Effective Attack Detection in Internet of Medical Things Smart Environment Using a Deep Belief Neural Network
The Internet of Things (IoT) has lately developed into an innovation for developing smart environments. Security and privacy are viewed as main problems in any technology's dependence on the IoT model. Privacy and security issues arise due to the different possible attacks caused by intruders....
Saved in:
Published in | IEEE access Vol. 8; pp. 77396 - 77404 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Internet of Things (IoT) has lately developed into an innovation for developing smart environments. Security and privacy are viewed as main problems in any technology's dependence on the IoT model. Privacy and security issues arise due to the different possible attacks caused by intruders. Thus, there is an essential need to develop an intrusion detection system for attack and anomaly identification in the IoT system. In this work, we have proposed a deep learning-based method Deep Belief Network (DBN) algorithm model for the intrusion detection system. Regarding the attacks and anomaly detection, the CICIDS 2017 dataset is utilized for the performance analysis of the present IDS model. The proposed method produced better results in all the parameters in relation to accuracy, recall, precision, F1-score, and detection rate. The proposed method has achieved 99.37% accuracy for normal class, 97.93% for Botnet class, 97.71% for Brute Force class, 96.67% for Dos/DDoS class, 96.37% for Infiltration class, 97.71% for Ports can class and 98.37% for Web attack, and these results were compared with various classifiers as shown in the results. |
---|---|
AbstractList | The Internet of Things (IoT) has lately developed into an innovation for developing smart environments. Security and privacy are viewed as main problems in any technology's dependence on the IoT model. Privacy and security issues arise due to the different possible attacks caused by intruders. Thus, there is an essential need to develop an intrusion detection system for attack and anomaly identification in the IoT system. In this work, we have proposed a deep learning-based method Deep Belief Network (DBN) algorithm model for the intrusion detection system. Regarding the attacks and anomaly detection, the CICIDS 2017 dataset is utilized for the performance analysis of the present IDS model. The proposed method produced better results in all the parameters in relation to accuracy, recall, precision, F1-score, and detection rate. The proposed method has achieved 99.37% accuracy for normal class, 97.93% for Botnet class, 97.71% for Brute Force class, 96.67% for Dos/DDoS class, 96.37% for Infiltration class, 97.71% for Ports can class and 98.37% for Web attack, and these results were compared with various classifiers as shown in the results. |
Author | Manimurugan, S. Patan, Rizwan Chilamkurti, Naveen Al-Mutairi, Saad Aborokbah, Majed Mohammed Ganesan, Subramaniam |
Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0003-1837-6797 surname: Manimurugan fullname: Manimurugan, S. organization: Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Saudi Arabia – sequence: 2 givenname: Saad surname: Al-Mutairi fullname: Al-Mutairi, Saad organization: Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Saudi Arabia – sequence: 3 givenname: Majed Mohammed surname: Aborokbah fullname: Aborokbah, Majed Mohammed organization: Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Saudi Arabia – sequence: 4 givenname: Naveen orcidid: 0000-0002-5396-8897 surname: Chilamkurti fullname: Chilamkurti, Naveen organization: Department Computer Science and IT, La Trobe University, Melbourne, VIC, Australia – sequence: 5 givenname: Subramaniam surname: Ganesan fullname: Ganesan, Subramaniam organization: Department of Electrical and Computer Engineering, Oakland University, Rochester, MI, USA – sequence: 6 givenname: Rizwan orcidid: 0000-0003-4878-1988 surname: Patan fullname: Patan, Rizwan email: prizwan5@gmail.com organization: Department of Computer Science and Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, India |
BookMark | eNp9kU9vEzEQxS1UJErpJ-jFEucE_1vvzjGEAJFKOaQ9W8Y7Lk43dvA6RXx7vGxBiAO-jDUzv6eneS_JWUwRCbnibMk5gzer9Xqz2y0FE2wpoNOMy2fkXHANC9lIffbX_wW5HMc9q6-rraY9J4eN9-hKeES6KsW6B_oOy9RIkYZIt7Fgjlho8vQT9sHZgd5-DfF-pLuDzYVu4mPIKR4wFno31gG1VQGP9C0OAT29wVOuzA2W7yk_vCLPvR1GvHyqF-Tu_eZ2_XFx_fnDdr26XjjFurKwPWjoVKM7qxky6JnEHloruAMHfas64VzrUKJ1Hrjm3IMSwkvvmRPg5QXZzrp9sntzzKF6_WGSDeZXI-V7U80HN6CRTFrp-k6r9otC11stlJZqKrwOVNV6PWsdc_p2wrGYfTrlWO0boRrFQEgNdQvmLZfTOGb0xoVipzOWbMNgODNTWGYOy0xhmaewKiv_YX87_j91NVMBEf8QwJq2ZSB_AtsJoaQ |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_electronics10111257 crossref_primary_10_1007_s10586_024_04662_6 crossref_primary_10_1016_j_cose_2022_103064 crossref_primary_10_1016_j_comnet_2021_108399 crossref_primary_10_1109_ACCESS_2022_3141595 crossref_primary_10_1155_2024_5134326 crossref_primary_10_1016_j_cose_2022_102899 crossref_primary_10_3390_s23198153 crossref_primary_10_1007_s10586_023_04163_y crossref_primary_10_1109_ACCESS_2021_3094024 crossref_primary_10_1109_JBHI_2024_3352013 crossref_primary_10_1007_s10462_024_11063_z crossref_primary_10_1007_s11276_021_02667_2 crossref_primary_10_1109_JIOT_2024_3402827 crossref_primary_10_3390_s21248320 crossref_primary_10_1016_j_micpro_2020_103261 crossref_primary_10_1038_s41598_025_94345_y crossref_primary_10_1016_j_compbiomed_2024_108036 crossref_primary_10_1145_3571156 crossref_primary_10_1016_j_seta_2022_102312 crossref_primary_10_1088_1361_6579_ac59dc crossref_primary_10_3390_s23177342 crossref_primary_10_1016_j_engappai_2023_107231 crossref_primary_10_1016_j_iot_2023_100887 crossref_primary_10_1007_s11276_023_03603_2 crossref_primary_10_1002_dac_5571 crossref_primary_10_3390_s25020580 crossref_primary_10_1016_j_teler_2023_100053 crossref_primary_10_1109_ACCESS_2022_3144208 crossref_primary_10_1007_s10462_024_11101_w crossref_primary_10_1007_s10922_021_09621_9 crossref_primary_10_1007_s12667_023_00615_x crossref_primary_10_3390_su141912828 crossref_primary_10_1088_2057_1976_ad464f crossref_primary_10_3390_telecom3010003 crossref_primary_10_1080_23080477_2021_1972914 crossref_primary_10_17531_ein_2022_2_6 crossref_primary_10_1109_ACCESS_2024_3370911 crossref_primary_10_1007_s11042_023_16395_6 crossref_primary_10_3390_app142210516 crossref_primary_10_1186_s13677_022_00324_3 crossref_primary_10_1109_JIOT_2022_3203249 crossref_primary_10_1109_ACCESS_2024_3480011 crossref_primary_10_1007_s11277_023_10523_z crossref_primary_10_1111_exsy_13726 crossref_primary_10_1007_s11227_022_04453_z crossref_primary_10_1080_03772063_2023_2192426 crossref_primary_10_1109_TII_2023_3314208 crossref_primary_10_1007_s11227_023_05197_0 crossref_primary_10_7717_peerj_cs_414 crossref_primary_10_1016_j_jii_2023_100549 crossref_primary_10_1016_j_asoc_2024_112669 crossref_primary_10_24143_2072_9502_2024_3_65_74 crossref_primary_10_1109_TII_2021_3053304 crossref_primary_10_1007_s11277_021_09013_x crossref_primary_10_1109_ACCESS_2021_3074664 crossref_primary_10_1142_S2424922X21430014 crossref_primary_10_3390_jcp2030033 crossref_primary_10_3390_jsan12010003 crossref_primary_10_1109_ACCESS_2023_3270225 crossref_primary_10_3390_fi17010025 crossref_primary_10_1016_j_jisa_2024_103961 crossref_primary_10_1016_j_ins_2023_03_044 crossref_primary_10_1155_2022_2037954 crossref_primary_10_3390_app11188383 crossref_primary_10_1109_ACCESS_2021_3128837 crossref_primary_10_1016_j_neucom_2023_126719 crossref_primary_10_1007_s00202_024_02799_6 crossref_primary_10_1007_s11276_022_03186_4 crossref_primary_10_3390_app122312407 crossref_primary_10_1515_jisys_2023_0150 crossref_primary_10_1007_s11042_021_10640_6 crossref_primary_10_1007_s00500_022_06750_4 crossref_primary_10_3390_fi14040118 crossref_primary_10_1016_j_engappai_2024_109203 crossref_primary_10_1109_JIOT_2021_3106898 crossref_primary_10_1109_ACCESS_2024_3377561 crossref_primary_10_3390_math11010233 crossref_primary_10_1109_ACCESS_2021_3073408 crossref_primary_10_1142_S2010324724400149 crossref_primary_10_3390_app132111771 crossref_primary_10_1111_exsy_12917 crossref_primary_10_1109_MITP_2023_3303919 crossref_primary_10_1016_j_rineng_2024_102659 crossref_primary_10_1186_s40537_023_00805_5 crossref_primary_10_3390_app132011145 crossref_primary_10_32604_cmc_2023_032553 crossref_primary_10_3390_s23229294 crossref_primary_10_3390_su15086902 crossref_primary_10_32604_iasc_2024_056792 crossref_primary_10_1007_s00604_022_05474_4 crossref_primary_10_3390_fi15010009 crossref_primary_10_1007_s12652_022_04461_0 crossref_primary_10_1002_ett_70099 crossref_primary_10_1007_s11277_023_10846_x crossref_primary_10_1016_j_cosrev_2021_100389 crossref_primary_10_61186_ijes_6_1_222 crossref_primary_10_1016_j_bbe_2022_05_008 crossref_primary_10_1038_s41598_023_48681_6 crossref_primary_10_1038_s41598_024_84691_8 crossref_primary_10_1007_s11277_022_10100_w crossref_primary_10_1002_ett_5008 crossref_primary_10_3390_sym14061095 crossref_primary_10_4018_IJSWIS_327280 crossref_primary_10_1016_j_ijcip_2023_100658 crossref_primary_10_1016_j_bspc_2024_106485 crossref_primary_10_1186_s13677_020_00215_5 crossref_primary_10_3390_electronics10111341 crossref_primary_10_1016_j_cose_2023_103315 crossref_primary_10_1007_s13042_025_02544_w crossref_primary_10_3390_s22134685 crossref_primary_10_1109_ACCESS_2025_3547572 crossref_primary_10_3390_sym14102077 crossref_primary_10_3390_pr11041072 crossref_primary_10_1002_spy2_493 |
Cites_doi | 10.1109/ACCESS.2019.2921912 10.1016/j.neucom.2019.02.056 10.1016/j.future.2018.03.007 10.5220/0006639801080116 10.1007/978-3-319-92058-0_56 10.1109/ACCESS.2019.2903723 10.1016/j.iot.2019.100059 10.3390/electronics8030322 10.1109/CCWC.2019.8666588 10.1109/ACCESS.2018.2886457 10.1016/j.cose.2018.04.010 10.1109/ACCESS.2019.2924045 10.3390/info10030084 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2020.2986013 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals (DOAJ) (Open Access) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 77404 |
ExternalDocumentID | oai_doaj_org_article_303a3cd8647b4ecda624634a6241a3c4 10_1109_ACCESS_2020_2986013 9057709 |
Genre | orig-research |
GrantInformation_xml | – fundername: University of Tabuk, Saudi Arabia funderid: 10.13039/100009391 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-ad96984568a60e09d03ed97a21c9c9d7482cc7ce3eacf91611f9422f3ff0c29f3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:25:16 EDT 2025 Sun Jun 29 16:02:02 EDT 2025 Tue Jul 01 01:22:25 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Wed Aug 27 02:39:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-ad96984568a60e09d03ed97a21c9c9d7482cc7ce3eacf91611f9422f3ff0c29f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5396-8897 0000-0003-1837-6797 0000-0003-4878-1988 |
OpenAccessLink | https://doaj.org/article/303a3cd8647b4ecda624634a6241a3c4 |
PQID | 2454092369 |
PQPubID | 4845423 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2020_2986013 ieee_primary_9057709 proquest_journals_2454092369 doaj_primary_oai_doaj_org_article_303a3cd8647b4ecda624634a6241a3c4 crossref_primary_10_1109_ACCESS_2020_2986013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 ref10 ref2 ref16 ref8 ref7 ref9 ref4 ali al-garadi (ref3) 2018 keyur (ref1) 2016; 6 ref6 ref5 hussain (ref14) 2019 |
References_xml | – ident: ref5 doi: 10.1109/ACCESS.2019.2921912 – year: 2018 ident: ref3 article-title: A survey of machine and deep learning methods for Internet of Things (IoT) security publication-title: arXiv 1807 11023 – ident: ref7 doi: 10.1016/j.neucom.2019.02.056 – ident: ref2 doi: 10.1016/j.future.2018.03.007 – ident: ref12 doi: 10.5220/0006639801080116 – year: 2019 ident: ref14 article-title: Machine learning in IoT security: Current solutions and future challenges publication-title: arXiv 1904 05735 – ident: ref15 doi: 10.1007/978-3-319-92058-0_56 – ident: ref8 doi: 10.1109/ACCESS.2019.2903723 – ident: ref9 doi: 10.1016/j.iot.2019.100059 – volume: 6 start-page: 6122 year: 2016 ident: ref1 article-title: Internet of Things-IOT: Definition, characteristics, architecture, enabling technologies, application & future challenges publication-title: International Journal of Computational Engineering Science – ident: ref16 doi: 10.3390/electronics8030322 – ident: ref10 doi: 10.1109/CCWC.2019.8666588 – ident: ref11 doi: 10.1109/ACCESS.2018.2886457 – ident: ref13 doi: 10.1016/j.cose.2018.04.010 – ident: ref4 doi: 10.1109/ACCESS.2019.2924045 – ident: ref6 doi: 10.3390/info10030084 |
SSID | ssj0000816957 |
Score | 2.5345716 |
Snippet | The Internet of Things (IoT) has lately developed into an innovation for developing smart environments. Security and privacy are viewed as main problems in any... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 77396 |
SubjectTerms | Algorithms Anomalies Anomaly detection Belief networks Cybersecurity Data models DBN deep learning Internet of medical things Internet of Things Intrusion detection Intrusion detection systems IoT Machine learning Mathematical model Neural networks Privacy Training |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT3DgVRALBfnAsdk6tuPHcbu0qpDaC1TqzUrssYRKsxVkL_x6xo8NTyFOiRLbmmgm45nxzDeEvNXo9kgRuobLLoFqt11jdRcaGY2XsRtan-GaLi7V-ZV8f91d75GjuRYGAHLyGSzTbT7LDxu_TaGyY4vGhU7VevfQcSu1WnM8JTWQsJ2uwEIts8er9Rq_AV1AzpbcGvQ8xC-bT8bor01V_tDEeXs5e0QudoSVrJKb5XYalv7bb5iN_0v5Y_Kw2pl0VQTjCdmD8Sl58BP64AG5LcjFqO7oapp6f0PfwZQzs0b6aaQlVggT3URaj3No6fJJP9yiwNHTHzVyNGce0B5XgDt6AmjYRppwP3DOZUk0f0auzk4_rs-b2n2h8ZKZqemDVdagfWV6xYDZwAQEq3veeutt0NJw77UHgao7opHZttFKzqOIkXluo3hO9sfNCC8ItSC7aILgbBikYGZgEZRgoK0KQvbdgvAdW5yv0OSpQ8Znl10UZl3hpUu8dJWXC3I0T7oryBz_Hn6S-D0PTbDa-QHyydW_1OF-3gsfjJJ6kOBDr7hUSCFeWnwhF-Qg8XZepLJ1QQ530uOqCvjqeMI2RPNZ2Zd_n_WK3E8ElnjOIdmfvmzhNVo40_Ami_Z3fbT2bw priority: 102 providerName: IEEE |
Title | Effective Attack Detection in Internet of Medical Things Smart Environment Using a Deep Belief Neural Network |
URI | https://ieeexplore.ieee.org/document/9057709 https://www.proquest.com/docview/2454092369 https://doaj.org/article/303a3cd8647b4ecda624634a6241a3c4 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp_ZQldKq2wLygWMDjt9zXBYQQiqXFomblfghVS0Bten_Z_xg2QqpvfQUKbGTeGYy_sYZf0PIocGwR4qgOi5VJtXuVQdGhU4m62VSY-8LXdPnK31xLS9v1M1Gqa-cE1bpgavgjtHFDsIHq6UZZfRh0FxqIfOhxwuFCRTnvI1gqvhg22tQptEM9QyOl6sVjggDQs6OOFiMQ8QfU1Fh7G8lVp755TLZnL8mrxpKpMv6djtkK05vyMsN7sBdclt5h9FZ0eU8D_47PY1zyaua6LeJ1pW-ONO7RNvPGFprdNIvtzhqeva0w42WvAE64B3iPT2JCEsTzawd2Oeqpom_JdfnZ19XF12rndB5yezcDQE0WERHdtAsMghMxABm4L0HD8FIy703Pgp0vAkhYt8nkJwnkRLzHJJ4R7anuym-JxSiVMkGwdk4SsHsyFLUgkUDOqAi1ILwRzE634jFc32LH64EGAxclb3LsndN9gvyad3pvvJq_L35SdbPumkmxS4n0FRcMxX3L1NZkN2s3fVNALGqYbAge4_adu0D_uV4ZiZE8Kvhw_949EfyIg-nrt3ske355--4j2hmHg-K4R6UjYcP9pLtdA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcgAOvApioYAPHJut40dsH7dLqwW6e6GVerMSP6SqNFvR7KW_nvFjw1OIU6LEtiaaycx4PPMNQu8lbHs4c6KiXERQ7VpUWgpX8aAsD6KrbYJrWq6axTn_dCEudtDBWAvjvU_JZ34ab9NZvlvbTQyVHWpwLmSs1rsHdl_QXK01RlRiCwktZIEWqok-nM3n8BWwCaRkSrWCvQf7xfwklP7SVuUPXZwMzMljtNySlvNKrqaboZvau99QG_-X9ifoUfE08SyLxlO04_tn6OFP-IN76DpjF4PCw7NhaO0V_uCHlJvV48se52ihH_A64HKgg3OfT_zlGkQOH_-oksMp9wC3sIK_wUceXNuAI_IHzFnlVPPn6Pzk-Gy-qEr_hcpyooaqdbrRCjws1TbEE-0I807LltZWW-0kV9RaaT0D5R3AzazroDmlgYVALNWBvUC7_br3LxHWnougHKOk6zgjqiPBN4x4qRvHeCsmiG7ZYmwBJ489Mr6atEkh2mRemshLU3g5QQfjpJuMzfHv4UeR3-PQCKydHgCfTPlPDVj0llmnGi477q1rG8oboBAuNbzgE7QXeTsuUtg6Qftb6TFFCdwaGtENwYFu9Ku_z3qH7i_Olqfm9OPq82v0IBKbozv7aHf4tvFvwN8ZurdJzL8Dfdj5uQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Attack+Detection+in+Internet+of+Medical+Things+Smart+Environment+Using+a+Deep+Belief+Neural+Network&rft.jtitle=IEEE+access&rft.au=Manimurugan%2C+S.&rft.au=Al-Mutairi%2C+Saad&rft.au=Aborokbah%2C+Majed+Mohammed&rft.au=Chilamkurti%2C+Naveen&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=77396&rft.epage=77404&rft_id=info:doi/10.1109%2FACCESS.2020.2986013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2986013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |