Cyclic voltammetry electrodeposition of well-dispersed Pd nanoparticles on carbon paper as a flow-through anode for microfluidic direct formate fuel cells
The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the...
Saved in:
Published in | Nanoscale Vol. 12; no. 39; pp. 227 - 2278 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
15.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm
−2
, delivers a peak power density and limiting current density of 46.6 mW cm
−2
(443.8 mW mg
−1
Pd
) and 288.4 mA cm
−2
, respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics.
Cyclic voltammetry electrodeposition of palladium nanoparticles on carbon paper results in high catalytic performance, catalyst utilization and stability for their use in microfluidic direct formate fuel cells. |
---|---|
AbstractList | The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm
−2
, delivers a peak power density and limiting current density of 46.6 mW cm
−2
(443.8 mW mg
−1
Pd
) and 288.4 mA cm
−2
, respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics.
Cyclic voltammetry electrodeposition of palladium nanoparticles on carbon paper results in high catalytic performance, catalyst utilization and stability for their use in microfluidic direct formate fuel cells. The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm-2, delivers a peak power density and limiting current density of 46.6 mW cm-2 (443.8 mW mg-1Pd) and 288.4 mA cm-2, respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics.The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm-2, delivers a peak power density and limiting current density of 46.6 mW cm-2 (443.8 mW mg-1Pd) and 288.4 mA cm-2, respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics. The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm −2 , delivers a peak power density and limiting current density of 46.6 mW cm −2 (443.8 mW mg −1 Pd ) and 288.4 mA cm −2 , respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics. The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (μDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm−2, delivers a peak power density and limiting current density of 46.6 mW cm−2 (443.8 mW mg−1Pd) and 288.4 mA cm−2, respectively. The performance of the μDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics. |
Author | Chen, Rong Ye, Ding-Ding Zhu, Xun Zhang, Tong Liao, Qiang Zhou, Yuan |
AuthorAffiliation | Chongqing University Ministry of Education Institute of Engineering Thermophysics School of Energy and Power Engineering Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University) |
AuthorAffiliation_xml | – name: Institute of Engineering Thermophysics – name: Ministry of Education – name: Chongqing University – name: Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University) – name: School of Energy and Power Engineering |
Author_xml | – sequence: 1 givenname: Tong surname: Zhang fullname: Zhang, Tong – sequence: 2 givenname: Xun surname: Zhu fullname: Zhu, Xun – sequence: 3 givenname: Ding-Ding surname: Ye fullname: Ye, Ding-Ding – sequence: 4 givenname: Rong surname: Chen fullname: Chen, Rong – sequence: 5 givenname: Yuan surname: Zhou fullname: Zhou, Yuan – sequence: 6 givenname: Qiang surname: Liao fullname: Liao, Qiang |
BookMark | eNp9kV1rFTEQhoNUsK3eeC9EvJHC6myyn5flqFUoKqLXy5xk1qZkN-skazl_xV9rTo9UKOLVDHmfyTsfJ-JoDjMJ8bSEVyXo_rWFmaEudYUPxLGCCgqtW3V0lzfVI3ES4zVA0-tGH4tfm53xzsifwSecJkq8k-TJJA6WlhBdcmGWYZQ35H1hXVyII1n52coZ57AgJ2c8RZkpg7zNYcHMSIwS5ejDTZGuOKzfr2TGLckxsJyc4TD61dnsbB1nu_37hCnrK3lpsll8LB6O6CM9-RNPxbd3b79u3heXny4-bM4vC1NBlwq0qteAbWVRU92Y1qKyuse-KynvYWugq3uqtWk6hLbEBvPsqjWtLreKlNan4uXh34XDj5ViGiYX9x3gTGGNg6qqttNND5DRF_fQ67DynLvLVF1C36lbCg5UnjJGpnEwLuF-kYnR-aGEYX-s4Q18_HJ7rPNccnavZGE3Ie_-DT87wBzNHff38ll__j99WOyofwN9Fq7J |
CitedBy_id | crossref_primary_10_1002_ange_202202650 crossref_primary_10_1016_j_cattod_2024_114706 crossref_primary_10_1007_s00604_023_06158_3 crossref_primary_10_1149_1945_7111_ac0c31 crossref_primary_10_1021_acsomega_2c03840 crossref_primary_10_1021_acs_jpcc_4c08682 crossref_primary_10_1016_j_cej_2021_132198 crossref_primary_10_1039_D2NR06637H crossref_primary_10_20964_2022_05_58 crossref_primary_10_1002_slct_202201217 crossref_primary_10_1002_smll_202309457 crossref_primary_10_1002_adfm_202201872 crossref_primary_10_1016_j_ijhydene_2022_03_139 crossref_primary_10_1016_j_ijhydene_2022_05_162 crossref_primary_10_1039_D1SE00447F crossref_primary_10_1016_j_ijhydene_2024_05_160 crossref_primary_10_1016_j_jwpe_2024_106481 crossref_primary_10_1016_j_ultsonch_2022_106146 crossref_primary_10_1002_anie_202202650 crossref_primary_10_1016_j_carbon_2022_02_053 crossref_primary_10_1016_j_jpowsour_2024_235810 crossref_primary_10_1002_cssc_202401127 crossref_primary_10_1016_j_jenvman_2022_116328 crossref_primary_10_1016_j_jpowsour_2024_234629 crossref_primary_10_1016_j_jechem_2023_05_040 crossref_primary_10_1016_j_ijhydene_2022_03_007 crossref_primary_10_1021_acs_iecr_1c04875 |
Cites_doi | 10.1021/acsami.6b05375 10.1021/jp211887x 10.1002/adfm.201804600 10.1016/j.jpowsour.2014.12.064 10.1016/j.jpowsour.2012.04.007 10.1016/j.jpowsour.2017.11.055 10.1002/cssc.201700228 10.1038/s41467-019-09662-4 10.1039/C3TA14011C 10.1002/aenm.201803238 10.1016/j.jpowsour.2016.04.082 10.1016/j.jpowsour.2012.09.091 10.1016/j.jpowsour.2012.04.032 10.1016/j.nanoen.2017.11.075 10.1021/acsami.9b13451 10.1021/ja078248c 10.1016/j.electacta.2014.04.188 10.1002/er.1281 10.1088/0022-3727/44/44/443001 10.1016/S0013-4686(00)00353-4 10.1016/j.jpowsour.2015.12.044 10.1002/aenm.201900955 10.1039/C9TA07721A 10.1016/0013-4686(69)80008-3 10.1002/anie.201701816 10.1039/C9TA00664H 10.1016/j.electacta.2017.12.139 10.1016/j.electacta.2016.06.041 10.1039/C9NR09660D 10.1016/j.jpowsour.2019.227058 10.1016/j.elecom.2009.10.001 10.1016/j.jechem.2019.05.016 10.1021/ja102177r 10.1002/adma.200602911 10.1016/j.jpowsour.2012.07.019 10.1016/j.jpowsour.2019.02.081 10.1016/j.nanoen.2017.11.033 10.1039/C9NR03266E 10.1038/ncomms14136 10.1016/j.ijhydene.2008.07.097 10.1002/cssc.201500958 10.1016/j.jpowsour.2012.06.079 10.1002/cssc.201100220 10.1021/am100803d 10.1016/j.jpowsour.2014.03.009 10.1021/acsaem.8b00790 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d0nr05134a |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 2278 |
ExternalDocumentID | 10_1039_D0NR05134A d0nr05134a |
GroupedDBID | - 0-7 0R 29M 4.4 53G 705 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- F5P HZ H~N J3I JG O-G O9- OK1 P2P RCNCU RIG RNS RPMJG RRC RSCEA --- 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c408t-ad2930a74da3e56c7da2d39a981e34abc0859e53c68a071a6a06927c731b2e233 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 10:33:44 EDT 2025 Sun Jun 29 16:16:17 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Tue Jul 01 01:14:01 EDT 2025 Wed Nov 11 00:36:16 EST 2020 Sat Jan 08 03:54:54 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c408t-ad2930a74da3e56c7da2d39a981e34abc0859e53c68a071a6a06927c731b2e233 |
Notes | 10.1039/d0nr05134a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3923-5977 0000-0002-8680-184X 0000-0002-9288-1647 |
PQID | 2451098200 |
PQPubID | 2047485 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2451098200 rsc_primary_d0nr05134a crossref_citationtrail_10_1039_D0NR05134A crossref_primary_10_1039_D0NR05134A proquest_miscellaneous_2447836900 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201015 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201015 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Tang (D0NR05134A-(cit42)/*[position()=1]) 2019; 7 Hou (D0NR05134A-(cit45)/*[position()=1]) 2013; 224 Li (D0NR05134A-(cit3)/*[position()=1]) 2017; 56 Grubel (D0NR05134A-(cit7)/*[position()=1]) 2020; 41 Bartrom (D0NR05134A-(cit11)/*[position()=1]) 2012; 214 Budevski (D0NR05134A-(cit33)/*[position()=1]) 2000; 45 Li (D0NR05134A-(cit4)/*[position()=1]) 2017; 10 Wang (D0NR05134A-(cit32)/*[position()=1]) 2008; 33 Tian (D0NR05134A-(cit28)/*[position()=1]) 2010; 132 Yang (D0NR05134A-(cit29)/*[position()=1]) 2012; 217 Wang (D0NR05134A-(cit47)/*[position()=1]) 2019; 420 Morse (D0NR05134A-(cit2)/*[position()=1]) 2007; 31 Yang (D0NR05134A-(cit23)/*[position()=1]) 2012; 217 Wang (D0NR05134A-(cit44)/*[position()=1]) 2018; 375 Vo (D0NR05134A-(cit8)/*[position()=1]) 2015; 8 Liu (D0NR05134A-(cit24)/*[position()=1]) 2014; 2 Agarwal (D0NR05134A-(cit9)/*[position()=1]) 2011; 4 Zhang (D0NR05134A-(cit15)/*[position()=1]) 2009; 11 Guo (D0NR05134A-(cit31)/*[position()=1]) 2011; 44 Li (D0NR05134A-(cit41)/*[position()=1]) 2016; 213 Yang (D0NR05134A-(cit16)/*[position()=1]) 2019; 10 Wang (D0NR05134A-(cit19)/*[position()=1]) 2019; 11 Liu (D0NR05134A-(cit36)/*[position()=1]) 2019; 438 Zhang (D0NR05134A-(cit14)/*[position()=1]) 2018; 44 Shan (D0NR05134A-(cit43)/*[position()=1]) 2019; 11 Wang (D0NR05134A-(cit6)/*[position()=1]) 2019; 7 Chen (D0NR05134A-(cit39)/*[position()=1]) 2017; 8 Wu (D0NR05134A-(cit38)/*[position()=1]) 2018; 8 Xu (D0NR05134A-(cit27)/*[position()=1]) 2007; 19 Guo (D0NR05134A-(cit17)/*[position()=1]) 2020; 12 Du (D0NR05134A-(cit21)/*[position()=1]) 2011; 3 Li (D0NR05134A-(cit25)/*[position()=1]) 2018; 261 Noborikawa (D0NR05134A-(cit12)/*[position()=1]) 2014; 137 Goulet (D0NR05134A-(cit1)/*[position()=1]) 2014; 260 Ding (D0NR05134A-(cit10)/*[position()=1]) 2019; 9 Li (D0NR05134A-(cit18)/*[position()=1]) 2015; 278 Takamura (D0NR05134A-(cit37)/*[position()=1]) 1969; 14 An (D0NR05134A-(cit5)/*[position()=1]) 2016; 320 Kumar (D0NR05134A-(cit35)/*[position()=1]) 2019; 9 Sankar (D0NR05134A-(cit13)/*[position()=1]) 2018; 1 John (D0NR05134A-(cit40)/*[position()=1]) 2012; 116 Kjeang (D0NR05134A-(cit46)/*[position()=1]) 2008; 130 Wang (D0NR05134A-(cit26)/*[position()=1]) 2016; 8 Chen (D0NR05134A-(cit20)/*[position()=1]) 2017; 42 Zhang (D0NR05134A-(cit34)/*[position()=1]) 2012; 214 Zhang (D0NR05134A-(cit30)/*[position()=1]) 2018; 28 Niu (D0NR05134A-(cit22)/*[position()=1]) 2016; 306 |
References_xml | – volume: 8 start-page: 16736 year: 2016 ident: D0NR05134A-(cit26)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05375 – volume: 116 start-page: 5810 year: 2012 ident: D0NR05134A-(cit40)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp211887x – volume: 28 start-page: 1804600 year: 2018 ident: D0NR05134A-(cit30)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804600 – volume: 278 start-page: 569 year: 2015 ident: D0NR05134A-(cit18)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.064 – volume: 214 start-page: 277 year: 2012 ident: D0NR05134A-(cit34)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.04.007 – volume: 375 start-page: 37 year: 2018 ident: D0NR05134A-(cit44)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.11.055 – volume: 10 start-page: 2135 year: 2017 ident: D0NR05134A-(cit4)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201700228 – volume: 10 start-page: 1611 year: 2019 ident: D0NR05134A-(cit16)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09662-4 – volume: 2 start-page: 6081 year: 2014 ident: D0NR05134A-(cit24)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14011C – volume: 9 start-page: 1803238 year: 2019 ident: D0NR05134A-(cit35)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803238 – volume: 320 start-page: 127 year: 2016 ident: D0NR05134A-(cit5)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.04.082 – volume: 224 start-page: 139 year: 2013 ident: D0NR05134A-(cit45)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.09.091 – volume: 214 start-page: 68 year: 2012 ident: D0NR05134A-(cit11)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.04.032 – volume: 44 start-page: 127 year: 2018 ident: D0NR05134A-(cit14)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.075 – volume: 11 start-page: 43130 year: 2019 ident: D0NR05134A-(cit43)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13451 – volume: 130 start-page: 4000 year: 2008 ident: D0NR05134A-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja078248c – volume: 137 start-page: 654 year: 2014 ident: D0NR05134A-(cit12)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.04.188 – volume: 31 start-page: 576 year: 2007 ident: D0NR05134A-(cit2)/*[position()=1] publication-title: Int. J. Energy Res. doi: 10.1002/er.1281 – volume: 44 start-page: 443001 year: 2011 ident: D0NR05134A-(cit31)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/44/44/443001 – volume: 45 start-page: 2559 year: 2000 ident: D0NR05134A-(cit33)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(00)00353-4 – volume: 306 start-page: 361 year: 2016 ident: D0NR05134A-(cit22)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.12.044 – volume: 9 start-page: 1900955 year: 2019 ident: D0NR05134A-(cit10)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900955 – volume: 7 start-page: 22996 year: 2019 ident: D0NR05134A-(cit42)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07721A – volume: 14 start-page: 111 year: 1969 ident: D0NR05134A-(cit37)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/0013-4686(69)80008-3 – volume: 56 start-page: 5734 year: 2017 ident: D0NR05134A-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701816 – volume: 7 start-page: 16122 year: 2019 ident: D0NR05134A-(cit6)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00664H – volume: 261 start-page: 178 year: 2018 ident: D0NR05134A-(cit25)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.12.139 – volume: 213 start-page: 21 year: 2016 ident: D0NR05134A-(cit41)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.041 – volume: 12 start-page: 3469 year: 2020 ident: D0NR05134A-(cit17)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR09660D – volume: 438 start-page: 227058 year: 2019 ident: D0NR05134A-(cit36)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227058 – volume: 11 start-page: 2249 year: 2009 ident: D0NR05134A-(cit15)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.10.001 – volume: 41 start-page: 216 year: 2020 ident: D0NR05134A-(cit7)/*[position()=1] publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.05.016 – volume: 132 start-page: 7580 year: 2010 ident: D0NR05134A-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102177r – volume: 19 start-page: 4256 year: 2007 ident: D0NR05134A-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200602911 – volume: 217 start-page: 562 year: 2012 ident: D0NR05134A-(cit23)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.07.019 – volume: 420 start-page: 88 year: 2019 ident: D0NR05134A-(cit47)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.02.081 – volume: 42 start-page: 353 year: 2017 ident: D0NR05134A-(cit20)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.033 – volume: 11 start-page: 14174 year: 2019 ident: D0NR05134A-(cit19)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR03266E – volume: 8 start-page: 14136 year: 2017 ident: D0NR05134A-(cit39)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms14136 – volume: 8 start-page: 170179 year: 2018 ident: D0NR05134A-(cit38)/*[position()=1] publication-title: Adv. Energy Mater. – volume: 33 start-page: 6143 year: 2008 ident: D0NR05134A-(cit32)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.07.097 – volume: 8 start-page: 3853 year: 2015 ident: D0NR05134A-(cit8)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201500958 – volume: 217 start-page: 569 year: 2012 ident: D0NR05134A-(cit29)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.06.079 – volume: 4 start-page: 1301 year: 2011 ident: D0NR05134A-(cit9)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201100220 – volume: 3 start-page: 105 year: 2011 ident: D0NR05134A-(cit21)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100803d – volume: 260 start-page: 186 year: 2014 ident: D0NR05134A-(cit1)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.009 – volume: 1 start-page: 4140 year: 2018 ident: D0NR05134A-(cit13)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00790 |
SSID | ssj0069363 |
Score | 2.4532664 |
Snippet | The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 227 |
SubjectTerms | Anodes Carbon Catalysts Commercialization Dispersion Electrodeposition Electrodes Fuel cells Microfluidics Nanoparticles Oxidation Stability Voltammetry |
Title | Cyclic voltammetry electrodeposition of well-dispersed Pd nanoparticles on carbon paper as a flow-through anode for microfluidic direct formate fuel cells |
URI | https://www.proquest.com/docview/2451098200 https://www.proquest.com/docview/2447836900 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe67gUeEP8mOgYyghdUZSR2mj-Ppd2YYJRp6kR5ihzbkSZ1ydQmQvBR-Ax8SO4SO01FhYCXqHUuceT75e7snH9HyCvteZlMPeFEWRY4vvQ0vHPwuovQA4T4Kohqnu2Ps-Dsyn-_GC16vZ-drKWqTI_l9537Sv5Hq9AGesVdsv-g2fam0AC_Qb9wBA3D8a90PPkmkaMaLEyJC9AlbqxtytoobbOxMBrEBTpHXSMp-BoCzAs1zEUOs2WTFIcfDKRYpQXSrIIM1p4Rw2xZfHVsGR8QVw09-A1m8GXL6lpBz41DNDsg4Xyll0P8FLDuxrxgwIs1QKGFULtIPS-M36wbK2xaVC1ap-BVnampufKlvXpi9pNc2ovNmgVMUDEFZNSirFkZsWmpddqJKW63sX4MUx05byjOj3W3Ldw236wD04YYyRpjmHK7Hc-O_6OdbsPlyLqq3HwFNor7HedoEwJmn5LTq_PzZH6ymO-RfQaTEtYn--MPb999tp4_iHldua99dEuHy-M3m3tvB0CbWc3eypacqUOb-X1yz8xJ6LiBwwPS0_lDcrfDVPmI_GigRjtQo79BjRYZ3YYavVB0C2oUpBqo0RpqVKypoF2o0RpqFCBFu1CjDdSogRpFqNEaao_J1enJfHLmmLIejvTdqHSEghDTFaGvBNejQIZKMMVjEUeehvFJJXLu6RGXQSQgABaBgJFloQy5lzLNOD8g_bzI9RNCU4hHPU-GyH_vM5amWqSMx1nsySDOXD4gr-1YJ9Jw3mPplWVS517wOJm6s8taL-MBednK3jZMLzuljqzKEmMJ1gnzwbPFEEu7A_KiPQ2IxmEQuS4qlPFxw1SMMgeg6raPDTIG5HD3ieRWZYd_7vgpubN50Y5Iv1xV-hmEy2X63KD0F-epx_I |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+voltammetry+electrodeposition+of+well-dispersed+Pd+nanoparticles+on+carbon+paper+as+a+flow-through+anode+for+microfluidic+direct+formate+fuel+cells&rft.jtitle=Nanoscale&rft.au=Zhang%2C+Tong&rft.au=Zhu%2C+Xun&rft.au=Ding-Ding%2C+Ye&rft.au=Chen%2C+Rong&rft.date=2020-10-15&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=12&rft.issue=39&rft.spage=20270&rft.epage=20278&rft_id=info:doi/10.1039%2Fd0nr05134a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |