Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice

The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic refinement during brain development. Complement C3 is elevated in Alzheimer's disease (AD), colocalizing with neuritic plaques, and appe...

Full description

Saved in:
Bibliographic Details
Published inScience translational medicine Vol. 9; no. 392
Main Authors Shi, Qiaoqiao, Chowdhury, Saba, Ma, Rong, Le, Kevin X, Hong, Soyon, Caldarone, Barbara J, Stevens, Beth, Lemere, Cynthia A
Format Journal Article
LanguageEnglish
Published United States 31.05.2017
Subjects
Online AccessGet more information

Cover

Loading…
Abstract The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic refinement during brain development. Complement C3 is elevated in Alzheimer's disease (AD), colocalizing with neuritic plaques, and appears to contribute to clearance of Aβ by microglia in the brain. Previously, we reported that C3-deficient C57BL/6 mice were protected against age-related and region-specific loss of hippocampal synapses and cognitive decline during normal aging. Furthermore, blocking complement and downstream iC3b/CR3 signaling rescued synapses from Aβ-induced loss in young AD mice before amyloid plaques had accumulated. We assessed the effects of C3 deficiency in aged, plaque-rich APPswe/PS1dE9 transgenic mice (APP/PS1; KO). We examined the effects of C3 deficiency on cognition, Aβ plaque deposition, and plaque-related neuropathology at later AD stages in these mice. We found that 16-month-old APP/PS1; KO mice performed better on a learning and memory task than did APP/PS1 mice, despite having more cerebral Aβ plaques. Aged APP/PS1; KO mice also had fewer microglia and astrocytes localized within the center of hippocampal Aβ plaques compared to APP/PS1 mice. Several proinflammatory cytokines in the brain were reduced in APP/PS1; KO mice, consistent with an altered microglial phenotype. C3 deficiency also protected APP/PS1 mice against age-dependent loss of synapses and neurons. Our study suggests that complement C3 or downstream complement activation fragments may play an important role in Aβ plaque pathology, glial responses to plaques, and neuronal dysfunction in the brains of APP/PS1 mice.
AbstractList The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic refinement during brain development. Complement C3 is elevated in Alzheimer's disease (AD), colocalizing with neuritic plaques, and appears to contribute to clearance of Aβ by microglia in the brain. Previously, we reported that C3-deficient C57BL/6 mice were protected against age-related and region-specific loss of hippocampal synapses and cognitive decline during normal aging. Furthermore, blocking complement and downstream iC3b/CR3 signaling rescued synapses from Aβ-induced loss in young AD mice before amyloid plaques had accumulated. We assessed the effects of C3 deficiency in aged, plaque-rich APPswe/PS1dE9 transgenic mice (APP/PS1; KO). We examined the effects of C3 deficiency on cognition, Aβ plaque deposition, and plaque-related neuropathology at later AD stages in these mice. We found that 16-month-old APP/PS1; KO mice performed better on a learning and memory task than did APP/PS1 mice, despite having more cerebral Aβ plaques. Aged APP/PS1; KO mice also had fewer microglia and astrocytes localized within the center of hippocampal Aβ plaques compared to APP/PS1 mice. Several proinflammatory cytokines in the brain were reduced in APP/PS1; KO mice, consistent with an altered microglial phenotype. C3 deficiency also protected APP/PS1 mice against age-dependent loss of synapses and neurons. Our study suggests that complement C3 or downstream complement activation fragments may play an important role in Aβ plaque pathology, glial responses to plaques, and neuronal dysfunction in the brains of APP/PS1 mice.
Author Shi, Qiaoqiao
Caldarone, Barbara J
Hong, Soyon
Stevens, Beth
Chowdhury, Saba
Ma, Rong
Le, Kevin X
Lemere, Cynthia A
Author_xml – sequence: 1
  givenname: Qiaoqiao
  orcidid: 0000-0003-4035-9272
  surname: Shi
  fullname: Shi, Qiaoqiao
  organization: Harvard Medical School, Boston, MA 02115, USA
– sequence: 2
  givenname: Saba
  orcidid: 0000-0003-2945-7007
  surname: Chowdhury
  fullname: Chowdhury, Saba
  organization: Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA
– sequence: 3
  givenname: Rong
  orcidid: 0000-0002-4644-805X
  surname: Ma
  fullname: Ma, Rong
  organization: Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA
– sequence: 4
  givenname: Kevin X
  orcidid: 0000-0002-6879-8595
  surname: Le
  fullname: Le, Kevin X
  organization: Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA
– sequence: 5
  givenname: Soyon
  orcidid: 0000-0002-5744-4871
  surname: Hong
  fullname: Hong, Soyon
  organization: Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Center for Life Sciences, 12th Floor, 300 Longwood Avenue, Boston, MA 02115, USA
– sequence: 6
  givenname: Barbara J
  surname: Caldarone
  fullname: Caldarone, Barbara J
  organization: Harvard NeuroDiscovery Center NeuroBehavior Laboratory, Department of Neurology, Brigham and Women's Hospital, Harvard Institute of Medicine, Room 945, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
– sequence: 7
  givenname: Beth
  orcidid: 0000-0003-4226-1201
  surname: Stevens
  fullname: Stevens, Beth
  organization: Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Center for Life Sciences, 12th Floor, 300 Longwood Avenue, Boston, MA 02115, USA
– sequence: 8
  givenname: Cynthia A
  orcidid: 0000-0002-2983-7870
  surname: Lemere
  fullname: Lemere, Cynthia A
  email: clemere@bwh.harvard.edu
  organization: Harvard Medical School, Boston, MA 02115, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28566429$$D View this record in MEDLINE/PubMed
BookMark eNo1kF1LwzAYhYMo7kP_gUj-QLfkbZoll6PoFAYO1DthpOnbGWnTmqQX-_cW1KsD54EDz1mQS997JOSOsxXnINfRuhSMj22H9cqYRoIuLsicayEzCQJmZBHjF2NS5YW8JjNQhZQC9Jx8lH03tNihT7TMaY2Nsw69PdMh9AltitScjPMxUY9j6Gs8ocdgkus9dX6CWNOhNd8jZsHZT7o9HNaHV047Z_GGXDWmjXj7l0vy_vjwVj5l-5fdc7ndZ1YwlTJjubaag5AWUEuLGqsCWNPkWE-lEoWuYJMz1ghkVc03aqOAKZlzzDWqCpbk_nd3GKvpgeMQXGfC-fivCT9TdVgB
CitedBy_id crossref_primary_10_1038_s41573_019_0031_6
crossref_primary_10_1016_j_neuropharm_2025_110383
crossref_primary_10_1080_09553002_2023_2295966
crossref_primary_10_1016_j_jconrel_2021_06_037
crossref_primary_10_1111_nyas_15010
crossref_primary_10_1016_j_semcdb_2022_05_028
crossref_primary_10_1038_s41593_023_01257_z
crossref_primary_10_1016_j_tins_2020_08_002
crossref_primary_10_1002_eji_202350815
crossref_primary_10_1186_s13024_022_00522_2
crossref_primary_10_1002_alz_12610
crossref_primary_10_1007_s11064_021_03239_8
crossref_primary_10_1007_s12035_019_01667_w
crossref_primary_10_1016_j_jneuroim_2020_577302
crossref_primary_10_1152_jn_00021_2017
crossref_primary_10_1186_s12974_021_02308_7
crossref_primary_10_1083_jcb_201709069
crossref_primary_10_1096_fj_202000376R
crossref_primary_10_1016_j_celrep_2019_07_060
crossref_primary_10_1002_glia_23664
crossref_primary_10_1016_j_semcdb_2019_05_017
crossref_primary_10_1038_nm_4397
crossref_primary_10_3390_biom12020337
crossref_primary_10_14336_AD_2024_1629
crossref_primary_10_1016_j_tins_2020_01_003
crossref_primary_10_3390_cells12010063
crossref_primary_10_1038_s41598_018_27527_6
crossref_primary_10_1186_s13578_024_01251_3
crossref_primary_10_1016_j_arr_2021_101335
crossref_primary_10_14336_AD_2023_0718
crossref_primary_10_1038_s41392_021_00867_y
crossref_primary_10_1016_j_biopsych_2017_10_007
crossref_primary_10_3389_fncel_2018_00488
crossref_primary_10_1186_s13024_018_0284_2
crossref_primary_10_1016_j_bbi_2019_07_002
crossref_primary_10_1172_JCI140966
crossref_primary_10_1186_s13287_021_02399_2
crossref_primary_10_1021_acschemneuro_2c00607
crossref_primary_10_3389_fcell_2022_999024
crossref_primary_10_1016_j_neuint_2021_105080
crossref_primary_10_1038_s41598_019_46232_6
crossref_primary_10_3233_JAD_215510
crossref_primary_10_1016_j_cell_2024_05_058
crossref_primary_10_3390_ijms21228476
crossref_primary_10_3233_JAD_221185
crossref_primary_10_1038_s41593_020_0672_0
crossref_primary_10_3389_fnmol_2023_1152279
crossref_primary_10_1016_j_immuni_2023_06_016
crossref_primary_10_3934_molsci_2018_1_63
crossref_primary_10_3390_ijms21175960
crossref_primary_10_3390_ijms22168525
crossref_primary_10_1007_s00213_020_05522_y
crossref_primary_10_1038_s41598_024_65248_1
crossref_primary_10_1084_jem_20211488
crossref_primary_10_1093_ijnp_pyae038
crossref_primary_10_1016_j_arr_2021_101409
crossref_primary_10_1186_s12974_019_1453_0
crossref_primary_10_1007_s11481_023_10076_9
crossref_primary_10_3389_fnagi_2023_1269952
crossref_primary_10_1101_cshperspect_a036434
crossref_primary_10_1016_j_cellimm_2023_104778
crossref_primary_10_1038_s41380_018_0258_3
crossref_primary_10_1523_JNEUROSCI_2594_19_2020
crossref_primary_10_1038_s41467_024_52173_0
crossref_primary_10_1038_s41423_021_00751_3
crossref_primary_10_1186_s40662_022_00292_4
crossref_primary_10_1111_imr_12896
crossref_primary_10_1177_17448069221140532
crossref_primary_10_1186_s12974_022_02521_y
crossref_primary_10_1186_s40035_024_00438_5
crossref_primary_10_1016_j_ejphar_2021_173873
crossref_primary_10_3390_ijms19123753
crossref_primary_10_1124_pharmrev_120_000072
crossref_primary_10_3389_fncel_2019_00063
crossref_primary_10_1016_j_immuni_2022_03_018
crossref_primary_10_1515_revneuro_2022_0021
crossref_primary_10_1038_s41598_018_30675_4
crossref_primary_10_3389_fnmol_2020_00149
crossref_primary_10_1016_j_bja_2024_07_040
crossref_primary_10_1038_s41593_020_00796_z
crossref_primary_10_3390_biom11040600
crossref_primary_10_3389_fnagi_2018_00199
crossref_primary_10_4103_1673_5374_332160
crossref_primary_10_1016_j_tins_2019_11_001
crossref_primary_10_3390_ijms20030719
crossref_primary_10_1016_j_conb_2024_102877
crossref_primary_10_3389_fphar_2023_1125982
crossref_primary_10_1016_j_phymed_2023_155011
crossref_primary_10_3389_fncel_2019_00042
crossref_primary_10_3389_fnmol_2023_1265944
crossref_primary_10_3390_biom14101323
crossref_primary_10_1016_j_expneurol_2025_115189
crossref_primary_10_1016_j_jbc_2021_101085
crossref_primary_10_1016_j_bbi_2018_04_003
crossref_primary_10_1186_s12974_021_02158_3
crossref_primary_10_3389_fgene_2020_590660
crossref_primary_10_1016_j_nrleng_2019_06_008
crossref_primary_10_1084_jem_20190009
crossref_primary_10_3389_fgene_2021_647246
crossref_primary_10_1007_s12035_022_02965_6
crossref_primary_10_1016_j_brainresbull_2023_110683
crossref_primary_10_1016_j_brainresbull_2023_110685
crossref_primary_10_1186_s40478_019_0847_7
crossref_primary_10_1002_glia_24114
crossref_primary_10_3389_fnmol_2023_1169320
crossref_primary_10_1002_glia_24355
crossref_primary_10_3389_fnins_2018_00963
crossref_primary_10_1016_j_bcp_2024_116258
crossref_primary_10_14336_AD_2024_0373
crossref_primary_10_1007_s00281_017_0662_9
crossref_primary_10_3390_ijms25020817
crossref_primary_10_1002_epi4_13030
crossref_primary_10_1038_s41582_020_0400_0
crossref_primary_10_1002_acn3_50827
crossref_primary_10_1016_j_pharmthera_2024_108748
crossref_primary_10_1111_cpr_13295
crossref_primary_10_3389_fncel_2024_1365448
crossref_primary_10_3390_nu13051702
crossref_primary_10_4049_jimmunol_2000752
crossref_primary_10_1016_j_immuni_2024_11_003
crossref_primary_10_3389_fimmu_2021_721830
crossref_primary_10_1523_JNEUROSCI_1136_17_2017
crossref_primary_10_1155_2021_3883204
crossref_primary_10_1126_scitranslmed_adf0141
crossref_primary_10_1016_j_arr_2018_07_004
crossref_primary_10_1186_s12974_023_02702_3
crossref_primary_10_3389_fneur_2023_1308823
crossref_primary_10_1007_s00018_020_03468_0
crossref_primary_10_1038_s41380_018_0255_6
crossref_primary_10_1002_alz_14618
crossref_primary_10_1007_s00401_021_02384_2
crossref_primary_10_4049_jimmunol_1901068
crossref_primary_10_3389_fimmu_2019_00362
crossref_primary_10_1038_s41375_019_0640_4
crossref_primary_10_1016_j_lfs_2020_118370
crossref_primary_10_3390_biomedicines9101351
crossref_primary_10_1186_s13024_022_00552_w
crossref_primary_10_1016_j_pneurobio_2024_102654
crossref_primary_10_1126_science_abb8587
crossref_primary_10_1016_j_celrep_2019_03_096
crossref_primary_10_1111_jnc_16258
crossref_primary_10_2139_ssrn_3244529
crossref_primary_10_1016_j_carbpol_2023_121033
crossref_primary_10_1016_j_neuron_2019_12_015
crossref_primary_10_3389_fnmol_2022_1061343
crossref_primary_10_1021_acs_biochem_7b01214
crossref_primary_10_1080_17460441_2024_2322988
crossref_primary_10_1097_ONO_0000000000000027
crossref_primary_10_3389_fimmu_2019_00790
crossref_primary_10_3389_fncel_2022_899251
crossref_primary_10_1177_10738584211070273
crossref_primary_10_1002_glia_24323
crossref_primary_10_1016_j_arr_2024_102579
crossref_primary_10_3390_genes12081247
crossref_primary_10_1111_jnc_16263
crossref_primary_10_3389_fnmol_2017_00421
crossref_primary_10_3389_fphar_2020_00394
crossref_primary_10_1146_annurev_pathol_031620_113409
crossref_primary_10_1002_advs_202301574
crossref_primary_10_1016_j_neubiorev_2020_10_020
crossref_primary_10_1016_j_neuroscience_2025_03_033
crossref_primary_10_1186_s40478_022_01416_6
crossref_primary_10_3390_biom12101505
crossref_primary_10_3390_ijms222413305
crossref_primary_10_1038_s41467_021_27248_x
crossref_primary_10_1016_j_pneurobio_2017_12_003
crossref_primary_10_3389_fgene_2021_658323
crossref_primary_10_1523_JNEUROSCI_0555_21_2021
crossref_primary_10_3389_fpubh_2023_1268325
crossref_primary_10_3389_fimmu_2020_566892
crossref_primary_10_12779_dnd_2020_19_2_39
crossref_primary_10_1134_S0022093022010112
crossref_primary_10_1038_s41467_021_22301_1
crossref_primary_10_1523_JNEUROSCI_1871_19_2019
crossref_primary_10_1016_j_neuron_2018_10_031
crossref_primary_10_1186_s12974_025_03333_6
crossref_primary_10_3389_fneur_2024_1396520
crossref_primary_10_1126_scitranslmed_abb1206
crossref_primary_10_3389_fgene_2023_1166831
crossref_primary_10_1002_alz_13682
crossref_primary_10_1016_j_neuron_2024_10_013
crossref_primary_10_1186_s12974_021_02302_z
crossref_primary_10_1016_j_xcrm_2023_101175
crossref_primary_10_1002_prot_26723
crossref_primary_10_1016_j_nrl_2019_06_002
crossref_primary_10_1097_TA_0000000000003887
crossref_primary_10_1016_j_neurobiolaging_2021_01_001
crossref_primary_10_2174_1574885518666230427100702
crossref_primary_10_1007_s12035_021_02419_5
crossref_primary_10_1002_glia_23563
crossref_primary_10_3390_cells9071618
crossref_primary_10_1042_CS20230513
crossref_primary_10_1080_09537104_2020_1849603
crossref_primary_10_1002_pmic_202200183
crossref_primary_10_1186_s12974_018_1180_y
crossref_primary_10_1016_j_ynstr_2018_05_003
crossref_primary_10_1016_j_neuroscience_2018_01_059
crossref_primary_10_1111_imm_13264
crossref_primary_10_3389_fimmu_2024_1425816
crossref_primary_10_1172_JCI167501
crossref_primary_10_1016_j_expneurol_2023_114371
crossref_primary_10_1016_j_celrep_2019_11_044
crossref_primary_10_1146_annurev_genet_112618_043515
crossref_primary_10_3389_fnmol_2018_00150
crossref_primary_10_1016_j_tins_2023_11_010
crossref_primary_10_1038_s41392_023_01588_0
crossref_primary_10_1002_biof_2107
crossref_primary_10_1016_j_expneurol_2021_113845
crossref_primary_10_14336_AD_2023_0516_1
crossref_primary_10_1186_s13195_020_00588_4
crossref_primary_10_1016_S1474_4422_23_00247_8
crossref_primary_10_1016_j_neuron_2020_01_004
crossref_primary_10_1038_s41573_023_00823_1
crossref_primary_10_1111_imr_13147
crossref_primary_10_1007_s11064_021_03419_6
crossref_primary_10_1016_j_phrs_2021_105697
crossref_primary_10_1038_s41598_019_48615_1
crossref_primary_10_1016_j_nbd_2021_105533
crossref_primary_10_1186_s13024_023_00635_2
crossref_primary_10_1155_2019_9408612
crossref_primary_10_15252_emmm_201809665
crossref_primary_10_1038_s41593_019_0454_8
crossref_primary_10_3233_ADR_220053
crossref_primary_10_1016_j_neulet_2019_134462
crossref_primary_10_3390_cells10071812
crossref_primary_10_3233_JAD_215196
crossref_primary_10_1186_s13195_023_01345_z
crossref_primary_10_3390_biom11111598
crossref_primary_10_3389_fnins_2021_781722
crossref_primary_10_1186_s12974_018_1313_3
crossref_primary_10_3389_fbinf_2024_1463001
crossref_primary_10_3390_ijms222413647
crossref_primary_10_1186_s13195_021_00791_x
crossref_primary_10_1016_j_ejphar_2019_02_020
crossref_primary_10_4049_jimmunol_1900494
crossref_primary_10_3389_fphys_2020_00393
crossref_primary_10_1038_ni_3858
crossref_primary_10_1186_s13024_017_0210_z
crossref_primary_10_1016_j_ejcb_2024_151441
crossref_primary_10_1155_2018_2530414
crossref_primary_10_3390_ijms25021160
crossref_primary_10_1111_jnc_15327
crossref_primary_10_3389_fnagi_2019_00143
crossref_primary_10_1007_s12035_018_1030_z
crossref_primary_10_1016_j_neuron_2019_04_011
crossref_primary_10_1146_annurev_immunol_101320_014237
crossref_primary_10_3389_fimmu_2022_970486
crossref_primary_10_3390_brainsci14020158
crossref_primary_10_1016_j_schres_2024_01_017
crossref_primary_10_1038_s41467_024_54007_5
crossref_primary_10_3389_fnagi_2020_00219
crossref_primary_10_14336_AD_2018_0201
crossref_primary_10_1016_j_expneurol_2021_113870
crossref_primary_10_1021_acs_nanolett_2c00191
crossref_primary_10_1097_WNR_0000000000001422
crossref_primary_10_3389_fimmu_2022_834424
crossref_primary_10_3390_antiox9080740
crossref_primary_10_1016_j_bbi_2021_03_020
crossref_primary_10_1016_j_cmet_2017_09_010
crossref_primary_10_1111_cns_13077
crossref_primary_10_1186_s12974_022_02539_2
crossref_primary_10_1186_s40478_021_01245_z
crossref_primary_10_3233_JAD_179911
crossref_primary_10_1186_s13195_024_01492_x
crossref_primary_10_1186_s40478_020_01094_2
crossref_primary_10_1016_j_isci_2020_101465
crossref_primary_10_1186_s12967_024_05939_5
crossref_primary_10_1016_j_bbi_2024_07_021
crossref_primary_10_1146_annurev_immunol_101921_035639
crossref_primary_10_1007_s00702_017_1795_7
crossref_primary_10_15252_embj_2022113246
crossref_primary_10_1016_j_arr_2024_102638
crossref_primary_10_1111_febs_15861
crossref_primary_10_3390_md22070324
crossref_primary_10_26599_JNR_2018_9040001
crossref_primary_10_3389_fimmu_2022_845897
crossref_primary_10_1038_s41598_019_55366_6
crossref_primary_10_1016_j_smim_2019_101340
crossref_primary_10_1016_j_lssr_2022_08_002
crossref_primary_10_1007_s12035_022_02791_w
crossref_primary_10_3390_brainsci14050434
crossref_primary_10_1016_j_neuropharm_2022_108966
crossref_primary_10_1111_ejn_15225
crossref_primary_10_3390_ijms24065285
crossref_primary_10_1038_s41577_024_01104_7
crossref_primary_10_1016_j_molimm_2018_06_264
crossref_primary_10_1146_annurev_neuro_070918_050306
crossref_primary_10_1016_j_neubiorev_2020_05_010
crossref_primary_10_1523_ENEURO_0306_22_2022
crossref_primary_10_1186_s13024_021_00465_0
crossref_primary_10_1002_dvdy_1
crossref_primary_10_1038_s41598_024_68054_x
crossref_primary_10_1038_s41590_020_00812_1
crossref_primary_10_1007_s12035_022_02762_1
crossref_primary_10_1016_j_nbd_2020_105072
crossref_primary_10_3389_fnins_2019_00025
crossref_primary_10_1126_scisignal_aan8796
crossref_primary_10_1038_nrneurol_2017_89
crossref_primary_10_3390_brainsci13020262
crossref_primary_10_1016_j_bbi_2024_02_016
crossref_primary_10_3390_ijms23105404
crossref_primary_10_1016_j_immuni_2019_03_016
crossref_primary_10_1111_jnc_15933
crossref_primary_10_3389_fnagi_2022_888989
crossref_primary_10_1111_bph_14618
crossref_primary_10_1007_s12015_023_10542_0
crossref_primary_10_1016_j_tips_2022_02_006
crossref_primary_10_3390_ijms25042272
crossref_primary_10_1002_glia_23946
crossref_primary_10_1016_j_phrs_2024_107098
crossref_primary_10_1016_j_bbi_2024_09_022
crossref_primary_10_17116_jnevro2020120081154
crossref_primary_10_3233_JAD_201055
crossref_primary_10_1016_j_neuron_2017_11_028
crossref_primary_10_1186_s13024_024_00789_7
crossref_primary_10_1186_s12974_023_02807_9
crossref_primary_10_1146_annurev_cellbio_100616_060509
crossref_primary_10_1016_j_bbi_2022_10_009
crossref_primary_10_1111_jnc_15941
crossref_primary_10_3389_fncel_2021_710390
crossref_primary_10_3389_fnagi_2023_1103278
crossref_primary_10_3233_JAD_179925
crossref_primary_10_1016_j_ygeno_2019_07_018
crossref_primary_10_1186_s12974_022_02668_8
crossref_primary_10_1016_j_neurobiolaging_2020_03_024
crossref_primary_10_3389_fnagi_2023_1201982
crossref_primary_10_1007_s40263_020_00737_1
crossref_primary_10_1007_s11064_022_03699_6
crossref_primary_10_1016_j_bbr_2024_115258
crossref_primary_10_1111_febs_16638
crossref_primary_10_2147_ITT_S305420
crossref_primary_10_3390_ijms19113669
crossref_primary_10_1038_s41598_023_41240_z
crossref_primary_10_1038_s41392_023_01486_5
crossref_primary_10_1093_brain_awae230
crossref_primary_10_1038_s41380_023_02097_w
crossref_primary_10_1007_s11064_022_03578_0
crossref_primary_10_1523_JNEUROSCI_1184_19_2019
crossref_primary_10_1038_s41582_022_00749_z
crossref_primary_10_1016_j_tins_2020_10_003
crossref_primary_10_1111_jcmm_17006
crossref_primary_10_1002_dad2_12490
crossref_primary_10_1177_09636897231171001
crossref_primary_10_1134_S0022093024060036
crossref_primary_10_1111_febs_14323
crossref_primary_10_1111_jnc_15603
crossref_primary_10_3389_fneur_2021_587771
crossref_primary_10_1111_febs_15772
crossref_primary_10_3390_biomedicines10051206
crossref_primary_10_1186_s13024_021_00485_w
crossref_primary_10_3389_fimmu_2020_00724
crossref_primary_10_1186_s40478_022_01356_1
crossref_primary_10_1002_dneu_22777
crossref_primary_10_1016_j_neubiorev_2024_105868
crossref_primary_10_1016_j_bcp_2019_08_016
crossref_primary_10_1126_sciadv_ade0764
crossref_primary_10_1016_j_bbi_2025_03_026
crossref_primary_10_1016_j_isci_2021_102942
crossref_primary_10_1152_ajpgi_00307_2021
crossref_primary_10_1002_sctm_19_0327
crossref_primary_10_1016_j_brainresbull_2020_07_004
crossref_primary_10_1038_s41380_019_0536_8
crossref_primary_10_1016_j_drudis_2022_01_004
crossref_primary_10_1038_s41467_018_06118_z
crossref_primary_10_1016_j_bbadis_2023_166672
crossref_primary_10_1038_s41380_024_02884_z
crossref_primary_10_3390_ijms242317087
crossref_primary_10_1007_s11481_019_09839_0
crossref_primary_10_2139_ssrn_3807499
crossref_primary_10_1186_s12974_023_02752_7
crossref_primary_10_1038_s43587_021_00123_6
crossref_primary_10_3390_cells9112415
crossref_primary_10_1016_j_neubiorev_2023_105246
crossref_primary_10_1016_j_nbd_2020_105015
crossref_primary_10_1038_s41583_018_0057_5
crossref_primary_10_1016_j_neuint_2021_104982
crossref_primary_10_1038_s41467_022_29506_y
crossref_primary_10_1038_s41582_020_00435_y
crossref_primary_10_1016_j_gendis_2024_101337
crossref_primary_10_1038_s41467_018_06449_x
crossref_primary_10_1186_s12916_022_02472_4
crossref_primary_10_4103_1673_5374_385854
crossref_primary_10_1111_jnc_15999
crossref_primary_10_1016_j_bbi_2021_04_003
crossref_primary_10_1093_jleuko_qiae134
crossref_primary_10_1093_brain_awae278
crossref_primary_10_1186_s12974_020_02024_8
crossref_primary_10_1186_s13024_021_00474_z
crossref_primary_10_1016_j_neurobiolaging_2019_03_018
crossref_primary_10_1016_j_brainresbull_2018_05_021
crossref_primary_10_1186_s12974_021_02276_y
crossref_primary_10_1084_jem_20171487
crossref_primary_10_2174_1570159X17666190603170511
crossref_primary_10_3390_cells12010197
crossref_primary_10_1038_s41380_022_01693_6
crossref_primary_10_1016_j_bbi_2022_12_019
crossref_primary_10_1111_jnc_15885
crossref_primary_10_3390_biom14070833
ContentType Journal Article
Copyright Copyright © 2017, American Association for the Advancement of Science.
Copyright_xml – notice: Copyright © 2017, American Association for the Advancement of Science.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1126/scitranslmed.aaf6295
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1946-6242
ExternalDocumentID 28566429
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R21 AG044713
GroupedDBID ---
0R~
4.4
53G
7~K
ABJNI
ACGFS
AENEX
AJGZS
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BKF
C45
CGR
CUY
CVF
DU5
EBS
ECM
EIF
EJD
EMOBN
F5P
HZ~
NPM
O9-
OFXIZ
OVD
OVIDX
P2P
RHI
TEORI
ID FETCH-LOGICAL-c408t-ac19c91246c2e96ce9eb520ff3ed2468459b27300f4e0bd17878208631e39e8b2
IngestDate Thu Jan 02 22:59:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 392
Language English
License Copyright © 2017, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-ac19c91246c2e96ce9eb520ff3ed2468459b27300f4e0bd17878208631e39e8b2
ORCID 0000-0002-2983-7870
0000-0003-4035-9272
0000-0003-4226-1201
0000-0002-5744-4871
0000-0002-6879-8595
0000-0003-2945-7007
0000-0002-4644-805X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6936623
PMID 28566429
ParticipantIDs pubmed_primary_28566429
PublicationCentury 2000
PublicationDate 2017-05-31
PublicationDateYYYYMMDD 2017-05-31
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science translational medicine
PublicationTitleAlternate Sci Transl Med
PublicationYear 2017
SSID ssj0068356
Score 2.6428602
Snippet The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic...
SourceID pubmed
SourceType Index Database
SubjectTerms Aging - pathology
Amyloid beta-Protein Precursor - metabolism
Animals
Astrocytes - pathology
Cognitive Dysfunction
Complement C3 - deficiency
Cytokines - metabolism
Gliosis - pathology
Hippocampus - metabolism
Hippocampus - pathology
Mice, Inbred C57BL
Mice, Knockout
Nerve Degeneration - pathology
Nerve Degeneration - prevention & control
Plaque, Amyloid - metabolism
Plaque, Amyloid - pathology
Presenilin-1 - metabolism
Solubility
Synapses - metabolism
Synapses - pathology
Title Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice
URI https://www.ncbi.nlm.nih.gov/pubmed/28566429
Volume 9
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBbpCmUvZetla7sNPfTNqLVlWbEeS9gog5SUpJCHQpFkqS0sSUtNC_31Pbo4Mclauj3EBAmM7O_zuUnnHIQOq0yLHAwNUmrGCLOFIsIUkhQmS21putb6gH7_jJ9esN_jYtzpPLWzS2p1pJ__mlfyP6jCGODqsmT_Adn5TWEA_gO-cAWE4foujN3HHI5_J708qYyrBuFTKWP1hYdEXoPn_1AnvmxlZa59kenmfCOIksq1kQbVQEAc3iQngwEsZjDMkkk8EtfYrY0IqJ1q-9MEEJc35oe-Q3Byfitn9_BbHB2YPVU3ccN-KNVcE_SD5TqL2tOfCwrJQo-wvHE7IgFaLm6mO4USpKhgnLjEk7aYFS025aH_3ar4bhpOhqeBpziS0nIa-nC2EL2beEhpCdYoCyGTt2eXimo3U2toDdwL1y_VBXmCAudglPKYZRnzq1aW42pIx1ss-SPeLhl9QpvRocAngR2fUcdMt9BGPyKzjS4XJMG9HC9IghuS4EgSvEISfDvFjiS4RRIMJDkGimBHkR108evnqHdKYksNolla1kTqTGgBNh3X1AiujTCqoKm1ualgsGSFUNS1MLDMpKrKQJyDiVjyPDO5MKWiu-jDdDY1XxFWVGaSM0FL1WWaUmm6ukgVOGsuHZrle-hLeC9Xd6FuylXzxvZfnTlAHxeE-obWLXyo5jtYfbX64TF6ARpKWic
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complement+C3+deficiency+protects+against+neurodegeneration+in+aged+plaque-rich+APP%2FPS1+mice&rft.jtitle=Science+translational+medicine&rft.au=Shi%2C+Qiaoqiao&rft.au=Chowdhury%2C+Saba&rft.au=Ma%2C+Rong&rft.au=Le%2C+Kevin+X&rft.date=2017-05-31&rft.eissn=1946-6242&rft.volume=9&rft.issue=392&rft_id=info:doi/10.1126%2Fscitranslmed.aaf6295&rft_id=info%3Apmid%2F28566429&rft_id=info%3Apmid%2F28566429&rft.externalDocID=28566429