Cyclic voltammetry electrodeposition of well-dispersed Pd nanoparticles on carbon paper as a flow-through anode for microfluidic direct formate fuel cells

The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 39; pp. 227 - 2278
Main Authors Zhang, Tong, Zhu, Xun, Ye, Ding-Ding, Chen, Rong, Zhou, Yuan, Liao, Qiang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 15.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm −2 , delivers a peak power density and limiting current density of 46.6 mW cm −2 (443.8 mW mg −1 Pd ) and 288.4 mA cm −2 , respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics. Cyclic voltammetry electrodeposition of palladium nanoparticles on carbon paper results in high catalytic performance, catalyst utilization and stability for their use in microfluidic direct formate fuel cells.
AbstractList The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm −2 , delivers a peak power density and limiting current density of 46.6 mW cm −2 (443.8 mW mg −1 Pd ) and 288.4 mA cm −2 , respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics. Cyclic voltammetry electrodeposition of palladium nanoparticles on carbon paper results in high catalytic performance, catalyst utilization and stability for their use in microfluidic direct formate fuel cells.
The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm-2, delivers a peak power density and limiting current density of 46.6 mW cm-2 (443.8 mW mg-1Pd) and 288.4 mA cm-2, respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics.The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm-2, delivers a peak power density and limiting current density of 46.6 mW cm-2 (443.8 mW mg-1Pd) and 288.4 mA cm-2, respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics.
The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm −2 , delivers a peak power density and limiting current density of 46.6 mW cm −2 (443.8 mW mg −1 Pd ) and 288.4 mA cm −2 , respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics.
The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm−2, delivers a peak power density and limiting current density of 46.6 mW cm−2 (443.8 mW mg−1Pd) and 288.4 mA cm−2, respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics.
Author Chen, Rong
Ye, Ding-Ding
Zhu, Xun
Zhang, Tong
Liao, Qiang
Zhou, Yuan
AuthorAffiliation Chongqing University
Ministry of Education
Institute of Engineering Thermophysics
School of Energy and Power Engineering
Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University)
AuthorAffiliation_xml – name: Institute of Engineering Thermophysics
– name: Ministry of Education
– name: Chongqing University
– name: Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University)
– name: School of Energy and Power Engineering
Author_xml – sequence: 1
  givenname: Tong
  surname: Zhang
  fullname: Zhang, Tong
– sequence: 2
  givenname: Xun
  surname: Zhu
  fullname: Zhu, Xun
– sequence: 3
  givenname: Ding-Ding
  surname: Ye
  fullname: Ye, Ding-Ding
– sequence: 4
  givenname: Rong
  surname: Chen
  fullname: Chen, Rong
– sequence: 5
  givenname: Yuan
  surname: Zhou
  fullname: Zhou, Yuan
– sequence: 6
  givenname: Qiang
  surname: Liao
  fullname: Liao, Qiang
BookMark eNp9kV1rFTEQhoNUsK3eeC9EvJHC6myyn5flqFUoKqLXy5xk1qZkN-skazl_xV9rTo9UKOLVDHmfyTsfJ-JoDjMJ8bSEVyXo_rWFmaEudYUPxLGCCgqtW3V0lzfVI3ES4zVA0-tGH4tfm53xzsifwSecJkq8k-TJJA6WlhBdcmGWYZQ35H1hXVyII1n52coZ57AgJ2c8RZkpg7zNYcHMSIwS5ejDTZGuOKzfr2TGLckxsJyc4TD61dnsbB1nu_37hCnrK3lpsll8LB6O6CM9-RNPxbd3b79u3heXny4-bM4vC1NBlwq0qteAbWVRU92Y1qKyuse-KynvYWugq3uqtWk6hLbEBvPsqjWtLreKlNan4uXh34XDj5ViGiYX9x3gTGGNg6qqttNND5DRF_fQ67DynLvLVF1C36lbCg5UnjJGpnEwLuF-kYnR-aGEYX-s4Q18_HJ7rPNccnavZGE3Ie_-DT87wBzNHff38ll__j99WOyofwN9Fq7J
CitedBy_id crossref_primary_10_1002_ange_202202650
crossref_primary_10_1016_j_cattod_2024_114706
crossref_primary_10_1007_s00604_023_06158_3
crossref_primary_10_1149_1945_7111_ac0c31
crossref_primary_10_1021_acsomega_2c03840
crossref_primary_10_1021_acs_jpcc_4c08682
crossref_primary_10_1016_j_cej_2021_132198
crossref_primary_10_1039_D2NR06637H
crossref_primary_10_20964_2022_05_58
crossref_primary_10_1002_slct_202201217
crossref_primary_10_1002_smll_202309457
crossref_primary_10_1002_adfm_202201872
crossref_primary_10_1016_j_ijhydene_2022_03_139
crossref_primary_10_1016_j_ijhydene_2022_05_162
crossref_primary_10_1039_D1SE00447F
crossref_primary_10_1016_j_ijhydene_2024_05_160
crossref_primary_10_1016_j_jwpe_2024_106481
crossref_primary_10_1016_j_ultsonch_2022_106146
crossref_primary_10_1002_anie_202202650
crossref_primary_10_1016_j_carbon_2022_02_053
crossref_primary_10_1016_j_jpowsour_2024_235810
crossref_primary_10_1002_cssc_202401127
crossref_primary_10_1016_j_jenvman_2022_116328
crossref_primary_10_1016_j_jpowsour_2024_234629
crossref_primary_10_1016_j_jechem_2023_05_040
crossref_primary_10_1016_j_ijhydene_2022_03_007
crossref_primary_10_1021_acs_iecr_1c04875
Cites_doi 10.1021/acsami.6b05375
10.1021/jp211887x
10.1002/adfm.201804600
10.1016/j.jpowsour.2014.12.064
10.1016/j.jpowsour.2012.04.007
10.1016/j.jpowsour.2017.11.055
10.1002/cssc.201700228
10.1038/s41467-019-09662-4
10.1039/C3TA14011C
10.1002/aenm.201803238
10.1016/j.jpowsour.2016.04.082
10.1016/j.jpowsour.2012.09.091
10.1016/j.jpowsour.2012.04.032
10.1016/j.nanoen.2017.11.075
10.1021/acsami.9b13451
10.1021/ja078248c
10.1016/j.electacta.2014.04.188
10.1002/er.1281
10.1088/0022-3727/44/44/443001
10.1016/S0013-4686(00)00353-4
10.1016/j.jpowsour.2015.12.044
10.1002/aenm.201900955
10.1039/C9TA07721A
10.1016/0013-4686(69)80008-3
10.1002/anie.201701816
10.1039/C9TA00664H
10.1016/j.electacta.2017.12.139
10.1016/j.electacta.2016.06.041
10.1039/C9NR09660D
10.1016/j.jpowsour.2019.227058
10.1016/j.elecom.2009.10.001
10.1016/j.jechem.2019.05.016
10.1021/ja102177r
10.1002/adma.200602911
10.1016/j.jpowsour.2012.07.019
10.1016/j.jpowsour.2019.02.081
10.1016/j.nanoen.2017.11.033
10.1039/C9NR03266E
10.1038/ncomms14136
10.1016/j.ijhydene.2008.07.097
10.1002/cssc.201500958
10.1016/j.jpowsour.2012.06.079
10.1002/cssc.201100220
10.1021/am100803d
10.1016/j.jpowsour.2014.03.009
10.1021/acsaem.8b00790
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d0nr05134a
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 2278
ExternalDocumentID 10_1039_D0NR05134A
d0nr05134a
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c408t-ad2930a74da3e56c7da2d39a981e34abc0859e53c68a071a6a06927c731b2e233
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 10:33:44 EDT 2025
Sun Jun 29 16:16:17 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Tue Jul 01 01:14:01 EDT 2025
Wed Nov 11 00:36:16 EST 2020
Sat Jan 08 03:54:54 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-ad2930a74da3e56c7da2d39a981e34abc0859e53c68a071a6a06927c731b2e233
Notes 10.1039/d0nr05134a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3923-5977
0000-0002-8680-184X
0000-0002-9288-1647
PQID 2451098200
PQPubID 2047485
PageCount 9
ParticipantIDs proquest_journals_2451098200
rsc_primary_d0nr05134a
crossref_citationtrail_10_1039_D0NR05134A
crossref_primary_10_1039_D0NR05134A
proquest_miscellaneous_2447836900
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201015
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 20201015
  day: 15
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Tang (D0NR05134A-(cit42)/*[position()=1]) 2019; 7
Hou (D0NR05134A-(cit45)/*[position()=1]) 2013; 224
Li (D0NR05134A-(cit3)/*[position()=1]) 2017; 56
Grubel (D0NR05134A-(cit7)/*[position()=1]) 2020; 41
Bartrom (D0NR05134A-(cit11)/*[position()=1]) 2012; 214
Budevski (D0NR05134A-(cit33)/*[position()=1]) 2000; 45
Li (D0NR05134A-(cit4)/*[position()=1]) 2017; 10
Wang (D0NR05134A-(cit32)/*[position()=1]) 2008; 33
Tian (D0NR05134A-(cit28)/*[position()=1]) 2010; 132
Yang (D0NR05134A-(cit29)/*[position()=1]) 2012; 217
Wang (D0NR05134A-(cit47)/*[position()=1]) 2019; 420
Morse (D0NR05134A-(cit2)/*[position()=1]) 2007; 31
Yang (D0NR05134A-(cit23)/*[position()=1]) 2012; 217
Wang (D0NR05134A-(cit44)/*[position()=1]) 2018; 375
Vo (D0NR05134A-(cit8)/*[position()=1]) 2015; 8
Liu (D0NR05134A-(cit24)/*[position()=1]) 2014; 2
Agarwal (D0NR05134A-(cit9)/*[position()=1]) 2011; 4
Zhang (D0NR05134A-(cit15)/*[position()=1]) 2009; 11
Guo (D0NR05134A-(cit31)/*[position()=1]) 2011; 44
Li (D0NR05134A-(cit41)/*[position()=1]) 2016; 213
Yang (D0NR05134A-(cit16)/*[position()=1]) 2019; 10
Wang (D0NR05134A-(cit19)/*[position()=1]) 2019; 11
Liu (D0NR05134A-(cit36)/*[position()=1]) 2019; 438
Zhang (D0NR05134A-(cit14)/*[position()=1]) 2018; 44
Shan (D0NR05134A-(cit43)/*[position()=1]) 2019; 11
Wang (D0NR05134A-(cit6)/*[position()=1]) 2019; 7
Chen (D0NR05134A-(cit39)/*[position()=1]) 2017; 8
Wu (D0NR05134A-(cit38)/*[position()=1]) 2018; 8
Xu (D0NR05134A-(cit27)/*[position()=1]) 2007; 19
Guo (D0NR05134A-(cit17)/*[position()=1]) 2020; 12
Du (D0NR05134A-(cit21)/*[position()=1]) 2011; 3
Li (D0NR05134A-(cit25)/*[position()=1]) 2018; 261
Noborikawa (D0NR05134A-(cit12)/*[position()=1]) 2014; 137
Goulet (D0NR05134A-(cit1)/*[position()=1]) 2014; 260
Ding (D0NR05134A-(cit10)/*[position()=1]) 2019; 9
Li (D0NR05134A-(cit18)/*[position()=1]) 2015; 278
Takamura (D0NR05134A-(cit37)/*[position()=1]) 1969; 14
An (D0NR05134A-(cit5)/*[position()=1]) 2016; 320
Kumar (D0NR05134A-(cit35)/*[position()=1]) 2019; 9
Sankar (D0NR05134A-(cit13)/*[position()=1]) 2018; 1
John (D0NR05134A-(cit40)/*[position()=1]) 2012; 116
Kjeang (D0NR05134A-(cit46)/*[position()=1]) 2008; 130
Wang (D0NR05134A-(cit26)/*[position()=1]) 2016; 8
Chen (D0NR05134A-(cit20)/*[position()=1]) 2017; 42
Zhang (D0NR05134A-(cit34)/*[position()=1]) 2012; 214
Zhang (D0NR05134A-(cit30)/*[position()=1]) 2018; 28
Niu (D0NR05134A-(cit22)/*[position()=1]) 2016; 306
References_xml – volume: 8
  start-page: 16736
  year: 2016
  ident: D0NR05134A-(cit26)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05375
– volume: 116
  start-page: 5810
  year: 2012
  ident: D0NR05134A-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp211887x
– volume: 28
  start-page: 1804600
  year: 2018
  ident: D0NR05134A-(cit30)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804600
– volume: 278
  start-page: 569
  year: 2015
  ident: D0NR05134A-(cit18)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.064
– volume: 214
  start-page: 277
  year: 2012
  ident: D0NR05134A-(cit34)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.04.007
– volume: 375
  start-page: 37
  year: 2018
  ident: D0NR05134A-(cit44)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.055
– volume: 10
  start-page: 2135
  year: 2017
  ident: D0NR05134A-(cit4)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201700228
– volume: 10
  start-page: 1611
  year: 2019
  ident: D0NR05134A-(cit16)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09662-4
– volume: 2
  start-page: 6081
  year: 2014
  ident: D0NR05134A-(cit24)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14011C
– volume: 9
  start-page: 1803238
  year: 2019
  ident: D0NR05134A-(cit35)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803238
– volume: 320
  start-page: 127
  year: 2016
  ident: D0NR05134A-(cit5)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.082
– volume: 224
  start-page: 139
  year: 2013
  ident: D0NR05134A-(cit45)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.09.091
– volume: 214
  start-page: 68
  year: 2012
  ident: D0NR05134A-(cit11)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.04.032
– volume: 44
  start-page: 127
  year: 2018
  ident: D0NR05134A-(cit14)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.075
– volume: 11
  start-page: 43130
  year: 2019
  ident: D0NR05134A-(cit43)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13451
– volume: 130
  start-page: 4000
  year: 2008
  ident: D0NR05134A-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja078248c
– volume: 137
  start-page: 654
  year: 2014
  ident: D0NR05134A-(cit12)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.04.188
– volume: 31
  start-page: 576
  year: 2007
  ident: D0NR05134A-(cit2)/*[position()=1]
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1281
– volume: 44
  start-page: 443001
  year: 2011
  ident: D0NR05134A-(cit31)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/44/443001
– volume: 45
  start-page: 2559
  year: 2000
  ident: D0NR05134A-(cit33)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(00)00353-4
– volume: 306
  start-page: 361
  year: 2016
  ident: D0NR05134A-(cit22)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.12.044
– volume: 9
  start-page: 1900955
  year: 2019
  ident: D0NR05134A-(cit10)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900955
– volume: 7
  start-page: 22996
  year: 2019
  ident: D0NR05134A-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07721A
– volume: 14
  start-page: 111
  year: 1969
  ident: D0NR05134A-(cit37)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(69)80008-3
– volume: 56
  start-page: 5734
  year: 2017
  ident: D0NR05134A-(cit3)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701816
– volume: 7
  start-page: 16122
  year: 2019
  ident: D0NR05134A-(cit6)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00664H
– volume: 261
  start-page: 178
  year: 2018
  ident: D0NR05134A-(cit25)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.12.139
– volume: 213
  start-page: 21
  year: 2016
  ident: D0NR05134A-(cit41)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.041
– volume: 12
  start-page: 3469
  year: 2020
  ident: D0NR05134A-(cit17)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR09660D
– volume: 438
  start-page: 227058
  year: 2019
  ident: D0NR05134A-(cit36)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227058
– volume: 11
  start-page: 2249
  year: 2009
  ident: D0NR05134A-(cit15)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.10.001
– volume: 41
  start-page: 216
  year: 2020
  ident: D0NR05134A-(cit7)/*[position()=1]
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.05.016
– volume: 132
  start-page: 7580
  year: 2010
  ident: D0NR05134A-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja102177r
– volume: 19
  start-page: 4256
  year: 2007
  ident: D0NR05134A-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602911
– volume: 217
  start-page: 562
  year: 2012
  ident: D0NR05134A-(cit23)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.07.019
– volume: 420
  start-page: 88
  year: 2019
  ident: D0NR05134A-(cit47)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.02.081
– volume: 42
  start-page: 353
  year: 2017
  ident: D0NR05134A-(cit20)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.033
– volume: 11
  start-page: 14174
  year: 2019
  ident: D0NR05134A-(cit19)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR03266E
– volume: 8
  start-page: 14136
  year: 2017
  ident: D0NR05134A-(cit39)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14136
– volume: 8
  start-page: 170179
  year: 2018
  ident: D0NR05134A-(cit38)/*[position()=1]
  publication-title: Adv. Energy Mater.
– volume: 33
  start-page: 6143
  year: 2008
  ident: D0NR05134A-(cit32)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.07.097
– volume: 8
  start-page: 3853
  year: 2015
  ident: D0NR05134A-(cit8)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500958
– volume: 217
  start-page: 569
  year: 2012
  ident: D0NR05134A-(cit29)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.06.079
– volume: 4
  start-page: 1301
  year: 2011
  ident: D0NR05134A-(cit9)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100220
– volume: 3
  start-page: 105
  year: 2011
  ident: D0NR05134A-(cit21)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100803d
– volume: 260
  start-page: 186
  year: 2014
  ident: D0NR05134A-(cit1)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.009
– volume: 1
  start-page: 4140
  year: 2018
  ident: D0NR05134A-(cit13)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00790
SSID ssj0069363
Score 2.4532664
Snippet The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 227
SubjectTerms Anodes
Carbon
Catalysts
Commercialization
Dispersion
Electrodeposition
Electrodes
Fuel cells
Microfluidics
Nanoparticles
Oxidation
Stability
Voltammetry
Title Cyclic voltammetry electrodeposition of well-dispersed Pd nanoparticles on carbon paper as a flow-through anode for microfluidic direct formate fuel cells
URI https://www.proquest.com/docview/2451098200
https://www.proquest.com/docview/2447836900
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe67gUeEP8mOgYyghdUZSR2mj-Ppd2YYJRp6kR5ihzbkSZ1ydQmQvBR-Ax8SO4SO01FhYCXqHUuceT75e7snH9HyCvteZlMPeFEWRY4vvQ0vHPwuovQA4T4Kohqnu2Ps-Dsyn-_GC16vZ-drKWqTI_l9537Sv5Hq9AGesVdsv-g2fam0AC_Qb9wBA3D8a90PPkmkaMaLEyJC9AlbqxtytoobbOxMBrEBTpHXSMp-BoCzAs1zEUOs2WTFIcfDKRYpQXSrIIM1p4Rw2xZfHVsGR8QVw09-A1m8GXL6lpBz41DNDsg4Xyll0P8FLDuxrxgwIs1QKGFULtIPS-M36wbK2xaVC1ap-BVnampufKlvXpi9pNc2ovNmgVMUDEFZNSirFkZsWmpddqJKW63sX4MUx05byjOj3W3Ldw236wD04YYyRpjmHK7Hc-O_6OdbsPlyLqq3HwFNor7HedoEwJmn5LTq_PzZH6ymO-RfQaTEtYn--MPb999tp4_iHldua99dEuHy-M3m3tvB0CbWc3eypacqUOb-X1yz8xJ6LiBwwPS0_lDcrfDVPmI_GigRjtQo79BjRYZ3YYavVB0C2oUpBqo0RpqVKypoF2o0RpqFCBFu1CjDdSogRpFqNEaao_J1enJfHLmmLIejvTdqHSEghDTFaGvBNejQIZKMMVjEUeehvFJJXLu6RGXQSQgABaBgJFloQy5lzLNOD8g_bzI9RNCU4hHPU-GyH_vM5amWqSMx1nsySDOXD4gr-1YJ9Jw3mPplWVS517wOJm6s8taL-MBednK3jZMLzuljqzKEmMJ1gnzwbPFEEu7A_KiPQ2IxmEQuS4qlPFxw1SMMgeg6raPDTIG5HD3ieRWZYd_7vgpubN50Y5Iv1xV-hmEy2X63KD0F-epx_I
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+voltammetry+electrodeposition+of+well-dispersed+Pd+nanoparticles+on+carbon+paper+as+a+flow-through+anode+for+microfluidic+direct+formate+fuel+cells&rft.jtitle=Nanoscale&rft.au=Zhang%2C+Tong&rft.au=Zhu%2C+Xun&rft.au=Ding-Ding%2C+Ye&rft.au=Chen%2C+Rong&rft.date=2020-10-15&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=12&rft.issue=39&rft.spage=20270&rft.epage=20278&rft_id=info:doi/10.1039%2Fd0nr05134a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon