Effective Attack Detection in Internet of Medical Things Smart Environment Using a Deep Belief Neural Network

The Internet of Things (IoT) has lately developed into an innovation for developing smart environments. Security and privacy are viewed as main problems in any technology's dependence on the IoT model. Privacy and security issues arise due to the different possible attacks caused by intruders....

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 77396 - 77404
Main Authors Manimurugan, S., Al-Mutairi, Saad, Aborokbah, Majed Mohammed, Chilamkurti, Naveen, Ganesan, Subramaniam, Patan, Rizwan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Internet of Things (IoT) has lately developed into an innovation for developing smart environments. Security and privacy are viewed as main problems in any technology's dependence on the IoT model. Privacy and security issues arise due to the different possible attacks caused by intruders. Thus, there is an essential need to develop an intrusion detection system for attack and anomaly identification in the IoT system. In this work, we have proposed a deep learning-based method Deep Belief Network (DBN) algorithm model for the intrusion detection system. Regarding the attacks and anomaly detection, the CICIDS 2017 dataset is utilized for the performance analysis of the present IDS model. The proposed method produced better results in all the parameters in relation to accuracy, recall, precision, F1-score, and detection rate. The proposed method has achieved 99.37% accuracy for normal class, 97.93% for Botnet class, 97.71% for Brute Force class, 96.67% for Dos/DDoS class, 96.37% for Infiltration class, 97.71% for Ports can class and 98.37% for Web attack, and these results were compared with various classifiers as shown in the results.
AbstractList The Internet of Things (IoT) has lately developed into an innovation for developing smart environments. Security and privacy are viewed as main problems in any technology's dependence on the IoT model. Privacy and security issues arise due to the different possible attacks caused by intruders. Thus, there is an essential need to develop an intrusion detection system for attack and anomaly identification in the IoT system. In this work, we have proposed a deep learning-based method Deep Belief Network (DBN) algorithm model for the intrusion detection system. Regarding the attacks and anomaly detection, the CICIDS 2017 dataset is utilized for the performance analysis of the present IDS model. The proposed method produced better results in all the parameters in relation to accuracy, recall, precision, F1-score, and detection rate. The proposed method has achieved 99.37% accuracy for normal class, 97.93% for Botnet class, 97.71% for Brute Force class, 96.67% for Dos/DDoS class, 96.37% for Infiltration class, 97.71% for Ports can class and 98.37% for Web attack, and these results were compared with various classifiers as shown in the results.
Author Manimurugan, S.
Patan, Rizwan
Chilamkurti, Naveen
Al-Mutairi, Saad
Aborokbah, Majed Mohammed
Ganesan, Subramaniam
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0003-1837-6797
  surname: Manimurugan
  fullname: Manimurugan, S.
  organization: Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Saudi Arabia
– sequence: 2
  givenname: Saad
  surname: Al-Mutairi
  fullname: Al-Mutairi, Saad
  organization: Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Saudi Arabia
– sequence: 3
  givenname: Majed Mohammed
  surname: Aborokbah
  fullname: Aborokbah, Majed Mohammed
  organization: Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Saudi Arabia
– sequence: 4
  givenname: Naveen
  orcidid: 0000-0002-5396-8897
  surname: Chilamkurti
  fullname: Chilamkurti, Naveen
  organization: Department Computer Science and IT, La Trobe University, Melbourne, VIC, Australia
– sequence: 5
  givenname: Subramaniam
  surname: Ganesan
  fullname: Ganesan, Subramaniam
  organization: Department of Electrical and Computer Engineering, Oakland University, Rochester, MI, USA
– sequence: 6
  givenname: Rizwan
  orcidid: 0000-0003-4878-1988
  surname: Patan
  fullname: Patan, Rizwan
  email: prizwan5@gmail.com
  organization: Department of Computer Science and Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, India
BookMark eNp9kU9vEzEQxS1UJErpJ-jFEucE_1vvzjGEAJFKOaQ9W8Y7Lk43dvA6RXx7vGxBiAO-jDUzv6eneS_JWUwRCbnibMk5gzer9Xqz2y0FE2wpoNOMy2fkXHANC9lIffbX_wW5HMc9q6-rraY9J4eN9-hKeES6KsW6B_oOy9RIkYZIt7Fgjlho8vQT9sHZgd5-DfF-pLuDzYVu4mPIKR4wFno31gG1VQGP9C0OAT29wVOuzA2W7yk_vCLPvR1GvHyqF-Tu_eZ2_XFx_fnDdr26XjjFurKwPWjoVKM7qxky6JnEHloruAMHfas64VzrUKJ1Hrjm3IMSwkvvmRPg5QXZzrp9sntzzKF6_WGSDeZXI-V7U80HN6CRTFrp-k6r9otC11stlJZqKrwOVNV6PWsdc_p2wrGYfTrlWO0boRrFQEgNdQvmLZfTOGb0xoVipzOWbMNgODNTWGYOy0xhmaewKiv_YX87_j91NVMBEf8QwJq2ZSB_AtsJoaQ
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_electronics10111257
crossref_primary_10_1007_s10586_024_04662_6
crossref_primary_10_1016_j_cose_2022_103064
crossref_primary_10_1016_j_comnet_2021_108399
crossref_primary_10_1109_ACCESS_2022_3141595
crossref_primary_10_1155_2024_5134326
crossref_primary_10_1016_j_cose_2022_102899
crossref_primary_10_3390_s23198153
crossref_primary_10_1007_s10586_023_04163_y
crossref_primary_10_1109_ACCESS_2021_3094024
crossref_primary_10_1109_JBHI_2024_3352013
crossref_primary_10_1007_s10462_024_11063_z
crossref_primary_10_1007_s11276_021_02667_2
crossref_primary_10_1109_JIOT_2024_3402827
crossref_primary_10_3390_s21248320
crossref_primary_10_1016_j_micpro_2020_103261
crossref_primary_10_1038_s41598_025_94345_y
crossref_primary_10_1016_j_compbiomed_2024_108036
crossref_primary_10_1145_3571156
crossref_primary_10_1016_j_seta_2022_102312
crossref_primary_10_1088_1361_6579_ac59dc
crossref_primary_10_3390_s23177342
crossref_primary_10_1016_j_engappai_2023_107231
crossref_primary_10_1016_j_iot_2023_100887
crossref_primary_10_1007_s11276_023_03603_2
crossref_primary_10_1002_dac_5571
crossref_primary_10_3390_s25020580
crossref_primary_10_1016_j_teler_2023_100053
crossref_primary_10_1109_ACCESS_2022_3144208
crossref_primary_10_1007_s10462_024_11101_w
crossref_primary_10_1007_s10922_021_09621_9
crossref_primary_10_1007_s12667_023_00615_x
crossref_primary_10_3390_su141912828
crossref_primary_10_1088_2057_1976_ad464f
crossref_primary_10_3390_telecom3010003
crossref_primary_10_1080_23080477_2021_1972914
crossref_primary_10_17531_ein_2022_2_6
crossref_primary_10_1109_ACCESS_2024_3370911
crossref_primary_10_1007_s11042_023_16395_6
crossref_primary_10_3390_app142210516
crossref_primary_10_1186_s13677_022_00324_3
crossref_primary_10_1109_JIOT_2022_3203249
crossref_primary_10_1109_ACCESS_2024_3480011
crossref_primary_10_1007_s11277_023_10523_z
crossref_primary_10_1111_exsy_13726
crossref_primary_10_1007_s11227_022_04453_z
crossref_primary_10_1080_03772063_2023_2192426
crossref_primary_10_1109_TII_2023_3314208
crossref_primary_10_1007_s11227_023_05197_0
crossref_primary_10_7717_peerj_cs_414
crossref_primary_10_1016_j_jii_2023_100549
crossref_primary_10_1016_j_asoc_2024_112669
crossref_primary_10_24143_2072_9502_2024_3_65_74
crossref_primary_10_1109_TII_2021_3053304
crossref_primary_10_1007_s11277_021_09013_x
crossref_primary_10_1109_ACCESS_2021_3074664
crossref_primary_10_1142_S2424922X21430014
crossref_primary_10_3390_jcp2030033
crossref_primary_10_3390_jsan12010003
crossref_primary_10_1109_ACCESS_2023_3270225
crossref_primary_10_3390_fi17010025
crossref_primary_10_1016_j_jisa_2024_103961
crossref_primary_10_1016_j_ins_2023_03_044
crossref_primary_10_1155_2022_2037954
crossref_primary_10_3390_app11188383
crossref_primary_10_1109_ACCESS_2021_3128837
crossref_primary_10_1016_j_neucom_2023_126719
crossref_primary_10_1007_s00202_024_02799_6
crossref_primary_10_1007_s11276_022_03186_4
crossref_primary_10_3390_app122312407
crossref_primary_10_1515_jisys_2023_0150
crossref_primary_10_1007_s11042_021_10640_6
crossref_primary_10_1007_s00500_022_06750_4
crossref_primary_10_3390_fi14040118
crossref_primary_10_1016_j_engappai_2024_109203
crossref_primary_10_1109_JIOT_2021_3106898
crossref_primary_10_1109_ACCESS_2024_3377561
crossref_primary_10_3390_math11010233
crossref_primary_10_1109_ACCESS_2021_3073408
crossref_primary_10_1142_S2010324724400149
crossref_primary_10_3390_app132111771
crossref_primary_10_1111_exsy_12917
crossref_primary_10_1109_MITP_2023_3303919
crossref_primary_10_1016_j_rineng_2024_102659
crossref_primary_10_1186_s40537_023_00805_5
crossref_primary_10_3390_app132011145
crossref_primary_10_32604_cmc_2023_032553
crossref_primary_10_3390_s23229294
crossref_primary_10_3390_su15086902
crossref_primary_10_32604_iasc_2024_056792
crossref_primary_10_1007_s00604_022_05474_4
crossref_primary_10_3390_fi15010009
crossref_primary_10_1007_s12652_022_04461_0
crossref_primary_10_1002_ett_70099
crossref_primary_10_1007_s11277_023_10846_x
crossref_primary_10_1016_j_cosrev_2021_100389
crossref_primary_10_61186_ijes_6_1_222
crossref_primary_10_1016_j_bbe_2022_05_008
crossref_primary_10_1038_s41598_023_48681_6
crossref_primary_10_1038_s41598_024_84691_8
crossref_primary_10_1007_s11277_022_10100_w
crossref_primary_10_1002_ett_5008
crossref_primary_10_3390_sym14061095
crossref_primary_10_4018_IJSWIS_327280
crossref_primary_10_1016_j_ijcip_2023_100658
crossref_primary_10_1016_j_bspc_2024_106485
crossref_primary_10_1186_s13677_020_00215_5
crossref_primary_10_3390_electronics10111341
crossref_primary_10_1016_j_cose_2023_103315
crossref_primary_10_1007_s13042_025_02544_w
crossref_primary_10_3390_s22134685
crossref_primary_10_1109_ACCESS_2025_3547572
crossref_primary_10_3390_sym14102077
crossref_primary_10_3390_pr11041072
crossref_primary_10_1002_spy2_493
Cites_doi 10.1109/ACCESS.2019.2921912
10.1016/j.neucom.2019.02.056
10.1016/j.future.2018.03.007
10.5220/0006639801080116
10.1007/978-3-319-92058-0_56
10.1109/ACCESS.2019.2903723
10.1016/j.iot.2019.100059
10.3390/electronics8030322
10.1109/CCWC.2019.8666588
10.1109/ACCESS.2018.2886457
10.1016/j.cose.2018.04.010
10.1109/ACCESS.2019.2924045
10.3390/info10030084
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2986013
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals (DOAJ) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 77404
ExternalDocumentID oai_doaj_org_article_303a3cd8647b4ecda624634a6241a3c4
10_1109_ACCESS_2020_2986013
9057709
Genre orig-research
GrantInformation_xml – fundername: University of Tabuk, Saudi Arabia
  funderid: 10.13039/100009391
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-ad96984568a60e09d03ed97a21c9c9d7482cc7ce3eacf91611f9422f3ff0c29f3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:25:16 EDT 2025
Sun Jun 29 16:02:02 EDT 2025
Tue Jul 01 01:22:25 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Wed Aug 27 02:39:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-ad96984568a60e09d03ed97a21c9c9d7482cc7ce3eacf91611f9422f3ff0c29f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5396-8897
0000-0003-1837-6797
0000-0003-4878-1988
OpenAccessLink https://doaj.org/article/303a3cd8647b4ecda624634a6241a3c4
PQID 2454092369
PQPubID 4845423
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2020_2986013
ieee_primary_9057709
proquest_journals_2454092369
doaj_primary_oai_doaj_org_article_303a3cd8647b4ecda624634a6241a3c4
crossref_primary_10_1109_ACCESS_2020_2986013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref2
ref16
ref8
ref7
ref9
ref4
ali al-garadi (ref3) 2018
keyur (ref1) 2016; 6
ref6
ref5
hussain (ref14) 2019
References_xml – ident: ref5
  doi: 10.1109/ACCESS.2019.2921912
– year: 2018
  ident: ref3
  article-title: A survey of machine and deep learning methods for Internet of Things (IoT) security
  publication-title: arXiv 1807 11023
– ident: ref7
  doi: 10.1016/j.neucom.2019.02.056
– ident: ref2
  doi: 10.1016/j.future.2018.03.007
– ident: ref12
  doi: 10.5220/0006639801080116
– year: 2019
  ident: ref14
  article-title: Machine learning in IoT security: Current solutions and future challenges
  publication-title: arXiv 1904 05735
– ident: ref15
  doi: 10.1007/978-3-319-92058-0_56
– ident: ref8
  doi: 10.1109/ACCESS.2019.2903723
– ident: ref9
  doi: 10.1016/j.iot.2019.100059
– volume: 6
  start-page: 6122
  year: 2016
  ident: ref1
  article-title: Internet of Things-IOT: Definition, characteristics, architecture, enabling technologies, application & future challenges
  publication-title: International Journal of Computational Engineering Science
– ident: ref16
  doi: 10.3390/electronics8030322
– ident: ref10
  doi: 10.1109/CCWC.2019.8666588
– ident: ref11
  doi: 10.1109/ACCESS.2018.2886457
– ident: ref13
  doi: 10.1016/j.cose.2018.04.010
– ident: ref4
  doi: 10.1109/ACCESS.2019.2924045
– ident: ref6
  doi: 10.3390/info10030084
SSID ssj0000816957
Score 2.5345716
Snippet The Internet of Things (IoT) has lately developed into an innovation for developing smart environments. Security and privacy are viewed as main problems in any...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 77396
SubjectTerms Algorithms
Anomalies
Anomaly detection
Belief networks
Cybersecurity
Data models
DBN
deep learning
Internet of medical things
Internet of Things
Intrusion detection
Intrusion detection systems
IoT
Machine learning
Mathematical model
Neural networks
Privacy
Training
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT3DgVRALBfnAsdk6tuPHcbu0qpDaC1TqzUrssYRKsxVkL_x6xo8NTyFOiRLbmmgm45nxzDeEvNXo9kgRuobLLoFqt11jdRcaGY2XsRtan-GaLi7V-ZV8f91d75GjuRYGAHLyGSzTbT7LDxu_TaGyY4vGhU7VevfQcSu1WnM8JTWQsJ2uwEIts8er9Rq_AV1AzpbcGvQ8xC-bT8bor01V_tDEeXs5e0QudoSVrJKb5XYalv7bb5iN_0v5Y_Kw2pl0VQTjCdmD8Sl58BP64AG5LcjFqO7oapp6f0PfwZQzs0b6aaQlVggT3URaj3No6fJJP9yiwNHTHzVyNGce0B5XgDt6AmjYRppwP3DOZUk0f0auzk4_rs-b2n2h8ZKZqemDVdagfWV6xYDZwAQEq3veeutt0NJw77UHgao7opHZttFKzqOIkXluo3hO9sfNCC8ItSC7aILgbBikYGZgEZRgoK0KQvbdgvAdW5yv0OSpQ8Znl10UZl3hpUu8dJWXC3I0T7oryBz_Hn6S-D0PTbDa-QHyydW_1OF-3gsfjJJ6kOBDr7hUSCFeWnwhF-Qg8XZepLJ1QQ530uOqCvjqeMI2RPNZ2Zd_n_WK3E8ElnjOIdmfvmzhNVo40_Ami_Z3fbT2bw
  priority: 102
  providerName: IEEE
Title Effective Attack Detection in Internet of Medical Things Smart Environment Using a Deep Belief Neural Network
URI https://ieeexplore.ieee.org/document/9057709
https://www.proquest.com/docview/2454092369
https://doaj.org/article/303a3cd8647b4ecda624634a6241a3c4
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp_ZQldKq2wLygWMDjt9zXBYQQiqXFomblfghVS0Bten_Z_xg2QqpvfQUKbGTeGYy_sYZf0PIocGwR4qgOi5VJtXuVQdGhU4m62VSY-8LXdPnK31xLS9v1M1Gqa-cE1bpgavgjtHFDsIHq6UZZfRh0FxqIfOhxwuFCRTnvI1gqvhg22tQptEM9QyOl6sVjggDQs6OOFiMQ8QfU1Fh7G8lVp755TLZnL8mrxpKpMv6djtkK05vyMsN7sBdclt5h9FZ0eU8D_47PY1zyaua6LeJ1pW-ONO7RNvPGFprdNIvtzhqeva0w42WvAE64B3iPT2JCEsTzawd2Oeqpom_JdfnZ19XF12rndB5yezcDQE0WERHdtAsMghMxABm4L0HD8FIy703Pgp0vAkhYt8nkJwnkRLzHJJ4R7anuym-JxSiVMkGwdk4SsHsyFLUgkUDOqAi1ILwRzE634jFc32LH64EGAxclb3LsndN9gvyad3pvvJq_L35SdbPumkmxS4n0FRcMxX3L1NZkN2s3fVNALGqYbAge4_adu0D_uV4ZiZE8Kvhw_949EfyIg-nrt3ske355--4j2hmHg-K4R6UjYcP9pLtdA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcgAOvApioYAPHJut40dsH7dLqwW6e6GVerMSP6SqNFvR7KW_nvFjw1OIU6LEtiaaycx4PPMNQu8lbHs4c6KiXERQ7VpUWgpX8aAsD6KrbYJrWq6axTn_dCEudtDBWAvjvU_JZ34ab9NZvlvbTQyVHWpwLmSs1rsHdl_QXK01RlRiCwktZIEWqok-nM3n8BWwCaRkSrWCvQf7xfwklP7SVuUPXZwMzMljtNySlvNKrqaboZvau99QG_-X9ifoUfE08SyLxlO04_tn6OFP-IN76DpjF4PCw7NhaO0V_uCHlJvV48se52ihH_A64HKgg3OfT_zlGkQOH_-oksMp9wC3sIK_wUceXNuAI_IHzFnlVPPn6Pzk-Gy-qEr_hcpyooaqdbrRCjws1TbEE-0I807LltZWW-0kV9RaaT0D5R3AzazroDmlgYVALNWBvUC7_br3LxHWnougHKOk6zgjqiPBN4x4qRvHeCsmiG7ZYmwBJ489Mr6atEkh2mRemshLU3g5QQfjpJuMzfHv4UeR3-PQCKydHgCfTPlPDVj0llmnGi477q1rG8oboBAuNbzgE7QXeTsuUtg6Qftb6TFFCdwaGtENwYFu9Ku_z3qH7i_Olqfm9OPq82v0IBKbozv7aHf4tvFvwN8ZurdJzL8Dfdj5uQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Attack+Detection+in+Internet+of+Medical+Things+Smart+Environment+Using+a+Deep+Belief+Neural+Network&rft.jtitle=IEEE+access&rft.au=Manimurugan%2C+S.&rft.au=Al-Mutairi%2C+Saad&rft.au=Aborokbah%2C+Majed+Mohammed&rft.au=Chilamkurti%2C+Naveen&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=77396&rft.epage=77404&rft_id=info:doi/10.1109%2FACCESS.2020.2986013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2986013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon