A Fast Algorithm for Community Detection of Network Systems in Smart City

In this paper, a novel algorithm is designed to detect the community structure of network systems in the smart city based on the biogeography-based optimization (BBO) algorithm and the Newman, Moore, and Watts (NMW) small-world network. We have incorporated the NMW small-world network to the BBO alg...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 51856 - 51865
Main Authors Liu, Fangyu, Xie, Gang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a novel algorithm is designed to detect the community structure of network systems in the smart city based on the biogeography-based optimization (BBO) algorithm and the Newman, Moore, and Watts (NMW) small-world network. We have incorporated the NMW small-world network to the BBO algorithm to enhance the ability of migration of the habitat by using the connection mechanism of the NMW small-world network. With the help of small-world network information sharing, the convergence speed of the BBO algorithm has significantly improved. The first step of the algorithm design is to generate an NMW small-world network containing nodes equal to the number of habitats with good connectivity, which facilitates better information exchange between the nodes. In the second step, the habitat in the BBO algorithm is dynamically assigned to the small world network, and then, the BBO algorithm migrates and mutates according to the connection relationship of the NMW small-world network. Finally, the new designed NMW-BBO algorithm is evaluated for community detection via four real networks and computer-generated networks, and one of them is exhibited the characteristics of a large network. The numeric simulations are also employed to demonstrate that the new algorithm exhibits better accuracy and robustness.
AbstractList In this paper, a novel algorithm is designed to detect the community structure of network systems in the smart city based on the biogeography-based optimization (BBO) algorithm and the Newman, Moore, and Watts (NMW) small-world network. We have incorporated the NMW small-world network to the BBO algorithm to enhance the ability of migration of the habitat by using the connection mechanism of the NMW small-world network. With the help of small-world network information sharing, the convergence speed of the BBO algorithm has significantly improved. The first step of the algorithm design is to generate an NMW small-world network containing nodes equal to the number of habitats with good connectivity, which facilitates better information exchange between the nodes. In the second step, the habitat in the BBO algorithm is dynamically assigned to the small world network, and then, the BBO algorithm migrates and mutates according to the connection relationship of the NMW small-world network. Finally, the new designed NMW-BBO algorithm is evaluated for community detection via four real networks and computer-generated networks, and one of them is exhibited the characteristics of a large network. The numeric simulations are also employed to demonstrate that the new algorithm exhibits better accuracy and robustness.
Author Liu, Fangyu
Xie, Gang
Author_xml – sequence: 1
  givenname: Fangyu
  orcidid: 0000-0002-3656-978X
  surname: Liu
  fullname: Liu, Fangyu
  organization: College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, China
– sequence: 2
  givenname: Gang
  orcidid: 0000-0001-5769-0565
  surname: Xie
  fullname: Xie, Gang
  email: xiegang@tyut.edu.cn
  organization: College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
BookMark eNpNUU1rGzEQFSGBpKl_QS6Cnu2OtFp9HM3WSQ0hPbg5C3l3lKzjXbmSTPG_r5wNoXOZYXjvzRveF3I5hhEJuWOwYAzM92XTrDabBQdmFtwwkMAvyA1n0syrupKX_83XZJbSDkrpsqrVDVkv6b1LmS73LyH2-XWgPkTahGE4jn0-0R-Ysc19GGnw9Anz3xDf6OaUMg6J9iPdDC5m2hToV3Ll3T7h7KPfkuf71e_m5_zx18O6WT7OWwE6zx12TLRc8lYaAx4q7r3QkpstR8-3nZIeawaeOcaN8yhcJzhrwbRMVFLJ6pasJ90uuJ09xL44ONngevu-CPHFFkt9u0erhIEKUdcdVMJorpXiCFrVYrvVXGHR-jZpHWL4c8SU7S4c41jsWy7qWoICIwqqmlBtDClF9J9XGdhzBHaKwJ4jsB8RFNbdxOoR8ZOhpdaifPIP4KeBfQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TNSRE_2024_3394618
crossref_primary_10_1016_j_swevo_2021_100885
crossref_primary_10_1109_ACCESS_2019_2937580
crossref_primary_10_1109_ACCESS_2020_3011947
crossref_primary_10_3390_buildings13102446
crossref_primary_10_1007_s42235_023_00419_w
crossref_primary_10_1007_s11432_023_3868_6
Cites_doi 10.1109/ACCESS.2016.2514263
10.1002/j.1538-7305.1970.tb01770.x
10.1103/RevModPhys.74.47
10.1038/35065725
10.1109/ACCESS.2018.2853985
10.1007/s00521-018-3728-2
10.1088/1751-8113/48/48/485101
10.1109/ACC.2005.1470321
10.1016/j.physa.2018.09.137
10.1109/NSW.2011.6004645
10.1038/30918
10.1093/nar/gkg340
10.1038/nature10011
10.1103/PhysRevLett.84.3201
10.1016/j.oceaneng.2018.06.054
10.1016/j.physa.2005.11.018
10.1109/ACCESS.2015.2501644
10.1016/j.ipm.2016.04.001
10.1109/ICNN.1995.488968
10.1103/PhysRevE.69.026113
10.1109/4235.585893
10.1111/risa.12757
10.1007/s11771-013-1611-y
10.1016/j.physa.2017.04.098
10.1016/j.physa.2018.02.072
10.1007/978-3-540-87700-4_107
10.1109/TEVC.2008.919004
10.1016/j.tcs.2005.05.020
10.1103/PhysRevE.70.066111
10.1109/CDC.1981.269534
10.1073/pnas.122653799
10.1109/MCI.2006.329691
10.1155/2017/9741824
10.1016/j.physa.2018.08.077
10.1086/jar.33.4.3629752
10.1587/transinf.2013THP0001
10.1007/s00265-003-0651-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2910602
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 51865
ExternalDocumentID oai_doaj_org_article_74903ee85d0349828772e08754bb827e
10_1109_ACCESS_2019_2910602
8688414
Genre orig-research
GrantInformation_xml – fundername: Key Research and Development Plan of Shanxi Province
  grantid: 201703D111027
– fundername: Shanxi International Cooperation Project
  grantid: 201803D421039
– fundername: National Natural Science Foundation of China
  grantid: U1810121
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-aed14c262c6990f032ff48629b2ef2bd76fe510f1a129afe4ad421c09c1436763
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Tue Oct 22 15:05:41 EDT 2024
Thu Oct 10 17:03:27 EDT 2024
Fri Aug 23 00:50:48 EDT 2024
Mon Nov 04 11:47:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-aed14c262c6990f032ff48629b2ef2bd76fe510f1a129afe4ad421c09c1436763
ORCID 0000-0001-5769-0565
0000-0002-3656-978X
OpenAccessLink https://doaj.org/article/74903ee85d0349828772e08754bb827e
PQID 2455607094
PQPubID 4845423
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_74903ee85d0349828772e08754bb827e
crossref_primary_10_1109_ACCESS_2019_2910602
proquest_journals_2455607094
ieee_primary_8688414
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
zhou (ref16) 2016; 38
ref2
ref1
ref39
ref18
feng (ref17) 2019; 513
goldberg (ref29) 1989
yun (ref40) 2013; 20
ref24
ref45
ref23
boguñá (ref6) 2011
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
newman (ref12) 2003; 69
garey (ref13) 1979
ref28
ref27
ref8
ref7
dumarcus (ref19) 2010; 12
ref9
ref4
ref3
vinh (ref38) 2010; 11
ref5
References_xml – ident: ref4
  doi: 10.1109/ACCESS.2016.2514263
– volume: 11
  start-page: 2837
  year: 2010
  ident: ref38
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: J Mach Learn Res
  contributor:
    fullname: vinh
– volume: 69
  year: 2003
  ident: ref12
  article-title: Fast algorithm for detecting community structure in networks
  publication-title: Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top
  contributor:
    fullname: newman
– ident: ref14
  doi: 10.1002/j.1538-7305.1970.tb01770.x
– ident: ref8
  doi: 10.1103/RevModPhys.74.47
– ident: ref7
  doi: 10.1038/35065725
– ident: ref5
  doi: 10.1109/ACCESS.2018.2853985
– ident: ref44
  doi: 10.1007/s00521-018-3728-2
– ident: ref3
  doi: 10.1088/1751-8113/48/48/485101
– ident: ref27
  doi: 10.1109/ACC.2005.1470321
– ident: ref33
  doi: 10.1016/j.physa.2018.09.137
– ident: ref37
  doi: 10.1109/NSW.2011.6004645
– ident: ref28
  doi: 10.1038/30918
– ident: ref43
  doi: 10.1093/nar/gkg340
– year: 2011
  ident: ref6
  publication-title: The Structure and Dynamics of Networks
  contributor:
    fullname: boguñá
– ident: ref9
  doi: 10.1038/nature10011
– ident: ref25
  doi: 10.1103/PhysRevLett.84.3201
– ident: ref34
  doi: 10.1016/j.oceaneng.2018.06.054
– ident: ref21
  doi: 10.1016/j.physa.2005.11.018
– ident: ref26
  doi: 10.1109/ACCESS.2015.2501644
– ident: ref2
  doi: 10.1016/j.ipm.2016.04.001
– ident: ref32
  doi: 10.1109/ICNN.1995.488968
– ident: ref24
  doi: 10.1103/PhysRevE.69.026113
– ident: ref23
  doi: 10.1109/4235.585893
– ident: ref22
  doi: 10.1111/risa.12757
– volume: 20
  start-page: 1269
  year: 2013
  ident: ref40
  article-title: A genetic algorithm for community detection in complex networks
  publication-title: J Central South Univ
  doi: 10.1007/s11771-013-1611-y
  contributor:
    fullname: yun
– year: 1979
  ident: ref13
  publication-title: Computers and Intractability A Guide to the Theory of NP-Completeness
  contributor:
    fullname: garey
– ident: ref42
  doi: 10.1016/j.physa.2017.04.098
– ident: ref18
  doi: 10.1016/j.physa.2018.02.072
– ident: ref36
  doi: 10.1007/978-3-540-87700-4_107
– ident: ref35
  doi: 10.1109/TEVC.2008.919004
– ident: ref31
  doi: 10.1016/j.tcs.2005.05.020
– ident: ref11
  doi: 10.1103/PhysRevE.70.066111
– ident: ref15
  doi: 10.1109/CDC.1981.269534
– ident: ref20
  doi: 10.1073/pnas.122653799
– ident: ref30
  doi: 10.1109/MCI.2006.329691
– ident: ref1
  doi: 10.1155/2017/9741824
– volume: 513
  start-page: 662
  year: 2019
  ident: ref17
  article-title: Inverse modelling-based multi-objective evolutionary algorithm with decomposition for community detection in complex networks
  publication-title: Phys A Stat Mech Appl
  doi: 10.1016/j.physa.2018.08.077
  contributor:
    fullname: feng
– ident: ref39
  doi: 10.1086/jar.33.4.3629752
– volume: 12
  start-page: 53
  year: 2010
  ident: ref19
  article-title: An algorithm for detecting community structure of social networks based on prior knowledge and modularity
  publication-title: Complexity
  contributor:
    fullname: dumarcus
– ident: ref45
  doi: 10.1587/transinf.2013THP0001
– volume: 38
  start-page: 428
  year: 2016
  ident: ref16
  article-title: Community detection algorithm via discrete PSO
  publication-title: Syst Eng Electron
  contributor:
    fullname: zhou
– ident: ref41
  doi: 10.1007/s00265-003-0651-y
– year: 1989
  ident: ref29
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
  contributor:
    fullname: goldberg
– ident: ref10
  doi: 10.1103/PhysRevE.69.026113
SSID ssj0000816957
Score 2.2154288
Snippet In this paper, a novel algorithm is designed to detect the community structure of network systems in the smart city based on the biogeography-based...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 51856
SubjectTerms Algorithms
BBO algorithm
Clustering algorithms
community detection
complex network
Complex networks
Heuristic algorithms
Indexes
Mathematical model
NMW small world network
Nodes
Optimization
Partitioning algorithms
Robustness (mathematics)
Smart cities
smart city
SummonAdditionalLinks – databaseName: IEEE Electronic Library Online
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3qgH7TqtrTyoUeyOI5jx8fttitAggtF4mbFzrhFlGwF2QP8-o4d76oqPfQWRU7kzNieN5OZNwCfQqkr15Vt0VShJgdFhsIRyi86lJXwhF-Rx2rks3N1fClPr-qrLTjc1MIgYko-w2m8TP_yu6VfxVDZUaOaJnWt3tbGjLVam3hKbCBhap2JhUpujmbzOX1DzN4yU0FWUeXQydr4JI7-3FTlyUmczMviOZytJzZmldxMV4Ob-se_OBv_d-YvYC_jTDYbF8ZL2ML-FTz7g31wH05mbNHeD2z28_vy7nr4ccsIwLJcMTI8sC84pDytni0DOx_TxVlmOGfXPbu4pWXH5jT0NVwuvn6bHxe5s0LhJW-GosWulF4o4RVZo8ArEYIk38Y4gUG4TquAtFlD2RIcaAPKtpOi9Nx4gleKjqQ3sNMve3wLTBoVnSYdZC2kVtw1XBjvQqDRQZftBA7XIre_RgINmxwPbuyoIRs1ZLOGJvA5qmUzNLJfpxskTps3k9XS8AqxqbvIrhMp-7XASM0vnWuExgnsRxVsXpKlP4GDtZJt3qn3VsiaQJ8mL_fdv596D7txgmPY5QB2hrsVfiAgMriPaQX-BrKO2LQ
  priority: 102
  providerName: IEEE
Title A Fast Algorithm for Community Detection of Network Systems in Smart City
URI https://ieeexplore.ieee.org/document/8688414
https://www.proquest.com/docview/2455607094
https://doaj.org/article/74903ee85d0349828772e08754bb827e
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyITxEolQdGAo7j-GMMgaogwQJIbFac2IAEKaJh4N9zdlxUiYGFNbGS-C6-e8-6e0bo2GUiN21WpzJ3BRAU5lIDKD9tLctpA_jVEt-NfHPLpw_s-rF4XDrqy9eEDfLAg-HOBFMkt1YWrVdS8fLsglovw86MkVTYEH2JWiJTIQbLjKtCRJkhuH9WVhXMyNdyqVMKOZLHjZRFKgqK_fGIlV9xOSSbySbaiCgRl8PXbaEV222j9SXtwB10VeJJPe9x-fo0A4L__IYBfuLY79F_4QvbhyqrDs8cvh2KvXHUJ8cvHb57g7njCobuoofJ5X01TeO5CGnDiOzT2rYZayinDYdc4khOnWPATJSh1lHTCu4sLDWX1ZDMa2dZ3TKaNUQ1AI44BJQ9tNrNOruPMFPcUx7hWEGZ4MRIQlVjnIPRTmR1gk4WJtLvg_yFDrSBKD1YVHuL6mjRBJ17M_4M9drV4QJ4VEeP6r88mqAd74Sfh0guJctYgkYLp-i4zuaasgIgmwCOevAfrz5Ea346wxbLCK32H5_2CEBHb8bh_xqH_sBvJ8POiQ
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaq9gAceBXEQgEfODZbx3H8OG4XVlvo7oVW6s2KnXGpoFnUZg_013fseFcIOHCLIidyZmzPN5OZbwj5EEpVubZsCl2FGh0UEQqHKL9oQVTcI34FFquRF0s5PxefL-qLHXK4rYUBgJR8BuN4mf7ltyu_jqGyIy21Tl2r9xBXazlUa20jKrGFhKlVphYqmTmaTKf4FTF_y4w52kWZgycb85NY-nNblb_O4mRgZk_IYjO1Ia_k-3jdu7G_-4O18X_n_pQ8zkiTToal8YzsQPecPPqNf3CfnEzorLnt6eTH5ermqv92TRHC0lwz0v-iH6FPmVodXQW6HBLGaeY4p1cd_XqNC49OcegLcj77dDadF7m3QuEF033RQFsKzyX3Eu1RYBUPQaB3YxyHwF2rZADcrqFsEBA0AUTTCl56ZjwCLImH0kuy2606eEWoMDK6TSqImgslmdOMG-9CwNFBlc2IHG5Ebn8OFBo2uR7M2EFDNmrIZg2NyHFUy3Zo5L9ON1CcNm8nq4RhFYCu28ivE0n7FYdIzi-c01zBiOxHFWxfkqU_IgcbJdu8V28tFzXCPoV-7ut_P_WePJifLU7t6cnyyxvyME52CMIckN3-Zg1vEZb07l1ajfcwc9v_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+Algorithm+for+Community+Detection+of+Network+Systems+in+Smart+City&rft.jtitle=IEEE+access&rft.au=Liu%2C+Fangyu&rft.au=Xie%2C+Gang&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=51856&rft.epage=51865&rft_id=info:doi/10.1109%2FACCESS.2019.2910602&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2910602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon