A Fast Algorithm for Community Detection of Network Systems in Smart City
In this paper, a novel algorithm is designed to detect the community structure of network systems in the smart city based on the biogeography-based optimization (BBO) algorithm and the Newman, Moore, and Watts (NMW) small-world network. We have incorporated the NMW small-world network to the BBO alg...
Saved in:
Published in | IEEE access Vol. 7; pp. 51856 - 51865 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a novel algorithm is designed to detect the community structure of network systems in the smart city based on the biogeography-based optimization (BBO) algorithm and the Newman, Moore, and Watts (NMW) small-world network. We have incorporated the NMW small-world network to the BBO algorithm to enhance the ability of migration of the habitat by using the connection mechanism of the NMW small-world network. With the help of small-world network information sharing, the convergence speed of the BBO algorithm has significantly improved. The first step of the algorithm design is to generate an NMW small-world network containing nodes equal to the number of habitats with good connectivity, which facilitates better information exchange between the nodes. In the second step, the habitat in the BBO algorithm is dynamically assigned to the small world network, and then, the BBO algorithm migrates and mutates according to the connection relationship of the NMW small-world network. Finally, the new designed NMW-BBO algorithm is evaluated for community detection via four real networks and computer-generated networks, and one of them is exhibited the characteristics of a large network. The numeric simulations are also employed to demonstrate that the new algorithm exhibits better accuracy and robustness. |
---|---|
AbstractList | In this paper, a novel algorithm is designed to detect the community structure of network systems in the smart city based on the biogeography-based optimization (BBO) algorithm and the Newman, Moore, and Watts (NMW) small-world network. We have incorporated the NMW small-world network to the BBO algorithm to enhance the ability of migration of the habitat by using the connection mechanism of the NMW small-world network. With the help of small-world network information sharing, the convergence speed of the BBO algorithm has significantly improved. The first step of the algorithm design is to generate an NMW small-world network containing nodes equal to the number of habitats with good connectivity, which facilitates better information exchange between the nodes. In the second step, the habitat in the BBO algorithm is dynamically assigned to the small world network, and then, the BBO algorithm migrates and mutates according to the connection relationship of the NMW small-world network. Finally, the new designed NMW-BBO algorithm is evaluated for community detection via four real networks and computer-generated networks, and one of them is exhibited the characteristics of a large network. The numeric simulations are also employed to demonstrate that the new algorithm exhibits better accuracy and robustness. |
Author | Liu, Fangyu Xie, Gang |
Author_xml | – sequence: 1 givenname: Fangyu orcidid: 0000-0002-3656-978X surname: Liu fullname: Liu, Fangyu organization: College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, China – sequence: 2 givenname: Gang orcidid: 0000-0001-5769-0565 surname: Xie fullname: Xie, Gang email: xiegang@tyut.edu.cn organization: College of Information and Computer, Taiyuan University of Technology, Taiyuan, China |
BookMark | eNpNUU1rGzEQFSGBpKl_QS6Cnu2OtFp9HM3WSQ0hPbg5C3l3lKzjXbmSTPG_r5wNoXOZYXjvzRveF3I5hhEJuWOwYAzM92XTrDabBQdmFtwwkMAvyA1n0syrupKX_83XZJbSDkrpsqrVDVkv6b1LmS73LyH2-XWgPkTahGE4jn0-0R-Ysc19GGnw9Anz3xDf6OaUMg6J9iPdDC5m2hToV3Ll3T7h7KPfkuf71e_m5_zx18O6WT7OWwE6zx12TLRc8lYaAx4q7r3QkpstR8-3nZIeawaeOcaN8yhcJzhrwbRMVFLJ6pasJ90uuJ09xL44ONngevu-CPHFFkt9u0erhIEKUdcdVMJorpXiCFrVYrvVXGHR-jZpHWL4c8SU7S4c41jsWy7qWoICIwqqmlBtDClF9J9XGdhzBHaKwJ4jsB8RFNbdxOoR8ZOhpdaifPIP4KeBfQ |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_TNSRE_2024_3394618 crossref_primary_10_1016_j_swevo_2021_100885 crossref_primary_10_1109_ACCESS_2019_2937580 crossref_primary_10_1109_ACCESS_2020_3011947 crossref_primary_10_3390_buildings13102446 crossref_primary_10_1007_s42235_023_00419_w crossref_primary_10_1007_s11432_023_3868_6 |
Cites_doi | 10.1109/ACCESS.2016.2514263 10.1002/j.1538-7305.1970.tb01770.x 10.1103/RevModPhys.74.47 10.1038/35065725 10.1109/ACCESS.2018.2853985 10.1007/s00521-018-3728-2 10.1088/1751-8113/48/48/485101 10.1109/ACC.2005.1470321 10.1016/j.physa.2018.09.137 10.1109/NSW.2011.6004645 10.1038/30918 10.1093/nar/gkg340 10.1038/nature10011 10.1103/PhysRevLett.84.3201 10.1016/j.oceaneng.2018.06.054 10.1016/j.physa.2005.11.018 10.1109/ACCESS.2015.2501644 10.1016/j.ipm.2016.04.001 10.1109/ICNN.1995.488968 10.1103/PhysRevE.69.026113 10.1109/4235.585893 10.1111/risa.12757 10.1007/s11771-013-1611-y 10.1016/j.physa.2017.04.098 10.1016/j.physa.2018.02.072 10.1007/978-3-540-87700-4_107 10.1109/TEVC.2008.919004 10.1016/j.tcs.2005.05.020 10.1103/PhysRevE.70.066111 10.1109/CDC.1981.269534 10.1073/pnas.122653799 10.1109/MCI.2006.329691 10.1155/2017/9741824 10.1016/j.physa.2018.08.077 10.1086/jar.33.4.3629752 10.1587/transinf.2013THP0001 10.1007/s00265-003-0651-y |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2910602 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 51865 |
ExternalDocumentID | oai_doaj_org_article_74903ee85d0349828772e08754bb827e 10_1109_ACCESS_2019_2910602 8688414 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key Research and Development Plan of Shanxi Province grantid: 201703D111027 – fundername: Shanxi International Cooperation Project grantid: 201803D421039 – fundername: National Natural Science Foundation of China grantid: U1810121 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-aed14c262c6990f032ff48629b2ef2bd76fe510f1a129afe4ad421c09c1436763 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:05:41 EDT 2024 Thu Oct 10 17:03:27 EDT 2024 Fri Aug 23 00:50:48 EDT 2024 Mon Nov 04 11:47:58 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-aed14c262c6990f032ff48629b2ef2bd76fe510f1a129afe4ad421c09c1436763 |
ORCID | 0000-0001-5769-0565 0000-0002-3656-978X |
OpenAccessLink | https://doaj.org/article/74903ee85d0349828772e08754bb827e |
PQID | 2455607094 |
PQPubID | 4845423 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_74903ee85d0349828772e08754bb827e crossref_primary_10_1109_ACCESS_2019_2910602 proquest_journals_2455607094 ieee_primary_8688414 |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 zhou (ref16) 2016; 38 ref2 ref1 ref39 ref18 feng (ref17) 2019; 513 goldberg (ref29) 1989 yun (ref40) 2013; 20 ref24 ref45 ref23 boguñá (ref6) 2011 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 newman (ref12) 2003; 69 garey (ref13) 1979 ref28 ref27 ref8 ref7 dumarcus (ref19) 2010; 12 ref9 ref4 ref3 vinh (ref38) 2010; 11 ref5 |
References_xml | – ident: ref4 doi: 10.1109/ACCESS.2016.2514263 – volume: 11 start-page: 2837 year: 2010 ident: ref38 article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance publication-title: J Mach Learn Res contributor: fullname: vinh – volume: 69 year: 2003 ident: ref12 article-title: Fast algorithm for detecting community structure in networks publication-title: Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top contributor: fullname: newman – ident: ref14 doi: 10.1002/j.1538-7305.1970.tb01770.x – ident: ref8 doi: 10.1103/RevModPhys.74.47 – ident: ref7 doi: 10.1038/35065725 – ident: ref5 doi: 10.1109/ACCESS.2018.2853985 – ident: ref44 doi: 10.1007/s00521-018-3728-2 – ident: ref3 doi: 10.1088/1751-8113/48/48/485101 – ident: ref27 doi: 10.1109/ACC.2005.1470321 – ident: ref33 doi: 10.1016/j.physa.2018.09.137 – ident: ref37 doi: 10.1109/NSW.2011.6004645 – ident: ref28 doi: 10.1038/30918 – ident: ref43 doi: 10.1093/nar/gkg340 – year: 2011 ident: ref6 publication-title: The Structure and Dynamics of Networks contributor: fullname: boguñá – ident: ref9 doi: 10.1038/nature10011 – ident: ref25 doi: 10.1103/PhysRevLett.84.3201 – ident: ref34 doi: 10.1016/j.oceaneng.2018.06.054 – ident: ref21 doi: 10.1016/j.physa.2005.11.018 – ident: ref26 doi: 10.1109/ACCESS.2015.2501644 – ident: ref2 doi: 10.1016/j.ipm.2016.04.001 – ident: ref32 doi: 10.1109/ICNN.1995.488968 – ident: ref24 doi: 10.1103/PhysRevE.69.026113 – ident: ref23 doi: 10.1109/4235.585893 – ident: ref22 doi: 10.1111/risa.12757 – volume: 20 start-page: 1269 year: 2013 ident: ref40 article-title: A genetic algorithm for community detection in complex networks publication-title: J Central South Univ doi: 10.1007/s11771-013-1611-y contributor: fullname: yun – year: 1979 ident: ref13 publication-title: Computers and Intractability A Guide to the Theory of NP-Completeness contributor: fullname: garey – ident: ref42 doi: 10.1016/j.physa.2017.04.098 – ident: ref18 doi: 10.1016/j.physa.2018.02.072 – ident: ref36 doi: 10.1007/978-3-540-87700-4_107 – ident: ref35 doi: 10.1109/TEVC.2008.919004 – ident: ref31 doi: 10.1016/j.tcs.2005.05.020 – ident: ref11 doi: 10.1103/PhysRevE.70.066111 – ident: ref15 doi: 10.1109/CDC.1981.269534 – ident: ref20 doi: 10.1073/pnas.122653799 – ident: ref30 doi: 10.1109/MCI.2006.329691 – ident: ref1 doi: 10.1155/2017/9741824 – volume: 513 start-page: 662 year: 2019 ident: ref17 article-title: Inverse modelling-based multi-objective evolutionary algorithm with decomposition for community detection in complex networks publication-title: Phys A Stat Mech Appl doi: 10.1016/j.physa.2018.08.077 contributor: fullname: feng – ident: ref39 doi: 10.1086/jar.33.4.3629752 – volume: 12 start-page: 53 year: 2010 ident: ref19 article-title: An algorithm for detecting community structure of social networks based on prior knowledge and modularity publication-title: Complexity contributor: fullname: dumarcus – ident: ref45 doi: 10.1587/transinf.2013THP0001 – volume: 38 start-page: 428 year: 2016 ident: ref16 article-title: Community detection algorithm via discrete PSO publication-title: Syst Eng Electron contributor: fullname: zhou – ident: ref41 doi: 10.1007/s00265-003-0651-y – year: 1989 ident: ref29 publication-title: Genetic Algorithms in Search Optimization and Machine Learning contributor: fullname: goldberg – ident: ref10 doi: 10.1103/PhysRevE.69.026113 |
SSID | ssj0000816957 |
Score | 2.2154288 |
Snippet | In this paper, a novel algorithm is designed to detect the community structure of network systems in the smart city based on the biogeography-based... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 51856 |
SubjectTerms | Algorithms BBO algorithm Clustering algorithms community detection complex network Complex networks Heuristic algorithms Indexes Mathematical model NMW small world network Nodes Optimization Partitioning algorithms Robustness (mathematics) Smart cities smart city |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library Online dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3qgH7TqtrTyoUeyOI5jx8fttitAggtF4mbFzrhFlGwF2QP8-o4d76oqPfQWRU7kzNieN5OZNwCfQqkr15Vt0VShJgdFhsIRyi86lJXwhF-Rx2rks3N1fClPr-qrLTjc1MIgYko-w2m8TP_yu6VfxVDZUaOaJnWt3tbGjLVam3hKbCBhap2JhUpujmbzOX1DzN4yU0FWUeXQydr4JI7-3FTlyUmczMviOZytJzZmldxMV4Ob-se_OBv_d-YvYC_jTDYbF8ZL2ML-FTz7g31wH05mbNHeD2z28_vy7nr4ccsIwLJcMTI8sC84pDytni0DOx_TxVlmOGfXPbu4pWXH5jT0NVwuvn6bHxe5s0LhJW-GosWulF4o4RVZo8ArEYIk38Y4gUG4TquAtFlD2RIcaAPKtpOi9Nx4gleKjqQ3sNMve3wLTBoVnSYdZC2kVtw1XBjvQqDRQZftBA7XIre_RgINmxwPbuyoIRs1ZLOGJvA5qmUzNLJfpxskTps3k9XS8AqxqbvIrhMp-7XASM0vnWuExgnsRxVsXpKlP4GDtZJt3qn3VsiaQJ8mL_fdv596D7txgmPY5QB2hrsVfiAgMriPaQX-BrKO2LQ priority: 102 providerName: IEEE |
Title | A Fast Algorithm for Community Detection of Network Systems in Smart City |
URI | https://ieeexplore.ieee.org/document/8688414 https://www.proquest.com/docview/2455607094 https://doaj.org/article/74903ee85d0349828772e08754bb827e |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyITxEolQdGAo7j-GMMgaogwQJIbFac2IAEKaJh4N9zdlxUiYGFNbGS-C6-e8-6e0bo2GUiN21WpzJ3BRAU5lIDKD9tLctpA_jVEt-NfHPLpw_s-rF4XDrqy9eEDfLAg-HOBFMkt1YWrVdS8fLsglovw86MkVTYEH2JWiJTIQbLjKtCRJkhuH9WVhXMyNdyqVMKOZLHjZRFKgqK_fGIlV9xOSSbySbaiCgRl8PXbaEV222j9SXtwB10VeJJPe9x-fo0A4L__IYBfuLY79F_4QvbhyqrDs8cvh2KvXHUJ8cvHb57g7njCobuoofJ5X01TeO5CGnDiOzT2rYZayinDYdc4khOnWPATJSh1lHTCu4sLDWX1ZDMa2dZ3TKaNUQ1AI44BJQ9tNrNOruPMFPcUx7hWEGZ4MRIQlVjnIPRTmR1gk4WJtLvg_yFDrSBKD1YVHuL6mjRBJ17M_4M9drV4QJ4VEeP6r88mqAd74Sfh0guJctYgkYLp-i4zuaasgIgmwCOevAfrz5Ea346wxbLCK32H5_2CEBHb8bh_xqH_sBvJ8POiQ |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaq9gAceBXEQgEfODZbx3H8OG4XVlvo7oVW6s2KnXGpoFnUZg_013fseFcIOHCLIidyZmzPN5OZbwj5EEpVubZsCl2FGh0UEQqHKL9oQVTcI34FFquRF0s5PxefL-qLHXK4rYUBgJR8BuN4mf7ltyu_jqGyIy21Tl2r9xBXazlUa20jKrGFhKlVphYqmTmaTKf4FTF_y4w52kWZgycb85NY-nNblb_O4mRgZk_IYjO1Ia_k-3jdu7G_-4O18X_n_pQ8zkiTToal8YzsQPecPPqNf3CfnEzorLnt6eTH5ermqv92TRHC0lwz0v-iH6FPmVodXQW6HBLGaeY4p1cd_XqNC49OcegLcj77dDadF7m3QuEF033RQFsKzyX3Eu1RYBUPQaB3YxyHwF2rZADcrqFsEBA0AUTTCl56ZjwCLImH0kuy2606eEWoMDK6TSqImgslmdOMG-9CwNFBlc2IHG5Ebn8OFBo2uR7M2EFDNmrIZg2NyHFUy3Zo5L9ON1CcNm8nq4RhFYCu28ivE0n7FYdIzi-c01zBiOxHFWxfkqU_IgcbJdu8V28tFzXCPoV-7ut_P_WePJifLU7t6cnyyxvyME52CMIckN3-Zg1vEZb07l1ajfcwc9v_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+Algorithm+for+Community+Detection+of+Network+Systems+in+Smart+City&rft.jtitle=IEEE+access&rft.au=Liu%2C+Fangyu&rft.au=Xie%2C+Gang&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=51856&rft.epage=51865&rft_id=info:doi/10.1109%2FACCESS.2019.2910602&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2910602 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |