Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice
The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic refinement during brain development. Complement C3 is elevated in Alzheimer's disease (AD), colocalizing with neuritic plaques, and appe...
Saved in:
Published in | Science translational medicine Vol. 9; no. 392 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
31.05.2017
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic refinement during brain development. Complement C3 is elevated in Alzheimer's disease (AD), colocalizing with neuritic plaques, and appears to contribute to clearance of Aβ by microglia in the brain. Previously, we reported that C3-deficient C57BL/6 mice were protected against age-related and region-specific loss of hippocampal synapses and cognitive decline during normal aging. Furthermore, blocking complement and downstream iC3b/CR3 signaling rescued synapses from Aβ-induced loss in young AD mice before amyloid plaques had accumulated. We assessed the effects of C3 deficiency in aged, plaque-rich APPswe/PS1dE9 transgenic mice (APP/PS1;
KO). We examined the effects of C3 deficiency on cognition, Aβ plaque deposition, and plaque-related neuropathology at later AD stages in these mice. We found that 16-month-old APP/PS1;
KO mice performed better on a learning and memory task than did APP/PS1 mice, despite having more cerebral Aβ plaques. Aged APP/PS1;
KO mice also had fewer microglia and astrocytes localized within the center of hippocampal Aβ plaques compared to APP/PS1 mice. Several proinflammatory cytokines in the brain were reduced in APP/PS1;
KO mice, consistent with an altered microglial phenotype. C3 deficiency also protected APP/PS1 mice against age-dependent loss of synapses and neurons. Our study suggests that complement C3 or downstream complement activation fragments may play an important role in Aβ plaque pathology, glial responses to plaques, and neuronal dysfunction in the brains of APP/PS1 mice. |
---|---|
AbstractList | The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic refinement during brain development. Complement C3 is elevated in Alzheimer's disease (AD), colocalizing with neuritic plaques, and appears to contribute to clearance of Aβ by microglia in the brain. Previously, we reported that C3-deficient C57BL/6 mice were protected against age-related and region-specific loss of hippocampal synapses and cognitive decline during normal aging. Furthermore, blocking complement and downstream iC3b/CR3 signaling rescued synapses from Aβ-induced loss in young AD mice before amyloid plaques had accumulated. We assessed the effects of C3 deficiency in aged, plaque-rich APPswe/PS1dE9 transgenic mice (APP/PS1;
KO). We examined the effects of C3 deficiency on cognition, Aβ plaque deposition, and plaque-related neuropathology at later AD stages in these mice. We found that 16-month-old APP/PS1;
KO mice performed better on a learning and memory task than did APP/PS1 mice, despite having more cerebral Aβ plaques. Aged APP/PS1;
KO mice also had fewer microglia and astrocytes localized within the center of hippocampal Aβ plaques compared to APP/PS1 mice. Several proinflammatory cytokines in the brain were reduced in APP/PS1;
KO mice, consistent with an altered microglial phenotype. C3 deficiency also protected APP/PS1 mice against age-dependent loss of synapses and neurons. Our study suggests that complement C3 or downstream complement activation fragments may play an important role in Aβ plaque pathology, glial responses to plaques, and neuronal dysfunction in the brains of APP/PS1 mice. |
Author | Shi, Qiaoqiao Caldarone, Barbara J Hong, Soyon Stevens, Beth Chowdhury, Saba Ma, Rong Le, Kevin X Lemere, Cynthia A |
Author_xml | – sequence: 1 givenname: Qiaoqiao orcidid: 0000-0003-4035-9272 surname: Shi fullname: Shi, Qiaoqiao organization: Harvard Medical School, Boston, MA 02115, USA – sequence: 2 givenname: Saba orcidid: 0000-0003-2945-7007 surname: Chowdhury fullname: Chowdhury, Saba organization: Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA – sequence: 3 givenname: Rong orcidid: 0000-0002-4644-805X surname: Ma fullname: Ma, Rong organization: Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA – sequence: 4 givenname: Kevin X orcidid: 0000-0002-6879-8595 surname: Le fullname: Le, Kevin X organization: Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA – sequence: 5 givenname: Soyon orcidid: 0000-0002-5744-4871 surname: Hong fullname: Hong, Soyon organization: Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Center for Life Sciences, 12th Floor, 300 Longwood Avenue, Boston, MA 02115, USA – sequence: 6 givenname: Barbara J surname: Caldarone fullname: Caldarone, Barbara J organization: Harvard NeuroDiscovery Center NeuroBehavior Laboratory, Department of Neurology, Brigham and Women's Hospital, Harvard Institute of Medicine, Room 945, 77 Avenue Louis Pasteur, Boston, MA 02115, USA – sequence: 7 givenname: Beth orcidid: 0000-0003-4226-1201 surname: Stevens fullname: Stevens, Beth organization: Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Center for Life Sciences, 12th Floor, 300 Longwood Avenue, Boston, MA 02115, USA – sequence: 8 givenname: Cynthia A orcidid: 0000-0002-2983-7870 surname: Lemere fullname: Lemere, Cynthia A email: clemere@bwh.harvard.edu organization: Harvard Medical School, Boston, MA 02115, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28566429$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kF1LwzAYhYMo7kP_gUj-QLfkbZoll6PoFAYO1DthpOnbGWnTmqQX-_cW1KsD54EDz1mQS997JOSOsxXnINfRuhSMj22H9cqYRoIuLsicayEzCQJmZBHjF2NS5YW8JjNQhZQC9Jx8lH03tNihT7TMaY2Nsw69PdMh9AltitScjPMxUY9j6Gs8ocdgkus9dX6CWNOhNd8jZsHZT7o9HNaHV047Z_GGXDWmjXj7l0vy_vjwVj5l-5fdc7ndZ1YwlTJjubaag5AWUEuLGqsCWNPkWE-lEoWuYJMz1ghkVc03aqOAKZlzzDWqCpbk_nd3GKvpgeMQXGfC-fivCT9TdVgB |
CitedBy_id | crossref_primary_10_1038_s41573_019_0031_6 crossref_primary_10_1016_j_neuropharm_2025_110383 crossref_primary_10_1080_09553002_2023_2295966 crossref_primary_10_1016_j_jconrel_2021_06_037 crossref_primary_10_1111_nyas_15010 crossref_primary_10_1016_j_semcdb_2022_05_028 crossref_primary_10_1038_s41593_023_01257_z crossref_primary_10_1016_j_tins_2020_08_002 crossref_primary_10_1002_eji_202350815 crossref_primary_10_1186_s13024_022_00522_2 crossref_primary_10_1002_alz_12610 crossref_primary_10_1007_s11064_021_03239_8 crossref_primary_10_1007_s12035_019_01667_w crossref_primary_10_1016_j_jneuroim_2020_577302 crossref_primary_10_1152_jn_00021_2017 crossref_primary_10_1186_s12974_021_02308_7 crossref_primary_10_1083_jcb_201709069 crossref_primary_10_1096_fj_202000376R crossref_primary_10_1016_j_celrep_2019_07_060 crossref_primary_10_1002_glia_23664 crossref_primary_10_1016_j_semcdb_2019_05_017 crossref_primary_10_1038_nm_4397 crossref_primary_10_3390_biom12020337 crossref_primary_10_14336_AD_2024_1629 crossref_primary_10_1016_j_tins_2020_01_003 crossref_primary_10_3390_cells12010063 crossref_primary_10_1038_s41598_018_27527_6 crossref_primary_10_1186_s13578_024_01251_3 crossref_primary_10_1016_j_arr_2021_101335 crossref_primary_10_14336_AD_2023_0718 crossref_primary_10_1038_s41392_021_00867_y crossref_primary_10_1016_j_biopsych_2017_10_007 crossref_primary_10_3389_fncel_2018_00488 crossref_primary_10_1186_s13024_018_0284_2 crossref_primary_10_1016_j_bbi_2019_07_002 crossref_primary_10_1172_JCI140966 crossref_primary_10_1186_s13287_021_02399_2 crossref_primary_10_1021_acschemneuro_2c00607 crossref_primary_10_3389_fcell_2022_999024 crossref_primary_10_1016_j_neuint_2021_105080 crossref_primary_10_1038_s41598_019_46232_6 crossref_primary_10_3233_JAD_215510 crossref_primary_10_1016_j_cell_2024_05_058 crossref_primary_10_3390_ijms21228476 crossref_primary_10_3233_JAD_221185 crossref_primary_10_1038_s41593_020_0672_0 crossref_primary_10_3389_fnmol_2023_1152279 crossref_primary_10_1016_j_immuni_2023_06_016 crossref_primary_10_3934_molsci_2018_1_63 crossref_primary_10_3390_ijms21175960 crossref_primary_10_3390_ijms22168525 crossref_primary_10_1007_s00213_020_05522_y crossref_primary_10_1038_s41598_024_65248_1 crossref_primary_10_1084_jem_20211488 crossref_primary_10_1093_ijnp_pyae038 crossref_primary_10_1016_j_arr_2021_101409 crossref_primary_10_1186_s12974_019_1453_0 crossref_primary_10_1007_s11481_023_10076_9 crossref_primary_10_3389_fnagi_2023_1269952 crossref_primary_10_1101_cshperspect_a036434 crossref_primary_10_1016_j_cellimm_2023_104778 crossref_primary_10_1038_s41380_018_0258_3 crossref_primary_10_1523_JNEUROSCI_2594_19_2020 crossref_primary_10_1038_s41467_024_52173_0 crossref_primary_10_1038_s41423_021_00751_3 crossref_primary_10_1186_s40662_022_00292_4 crossref_primary_10_1111_imr_12896 crossref_primary_10_1177_17448069221140532 crossref_primary_10_1186_s12974_022_02521_y crossref_primary_10_1186_s40035_024_00438_5 crossref_primary_10_1016_j_ejphar_2021_173873 crossref_primary_10_3390_ijms19123753 crossref_primary_10_1124_pharmrev_120_000072 crossref_primary_10_3389_fncel_2019_00063 crossref_primary_10_1016_j_immuni_2022_03_018 crossref_primary_10_1515_revneuro_2022_0021 crossref_primary_10_1038_s41598_018_30675_4 crossref_primary_10_3389_fnmol_2020_00149 crossref_primary_10_1016_j_bja_2024_07_040 crossref_primary_10_1038_s41593_020_00796_z crossref_primary_10_3390_biom11040600 crossref_primary_10_3389_fnagi_2018_00199 crossref_primary_10_4103_1673_5374_332160 crossref_primary_10_1016_j_tins_2019_11_001 crossref_primary_10_3390_ijms20030719 crossref_primary_10_1016_j_conb_2024_102877 crossref_primary_10_3389_fphar_2023_1125982 crossref_primary_10_1016_j_phymed_2023_155011 crossref_primary_10_3389_fncel_2019_00042 crossref_primary_10_3389_fnmol_2023_1265944 crossref_primary_10_3390_biom14101323 crossref_primary_10_1016_j_expneurol_2025_115189 crossref_primary_10_1016_j_jbc_2021_101085 crossref_primary_10_1016_j_bbi_2018_04_003 crossref_primary_10_1186_s12974_021_02158_3 crossref_primary_10_3389_fgene_2020_590660 crossref_primary_10_1016_j_nrleng_2019_06_008 crossref_primary_10_1084_jem_20190009 crossref_primary_10_3389_fgene_2021_647246 crossref_primary_10_1007_s12035_022_02965_6 crossref_primary_10_1016_j_brainresbull_2023_110683 crossref_primary_10_1016_j_brainresbull_2023_110685 crossref_primary_10_1186_s40478_019_0847_7 crossref_primary_10_1002_glia_24114 crossref_primary_10_3389_fnmol_2023_1169320 crossref_primary_10_1002_glia_24355 crossref_primary_10_3389_fnins_2018_00963 crossref_primary_10_1016_j_bcp_2024_116258 crossref_primary_10_14336_AD_2024_0373 crossref_primary_10_1007_s00281_017_0662_9 crossref_primary_10_3390_ijms25020817 crossref_primary_10_1002_epi4_13030 crossref_primary_10_1038_s41582_020_0400_0 crossref_primary_10_1002_acn3_50827 crossref_primary_10_1016_j_pharmthera_2024_108748 crossref_primary_10_1111_cpr_13295 crossref_primary_10_3389_fncel_2024_1365448 crossref_primary_10_3390_nu13051702 crossref_primary_10_4049_jimmunol_2000752 crossref_primary_10_1016_j_immuni_2024_11_003 crossref_primary_10_3389_fimmu_2021_721830 crossref_primary_10_1523_JNEUROSCI_1136_17_2017 crossref_primary_10_1155_2021_3883204 crossref_primary_10_1126_scitranslmed_adf0141 crossref_primary_10_1016_j_arr_2018_07_004 crossref_primary_10_1186_s12974_023_02702_3 crossref_primary_10_3389_fneur_2023_1308823 crossref_primary_10_1007_s00018_020_03468_0 crossref_primary_10_1038_s41380_018_0255_6 crossref_primary_10_1002_alz_14618 crossref_primary_10_1007_s00401_021_02384_2 crossref_primary_10_4049_jimmunol_1901068 crossref_primary_10_3389_fimmu_2019_00362 crossref_primary_10_1038_s41375_019_0640_4 crossref_primary_10_1016_j_lfs_2020_118370 crossref_primary_10_3390_biomedicines9101351 crossref_primary_10_1186_s13024_022_00552_w crossref_primary_10_1016_j_pneurobio_2024_102654 crossref_primary_10_1126_science_abb8587 crossref_primary_10_1016_j_celrep_2019_03_096 crossref_primary_10_1111_jnc_16258 crossref_primary_10_2139_ssrn_3244529 crossref_primary_10_1016_j_carbpol_2023_121033 crossref_primary_10_1016_j_neuron_2019_12_015 crossref_primary_10_3389_fnmol_2022_1061343 crossref_primary_10_1021_acs_biochem_7b01214 crossref_primary_10_1080_17460441_2024_2322988 crossref_primary_10_1097_ONO_0000000000000027 crossref_primary_10_3389_fimmu_2019_00790 crossref_primary_10_3389_fncel_2022_899251 crossref_primary_10_1177_10738584211070273 crossref_primary_10_1002_glia_24323 crossref_primary_10_1016_j_arr_2024_102579 crossref_primary_10_3390_genes12081247 crossref_primary_10_1111_jnc_16263 crossref_primary_10_3389_fnmol_2017_00421 crossref_primary_10_3389_fphar_2020_00394 crossref_primary_10_1146_annurev_pathol_031620_113409 crossref_primary_10_1002_advs_202301574 crossref_primary_10_1016_j_neubiorev_2020_10_020 crossref_primary_10_1016_j_neuroscience_2025_03_033 crossref_primary_10_1186_s40478_022_01416_6 crossref_primary_10_3390_biom12101505 crossref_primary_10_3390_ijms222413305 crossref_primary_10_1038_s41467_021_27248_x crossref_primary_10_1016_j_pneurobio_2017_12_003 crossref_primary_10_3389_fgene_2021_658323 crossref_primary_10_1523_JNEUROSCI_0555_21_2021 crossref_primary_10_3389_fpubh_2023_1268325 crossref_primary_10_3389_fimmu_2020_566892 crossref_primary_10_12779_dnd_2020_19_2_39 crossref_primary_10_1134_S0022093022010112 crossref_primary_10_1038_s41467_021_22301_1 crossref_primary_10_1523_JNEUROSCI_1871_19_2019 crossref_primary_10_1016_j_neuron_2018_10_031 crossref_primary_10_1186_s12974_025_03333_6 crossref_primary_10_3389_fneur_2024_1396520 crossref_primary_10_1126_scitranslmed_abb1206 crossref_primary_10_3389_fgene_2023_1166831 crossref_primary_10_1002_alz_13682 crossref_primary_10_1016_j_neuron_2024_10_013 crossref_primary_10_1186_s12974_021_02302_z crossref_primary_10_1016_j_xcrm_2023_101175 crossref_primary_10_1002_prot_26723 crossref_primary_10_1016_j_nrl_2019_06_002 crossref_primary_10_1097_TA_0000000000003887 crossref_primary_10_1016_j_neurobiolaging_2021_01_001 crossref_primary_10_2174_1574885518666230427100702 crossref_primary_10_1007_s12035_021_02419_5 crossref_primary_10_1002_glia_23563 crossref_primary_10_3390_cells9071618 crossref_primary_10_1042_CS20230513 crossref_primary_10_1080_09537104_2020_1849603 crossref_primary_10_1002_pmic_202200183 crossref_primary_10_1186_s12974_018_1180_y crossref_primary_10_1016_j_ynstr_2018_05_003 crossref_primary_10_1016_j_neuroscience_2018_01_059 crossref_primary_10_1111_imm_13264 crossref_primary_10_3389_fimmu_2024_1425816 crossref_primary_10_1172_JCI167501 crossref_primary_10_1016_j_expneurol_2023_114371 crossref_primary_10_1016_j_celrep_2019_11_044 crossref_primary_10_1146_annurev_genet_112618_043515 crossref_primary_10_3389_fnmol_2018_00150 crossref_primary_10_1016_j_tins_2023_11_010 crossref_primary_10_1038_s41392_023_01588_0 crossref_primary_10_1002_biof_2107 crossref_primary_10_1016_j_expneurol_2021_113845 crossref_primary_10_14336_AD_2023_0516_1 crossref_primary_10_1186_s13195_020_00588_4 crossref_primary_10_1016_S1474_4422_23_00247_8 crossref_primary_10_1016_j_neuron_2020_01_004 crossref_primary_10_1038_s41573_023_00823_1 crossref_primary_10_1111_imr_13147 crossref_primary_10_1007_s11064_021_03419_6 crossref_primary_10_1016_j_phrs_2021_105697 crossref_primary_10_1038_s41598_019_48615_1 crossref_primary_10_1016_j_nbd_2021_105533 crossref_primary_10_1186_s13024_023_00635_2 crossref_primary_10_1155_2019_9408612 crossref_primary_10_15252_emmm_201809665 crossref_primary_10_1038_s41593_019_0454_8 crossref_primary_10_3233_ADR_220053 crossref_primary_10_1016_j_neulet_2019_134462 crossref_primary_10_3390_cells10071812 crossref_primary_10_3233_JAD_215196 crossref_primary_10_1186_s13195_023_01345_z crossref_primary_10_3390_biom11111598 crossref_primary_10_3389_fnins_2021_781722 crossref_primary_10_1186_s12974_018_1313_3 crossref_primary_10_3389_fbinf_2024_1463001 crossref_primary_10_3390_ijms222413647 crossref_primary_10_1186_s13195_021_00791_x crossref_primary_10_1016_j_ejphar_2019_02_020 crossref_primary_10_4049_jimmunol_1900494 crossref_primary_10_3389_fphys_2020_00393 crossref_primary_10_1038_ni_3858 crossref_primary_10_1186_s13024_017_0210_z crossref_primary_10_1016_j_ejcb_2024_151441 crossref_primary_10_1155_2018_2530414 crossref_primary_10_3390_ijms25021160 crossref_primary_10_1111_jnc_15327 crossref_primary_10_3389_fnagi_2019_00143 crossref_primary_10_1007_s12035_018_1030_z crossref_primary_10_1016_j_neuron_2019_04_011 crossref_primary_10_1146_annurev_immunol_101320_014237 crossref_primary_10_3389_fimmu_2022_970486 crossref_primary_10_3390_brainsci14020158 crossref_primary_10_1016_j_schres_2024_01_017 crossref_primary_10_1038_s41467_024_54007_5 crossref_primary_10_3389_fnagi_2020_00219 crossref_primary_10_14336_AD_2018_0201 crossref_primary_10_1016_j_expneurol_2021_113870 crossref_primary_10_1021_acs_nanolett_2c00191 crossref_primary_10_1097_WNR_0000000000001422 crossref_primary_10_3389_fimmu_2022_834424 crossref_primary_10_3390_antiox9080740 crossref_primary_10_1016_j_bbi_2021_03_020 crossref_primary_10_1016_j_cmet_2017_09_010 crossref_primary_10_1111_cns_13077 crossref_primary_10_1186_s12974_022_02539_2 crossref_primary_10_1186_s40478_021_01245_z crossref_primary_10_3233_JAD_179911 crossref_primary_10_1186_s13195_024_01492_x crossref_primary_10_1186_s40478_020_01094_2 crossref_primary_10_1016_j_isci_2020_101465 crossref_primary_10_1186_s12967_024_05939_5 crossref_primary_10_1016_j_bbi_2024_07_021 crossref_primary_10_1146_annurev_immunol_101921_035639 crossref_primary_10_1007_s00702_017_1795_7 crossref_primary_10_15252_embj_2022113246 crossref_primary_10_1016_j_arr_2024_102638 crossref_primary_10_1111_febs_15861 crossref_primary_10_3390_md22070324 crossref_primary_10_26599_JNR_2018_9040001 crossref_primary_10_3389_fimmu_2022_845897 crossref_primary_10_1038_s41598_019_55366_6 crossref_primary_10_1016_j_smim_2019_101340 crossref_primary_10_1016_j_lssr_2022_08_002 crossref_primary_10_1007_s12035_022_02791_w crossref_primary_10_3390_brainsci14050434 crossref_primary_10_1016_j_neuropharm_2022_108966 crossref_primary_10_1111_ejn_15225 crossref_primary_10_3390_ijms24065285 crossref_primary_10_1038_s41577_024_01104_7 crossref_primary_10_1016_j_molimm_2018_06_264 crossref_primary_10_1146_annurev_neuro_070918_050306 crossref_primary_10_1016_j_neubiorev_2020_05_010 crossref_primary_10_1523_ENEURO_0306_22_2022 crossref_primary_10_1186_s13024_021_00465_0 crossref_primary_10_1002_dvdy_1 crossref_primary_10_1038_s41598_024_68054_x crossref_primary_10_1038_s41590_020_00812_1 crossref_primary_10_1007_s12035_022_02762_1 crossref_primary_10_1016_j_nbd_2020_105072 crossref_primary_10_3389_fnins_2019_00025 crossref_primary_10_1126_scisignal_aan8796 crossref_primary_10_1038_nrneurol_2017_89 crossref_primary_10_3390_brainsci13020262 crossref_primary_10_1016_j_bbi_2024_02_016 crossref_primary_10_3390_ijms23105404 crossref_primary_10_1016_j_immuni_2019_03_016 crossref_primary_10_1111_jnc_15933 crossref_primary_10_3389_fnagi_2022_888989 crossref_primary_10_1111_bph_14618 crossref_primary_10_1007_s12015_023_10542_0 crossref_primary_10_1016_j_tips_2022_02_006 crossref_primary_10_3390_ijms25042272 crossref_primary_10_1002_glia_23946 crossref_primary_10_1016_j_phrs_2024_107098 crossref_primary_10_1016_j_bbi_2024_09_022 crossref_primary_10_17116_jnevro2020120081154 crossref_primary_10_3233_JAD_201055 crossref_primary_10_1016_j_neuron_2017_11_028 crossref_primary_10_1186_s13024_024_00789_7 crossref_primary_10_1186_s12974_023_02807_9 crossref_primary_10_1146_annurev_cellbio_100616_060509 crossref_primary_10_1016_j_bbi_2022_10_009 crossref_primary_10_1111_jnc_15941 crossref_primary_10_3389_fncel_2021_710390 crossref_primary_10_3389_fnagi_2023_1103278 crossref_primary_10_3233_JAD_179925 crossref_primary_10_1016_j_ygeno_2019_07_018 crossref_primary_10_1186_s12974_022_02668_8 crossref_primary_10_1016_j_neurobiolaging_2020_03_024 crossref_primary_10_3389_fnagi_2023_1201982 crossref_primary_10_1007_s40263_020_00737_1 crossref_primary_10_1007_s11064_022_03699_6 crossref_primary_10_1016_j_bbr_2024_115258 crossref_primary_10_1111_febs_16638 crossref_primary_10_2147_ITT_S305420 crossref_primary_10_3390_ijms19113669 crossref_primary_10_1038_s41598_023_41240_z crossref_primary_10_1038_s41392_023_01486_5 crossref_primary_10_1093_brain_awae230 crossref_primary_10_1038_s41380_023_02097_w crossref_primary_10_1007_s11064_022_03578_0 crossref_primary_10_1523_JNEUROSCI_1184_19_2019 crossref_primary_10_1038_s41582_022_00749_z crossref_primary_10_1016_j_tins_2020_10_003 crossref_primary_10_1111_jcmm_17006 crossref_primary_10_1002_dad2_12490 crossref_primary_10_1177_09636897231171001 crossref_primary_10_1134_S0022093024060036 crossref_primary_10_1111_febs_14323 crossref_primary_10_1111_jnc_15603 crossref_primary_10_3389_fneur_2021_587771 crossref_primary_10_1111_febs_15772 crossref_primary_10_3390_biomedicines10051206 crossref_primary_10_1186_s13024_021_00485_w crossref_primary_10_3389_fimmu_2020_00724 crossref_primary_10_1186_s40478_022_01356_1 crossref_primary_10_1002_dneu_22777 crossref_primary_10_1016_j_neubiorev_2024_105868 crossref_primary_10_1016_j_bcp_2019_08_016 crossref_primary_10_1126_sciadv_ade0764 crossref_primary_10_1016_j_bbi_2025_03_026 crossref_primary_10_1016_j_isci_2021_102942 crossref_primary_10_1152_ajpgi_00307_2021 crossref_primary_10_1002_sctm_19_0327 crossref_primary_10_1016_j_brainresbull_2020_07_004 crossref_primary_10_1038_s41380_019_0536_8 crossref_primary_10_1016_j_drudis_2022_01_004 crossref_primary_10_1038_s41467_018_06118_z crossref_primary_10_1016_j_bbadis_2023_166672 crossref_primary_10_1038_s41380_024_02884_z crossref_primary_10_3390_ijms242317087 crossref_primary_10_1007_s11481_019_09839_0 crossref_primary_10_2139_ssrn_3807499 crossref_primary_10_1186_s12974_023_02752_7 crossref_primary_10_1038_s43587_021_00123_6 crossref_primary_10_3390_cells9112415 crossref_primary_10_1016_j_neubiorev_2023_105246 crossref_primary_10_1016_j_nbd_2020_105015 crossref_primary_10_1038_s41583_018_0057_5 crossref_primary_10_1016_j_neuint_2021_104982 crossref_primary_10_1038_s41467_022_29506_y crossref_primary_10_1038_s41582_020_00435_y crossref_primary_10_1016_j_gendis_2024_101337 crossref_primary_10_1038_s41467_018_06449_x crossref_primary_10_1186_s12916_022_02472_4 crossref_primary_10_4103_1673_5374_385854 crossref_primary_10_1111_jnc_15999 crossref_primary_10_1016_j_bbi_2021_04_003 crossref_primary_10_1093_jleuko_qiae134 crossref_primary_10_1093_brain_awae278 crossref_primary_10_1186_s12974_020_02024_8 crossref_primary_10_1186_s13024_021_00474_z crossref_primary_10_1016_j_neurobiolaging_2019_03_018 crossref_primary_10_1016_j_brainresbull_2018_05_021 crossref_primary_10_1186_s12974_021_02276_y crossref_primary_10_1084_jem_20171487 crossref_primary_10_2174_1570159X17666190603170511 crossref_primary_10_3390_cells12010197 crossref_primary_10_1038_s41380_022_01693_6 crossref_primary_10_1016_j_bbi_2022_12_019 crossref_primary_10_1111_jnc_15885 crossref_primary_10_3390_biom14070833 |
ContentType | Journal Article |
Copyright | Copyright © 2017, American Association for the Advancement of Science. |
Copyright_xml | – notice: Copyright © 2017, American Association for the Advancement of Science. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1126/scitranslmed.aaf6295 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1946-6242 |
ExternalDocumentID | 28566429 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R21 AG044713 |
GroupedDBID | --- 0R~ 4.4 53G 7~K ABJNI ACGFS AENEX AJGZS AJWWR ALMA_UNASSIGNED_HOLDINGS BKF C45 CGR CUY CVF DU5 EBS ECM EIF EJD EMOBN F5P HZ~ NPM O9- OFXIZ OVD OVIDX P2P RHI TEORI |
ID | FETCH-LOGICAL-c408t-ac19c91246c2e96ce9eb520ff3ed2468459b27300f4e0bd17878208631e39e8b2 |
IngestDate | Thu Jan 02 22:59:42 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 392 |
Language | English |
License | Copyright © 2017, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c408t-ac19c91246c2e96ce9eb520ff3ed2468459b27300f4e0bd17878208631e39e8b2 |
ORCID | 0000-0002-2983-7870 0000-0003-4035-9272 0000-0003-4226-1201 0000-0002-5744-4871 0000-0002-6879-8595 0000-0003-2945-7007 0000-0002-4644-805X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6936623 |
PMID | 28566429 |
ParticipantIDs | pubmed_primary_28566429 |
PublicationCentury | 2000 |
PublicationDate | 2017-05-31 |
PublicationDateYYYYMMDD | 2017-05-31 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science translational medicine |
PublicationTitleAlternate | Sci Transl Med |
PublicationYear | 2017 |
SSID | ssj0068356 |
Score | 2.6428602 |
Snippet | The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic... |
SourceID | pubmed |
SourceType | Index Database |
SubjectTerms | Aging - pathology Amyloid beta-Protein Precursor - metabolism Animals Astrocytes - pathology Cognitive Dysfunction Complement C3 - deficiency Cytokines - metabolism Gliosis - pathology Hippocampus - metabolism Hippocampus - pathology Mice, Inbred C57BL Mice, Knockout Nerve Degeneration - pathology Nerve Degeneration - prevention & control Plaque, Amyloid - metabolism Plaque, Amyloid - pathology Presenilin-1 - metabolism Solubility Synapses - metabolism Synapses - pathology |
Title | Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28566429 |
Volume | 9 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBbpCmUvZetla7sNPfTNqLVlWbEeS9gog5SUpJCHQpFkqS0sSUtNC_31Pbo4Mclauj3EBAmM7O_zuUnnHIQOq0yLHAwNUmrGCLOFIsIUkhQmS21putb6gH7_jJ9esN_jYtzpPLWzS2p1pJ__mlfyP6jCGODqsmT_Adn5TWEA_gO-cAWE4foujN3HHI5_J708qYyrBuFTKWP1hYdEXoPn_1AnvmxlZa59kenmfCOIksq1kQbVQEAc3iQngwEsZjDMkkk8EtfYrY0IqJ1q-9MEEJc35oe-Q3Byfitn9_BbHB2YPVU3ccN-KNVcE_SD5TqL2tOfCwrJQo-wvHE7IgFaLm6mO4USpKhgnLjEk7aYFS025aH_3ar4bhpOhqeBpziS0nIa-nC2EL2beEhpCdYoCyGTt2eXimo3U2toDdwL1y_VBXmCAudglPKYZRnzq1aW42pIx1ss-SPeLhl9QpvRocAngR2fUcdMt9BGPyKzjS4XJMG9HC9IghuS4EgSvEISfDvFjiS4RRIMJDkGimBHkR108evnqHdKYksNolla1kTqTGgBNh3X1AiujTCqoKm1ualgsGSFUNS1MLDMpKrKQJyDiVjyPDO5MKWiu-jDdDY1XxFWVGaSM0FL1WWaUmm6ukgVOGsuHZrle-hLeC9Xd6FuylXzxvZfnTlAHxeE-obWLXyo5jtYfbX64TF6ARpKWic |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complement+C3+deficiency+protects+against+neurodegeneration+in+aged+plaque-rich+APP%2FPS1+mice&rft.jtitle=Science+translational+medicine&rft.au=Shi%2C+Qiaoqiao&rft.au=Chowdhury%2C+Saba&rft.au=Ma%2C+Rong&rft.au=Le%2C+Kevin+X&rft.date=2017-05-31&rft.eissn=1946-6242&rft.volume=9&rft.issue=392&rft_id=info:doi/10.1126%2Fscitranslmed.aaf6295&rft_id=info%3Apmid%2F28566429&rft_id=info%3Apmid%2F28566429&rft.externalDocID=28566429 |