that using the proposed method, the peak demand on the distribution grid can be reduced significantly, thereby greatly improving the load factor.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2837144