Microbial potential for denitrification in the hyperarid Atacama Desert soils
The hyperarid soils of the Atacama Desert, Chile, contain the largest known nitrate deposits in the world. They also represent one of the most hostile environments for microbial life anywhere in the terrestrial biosphere. Despite known for its extreme dryness, several heavy rainfall events causing l...
Saved in:
Published in | Soil biology & biochemistry Vol. 157; p. 108248 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0038-0717 1879-3428 |
DOI | 10.1016/j.soilbio.2021.108248 |
Cover
Abstract | The hyperarid soils of the Atacama Desert, Chile, contain the largest known nitrate deposits in the world. They also represent one of the most hostile environments for microbial life anywhere in the terrestrial biosphere. Despite known for its extreme dryness, several heavy rainfall events causing localised flash flooding have struck Atacama Desert core regions during the last five years. It remains unclear, however, whether these soils can support microbial denitrification. To answer this, we sampled soils along a hyperaridity gradient in the Atacama Desert and conducted incubation experiments using a robotized continuous flow system under a He/O2 atmosphere. The impacts of four successive extreme weather events on soil-borne N2O and N2 emissions were investigated, i) water addition, ii) NO3− addition, iii) labile carbon (C) addition, and iv) oxygen depletion. The 15N–N2O site-preference (SP) approach was further used to examine the source of N2O produced. Extremely low N2O fluxes were detected shortly after water and NO3− addition, whereas pronounced N2O and N2 emissions were recorded after labile-C (glucose) amendment in all soils. Under anoxia, N2 emissions increased drastically while N2O emissions decreased concomitantly, indicating the potential for complete denitrification at all sites. Although increasing aridity significantly reduced soil bacterial richness, microbial potential for denitrification and associated gene abundance (i.e., napA, narG, nirS, nirK, cnorB, qnorB and nosZ) was not affected. The N2O15N site preference values based on two end-member model suggested that fungal and bacterial denitrification co-contributed to N2O production in less arid sites, whereas bacterial denitrification dominated with increasing aridity. We conclude that soil denitrification functionality is preserved even with lowered microbial richness in the extreme hyperarid Atacama Desert. Future changes in land-use or extreme climate events therefore have a potential to destabilize the immense reserves of nitrate and induce significant N2O losses in the region.
•Denitrification was shown to occur in the hyperarid Atacama Desert.•Denitrification potential and associated gene abundance was not affected by aridity.•Increasing aridity reduced soil bacterial richness.•Fungal and bacterial denitrification co-contributed to N2O production.•Bacterial denitrification dominated N2O production with increasing hyperaridity. |
---|---|
AbstractList | The hyperarid soils of the Atacama Desert, Chile, contain the largest known nitrate deposits in the world. They also represent one of the most hostile environments for microbial life anywhere in the terrestrial biosphere. Despite known for its extreme dryness, several heavy rainfall events causing localised flash flooding have struck Atacama Desert core regions during the last five years. It remains unclear, however, whether these soils can support microbial denitrification. To answer this, we sampled soils along a hyperaridity gradient in the Atacama Desert and conducted incubation experiments using a robotized continuous flow system under a He/O2 atmosphere. The impacts of four successive extreme weather events on soil-borne N2O and N2 emissions were investigated, i) water addition, ii) NO3− addition, iii) labile carbon (C) addition, and iv) oxygen depletion. The 15N–N2O site-preference (SP) approach was further used to examine the source of N2O produced. Extremely low N2O fluxes were detected shortly after water and NO3− addition, whereas pronounced N2O and N2 emissions were recorded after labile-C (glucose) amendment in all soils. Under anoxia, N2 emissions increased drastically while N2O emissions decreased concomitantly, indicating the potential for complete denitrification at all sites. Although increasing aridity significantly reduced soil bacterial richness, microbial potential for denitrification and associated gene abundance (i.e., napA, narG, nirS, nirK, cnorB, qnorB and nosZ) was not affected. The N2O15N site preference values based on two end-member model suggested that fungal and bacterial denitrification co-contributed to N2O production in less arid sites, whereas bacterial denitrification dominated with increasing aridity. We conclude that soil denitrification functionality is preserved even with lowered microbial richness in the extreme hyperarid Atacama Desert. Future changes in land-use or extreme climate events therefore have a potential to destabilize the immense reserves of nitrate and induce significant N2O losses in the region.
•Denitrification was shown to occur in the hyperarid Atacama Desert.•Denitrification potential and associated gene abundance was not affected by aridity.•Increasing aridity reduced soil bacterial richness.•Fungal and bacterial denitrification co-contributed to N2O production.•Bacterial denitrification dominated N2O production with increasing hyperaridity. The hyperarid soils of the Atacama Desert, Chile, contain the largest known nitrate deposits in the world. They also represent one of the most hostile environments for microbial life anywhere in the terrestrial biosphere. Despite known for its extreme dryness, several heavy rainfall events causing localised flash flooding have struck Atacama Desert core regions during the last five years. It remains unclear, however, whether these soils can support microbial denitrification. To answer this, we sampled soils along a hyperaridity gradient in the Atacama Desert and conducted incubation experiments using a robotized continuous flow system under a He/O₂ atmosphere. The impacts of four successive extreme weather events on soil-borne N₂O and N₂ emissions were investigated, i) water addition, ii) NO₃⁻ addition, iii) labile carbon (C) addition, and iv) oxygen depletion. The ¹⁵N–N₂O site-preference (SP) approach was further used to examine the source of N₂O produced. Extremely low N₂O fluxes were detected shortly after water and NO₃⁻ addition, whereas pronounced N₂O and N₂ emissions were recorded after labile-C (glucose) amendment in all soils. Under anoxia, N₂ emissions increased drastically while N₂O emissions decreased concomitantly, indicating the potential for complete denitrification at all sites. Although increasing aridity significantly reduced soil bacterial richness, microbial potential for denitrification and associated gene abundance (i.e., napA, narG, nirS, nirK, cnorB, qnorB and nosZ) was not affected. The N₂O¹⁵N site preference values based on two end-member model suggested that fungal and bacterial denitrification co-contributed to N₂O production in less arid sites, whereas bacterial denitrification dominated with increasing aridity. We conclude that soil denitrification functionality is preserved even with lowered microbial richness in the extreme hyperarid Atacama Desert. Future changes in land-use or extreme climate events therefore have a potential to destabilize the immense reserves of nitrate and induce significant N₂O losses in the region. |
ArticleNumber | 108248 |
Author | Knief, Claudia Klumpp, Erwin Chen, Ruirui Jones, Davey L. Mörchen, Ramona Well, Reinhard Senbayram, Mehmet Moradi, Ghazal Wu, Di Bol, Roland |
Author_xml | – sequence: 1 givenname: Di surname: Wu fullname: Wu, Di organization: Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100083, China – sequence: 2 givenname: Mehmet surname: Senbayram fullname: Senbayram, Mehmet organization: Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, Braunschweig, 38116, Germany – sequence: 3 givenname: Ghazal surname: Moradi fullname: Moradi, Ghazal organization: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany – sequence: 4 givenname: Ramona surname: Mörchen fullname: Mörchen, Ramona organization: Soil Science & Soil Ecology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53115, Germany – sequence: 5 givenname: Claudia surname: Knief fullname: Knief, Claudia organization: Institute of Crop Science and Resource Conservation, Molecular Biology of the Rhizosphere, University of Bonn, Bonn, 53115, Germany – sequence: 6 givenname: Erwin surname: Klumpp fullname: Klumpp, Erwin organization: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany – sequence: 7 givenname: Davey L. orcidid: 0000-0002-1482-4209 surname: Jones fullname: Jones, Davey L. organization: Environment Centre Wales, Bangor University, Gwynedd, LL57 2UW, UK – sequence: 8 givenname: Reinhard surname: Well fullname: Well, Reinhard organization: Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, Braunschweig, 38116, Germany – sequence: 9 givenname: Ruirui surname: Chen fullname: Chen, Ruirui email: rrchen@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China – sequence: 10 givenname: Roland orcidid: 0000-0003-3015-7706 surname: Bol fullname: Bol, Roland organization: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany |
BookMark | eNqFkM1LAzEQxYNUsK3-CcIevWxNsl8JHqTUT2jxoueQJrN0ynazJqnQ_95d25OXnmYY3nvM-03IqHUtEHLL6IxRVt5vZ8Fhs0Y345Sz_iZ4Li7ImIlKplnOxYiMKc1ESitWXZFJCFtKKS9YNiarFRrv1qibpHMR2jhstfOJhRajxxqNjujaBNskbiDZHDrw2qNN5lEbvdPJEwTwMRleCNfkstZNgJvTnJKvl-fPxVu6_Hh9X8yXqcmpiKleZ4wbaXJZy4pyW2dFLmltmS0zkCUXueHlWpfCSiGt0JU2JedUalZKpusqm5K7Y27n3fceQlQ7DAaaRrfg9kHxomCyEn3DXlocpX3NEDzUqvO40_6gGFUDPrVVJ3xqwKeO-Hrfwz-fwfiHInqNzVn349ENPYUfBK-CQWgNWPRgorIOzyT8AqcMkWE |
CitedBy_id | crossref_primary_10_1007_s00374_023_01711_x crossref_primary_10_1128_mmbr_00109_21 crossref_primary_10_3389_fpls_2024_1411073 crossref_primary_10_1080_10256016_2021_1990913 crossref_primary_10_1016_j_catena_2024_108171 crossref_primary_10_1080_01490451_2022_2069888 crossref_primary_10_1002_imt2_122 crossref_primary_10_1016_j_apsoil_2024_105447 crossref_primary_10_1016_j_soilbio_2023_109128 crossref_primary_10_3390_microorganisms12020320 crossref_primary_10_1016_j_scitotenv_2023_164785 crossref_primary_10_1016_j_geoderma_2022_116206 crossref_primary_10_1007_s00374_024_01886_x crossref_primary_10_1007_s11756_024_01731_4 crossref_primary_10_3390_d14010014 crossref_primary_10_1038_s42003_024_06741_1 crossref_primary_10_1111_ejss_13425 crossref_primary_10_1016_j_apsoil_2023_105194 crossref_primary_10_3390_jof8080858 |
Cites_doi | 10.2138/gselements.14.4.251 10.1016/S0038-0717(02)00166-9 10.1089/153110703769016460 10.1007/s10482-018-1060-6 10.1016/j.apsoil.2020.103590 10.1038/s41396-019-0468-y 10.1002/rcm.8858 10.1111/j.1365-2486.2010.02340.x 10.1016/j.febslet.2012.07.025 10.1038/srep09697 10.1016/S0065-2113(07)96003-4 10.1038/nmicrobiol.2016.270 10.1016/j.jaridenv.2004.08.006 10.1128/mSystems.00225-18 10.1016/j.gca.2004.04.009 10.1002/mas.21459 10.2747/0020-6814.49.10.962 10.1038/s41598-018-35051-w 10.1038/s41467-018-05516-7 10.1016/j.gdata.2016.12.015 10.1016/j.soilbio.2018.09.005 10.3389/fmicb.2019.00117 10.1016/j.soilbio.2010.03.025 10.1038/s41467-017-00110-9 10.1016/j.soilbio.2013.08.024 10.1038/nmeth.f.303 10.1038/nature13855 10.1016/j.soilbio.2016.10.022 10.1111/gcb.14113 10.2136/sssaj2002.1540 10.1016/j.gca.2007.02.016 10.1016/j.atmosres.2019.104802 10.1016/S0929-1393(99)00029-3 10.1038/ismej.2013.104 10.5194/bg-7-2695-2010 10.1016/S0043-1354(98)00177-8 10.1016/j.soilbio.2017.10.026 10.1073/pnas.1516684112 10.3389/fmicb.2016.00214 10.1007/BF02180161 10.1007/s00244-013-9960-y 10.1016/j.gloplacha.2019.102993 10.3389/fmicb.2012.00101 10.1038/nature05202 10.1007/s11427-018-9364-7 10.1016/j.soilbio.2007.03.017 10.1126/science.1086435 10.1073/pnas.1714341115 10.1016/j.soilbio.2012.10.007 10.1016/j.gloplacha.2019.103078 10.1002/2016GL069751 10.1111/gcb.14453 10.1021/ac9904563 10.1016/j.envres.2019.108806 10.1098/rstb.2011.0335 10.1016/j.asr.2012.03.003 10.1146/annurev-micro-102215-095236 10.1073/pnas.1320054111 10.1016/j.soilbio.2016.11.014 10.1016/j.gca.2014.03.010 10.1016/j.soilbio.2015.01.021 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2021.108248 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
ExternalDocumentID | 10_1016_j_soilbio_2021_108248 S0038071721001218 |
GeographicLocations | Chile |
GeographicLocations_xml | – name: Chile |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c408t-ab312c9c49f9702df35490fd1d63e96284c26ba68d989d8a7ac62209a1691af73 |
IEDL.DBID | AIKHN |
ISSN | 0038-0717 |
IngestDate | Fri Sep 05 09:57:35 EDT 2025 Tue Jul 01 03:20:04 EDT 2025 Thu Apr 24 22:52:36 EDT 2025 Fri Feb 23 02:46:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Xerophile Moisture status Greenhouse gases Nitrogen cycling Denitification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-ab312c9c49f9702df35490fd1d63e96284c26ba68d989d8a7ac62209a1691af73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3015-7706 0000-0002-1482-4209 |
PQID | 2551978513 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551978513 crossref_primary_10_1016_j_soilbio_2021_108248 crossref_citationtrail_10_1016_j_soilbio_2021_108248 elsevier_sciencedirect_doi_10_1016_j_soilbio_2021_108248 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Raut, Polley, Fay, Kang (bib42) 2018; 24 Glass, Silverstein (bib16) 1999; 33 Maeda, Spor, Edel-Hermann, Heraud, Breuil, Bizouard, Toyoda, Yoshida, Steinberg, Philippot (bib27) 2015; 5 Wei, Lacap-Bugler, Lau, Caruso, Rao, Rios, Archer, Chiu, Higgins, Van Nostrand, Zhou, Hopkins, Pointing (bib56) 2017; 7 Köster, Cárdenas, Bol, Lewicka-Szczebak, Senbayram, Well, Giesemann, Dittert (bib24) 2015; 84 Michalski, Böhlke, Thiemens (bib33) 2004; 68 Zhu, Zhao, Li, Huang, Zhang, Yu, Chen, Zhang, Gillings, Su (bib65) 2017; 2 Reich, Bao (bib43) 2018; 14 Shoun, Fushinobu, Jiang, Kim, Wakagi (bib47) 2012; 367 Knief, Bol, Amelung, Kusch, Frindte, Eckmeier, Jaeschke, Dunai, Fuentes, Mörchen, Schütte, Lücke, Klumpp, Kaiser, Rethemeyer (bib23) 2020; 184 Billings, Schaeffer, Evans (bib6) 2002; 34 Mörchen, Lehndorff, Diaz, Moradi, Bol, Fuentes, Klumpp, Amelung (bib34) 2019; 181 Oyarzun, Oyarzun (bib39) 2007; 49 Valdivia-Silva, Navarro-González, Fletcher, Perez-Montaño, Condori-Apaza, Mckay (bib51) 2012; 50 Orlando, Alfaro, Bravo, Guevara, Carú (bib37) 2010; 42 Nadeem, Dörsch, Bakken (bib35) 2013; 57 Calderón, Palma, Parker, Molina, Godoy, Escudey (bib10) 2014; 66 Cardinale, Srivastava, Emmett Duffy, Wright, Downing, Sankaran, Jouseau (bib12) 2006; 443 Zhang, Shi, Cui, Yue, Li, Liu, Tripathi, Chu (bib63) 2019; 4 Bardgett, van der Putten (bib4) 2014; 515 Maestre, Delgado-Baquerizo, Jeffries, Eldridge, Ochoa, Gozalo, Quero, García-Gómez, Gallardo, Ulrich, Bowker, Arredondo, Barraza-Zepeda, Bran, Florentino, Gaitán, Gutiérrez, Huber-Sannwald, Jankju, Singh (bib28) 2015; 112 Azua-Bustos, Fairén, González-Silva, Ascaso, Carrizo, Fernández-Martínez, Fernández-Sampedro, García-Descalzo, García-Villadangos, Martin-Redondo, Sánchez-García, Wierzchos, Parro (bib2) 2018; 8 Orlando, Carú, Pommerenke, Braker (bib38) 2012; 3 Philippot, Hallin, Schloter (bib40) 2007; 96 Barnard, Osborne, Firestone (bib5) 2013; 7 Wilcox, Escauriaza, Agredano, Mignot, Zuazo, Otárola, Castro, Gironás, Cienfuegos, Mao (bib57) 2016; 43 Yu, Harris, Lewicka‐Szczebak, Barthel, Blomberg, Harris, Johnson, Lehmann, Liisberg, Müller, Ostrom, Six, Toyoda, Yoshida, Mohn (bib62) 2020; 34 Bull, Asenjo, Goodfellow, Gómez-Silva (bib9) 2016; 70 Wall, Virginia (bib53) 1999; 13 Mayol, Arrieta, Jiménez, Martínez-Asensio, Garcias-Bonet, Dachs, González-Gaya, Royer, Benítez-Barrios, Fraile-Nuez, Duarte (bib29) 2017; 8 Schulze-Makuch, Wagner, Kounaves, Mangelsdorf, Devine, Vera, Schmitt-Kopplin, Grossart, Parro, Kaupenjohann, Galy, Schneider, Airo, Frösler, Davila, Arens, Cáceres, Cornejo, Carrizo, Zamorano (bib45) 2018; 115 Senbayram, Well, Bol, Chadwick, Jones, Wu (bib46) 2018; 126 Toyoda, Yoshida, Koba (bib49) 2017; 36 Meseguer-Ruiz, Cortesi, Guijarro, Sarricolea (bib32) 2020; 236 Xu, Sheng, Xing, Zhang, Hou, Liu, Qin, Chen, Wei (bib60) 2019; 10 Ochoa-Hueso, Collins, Delgado-Baquerizo, Hamonts, Pockman, Sinsabaugh, Smith, Knapp, Power (bib36) 2018; 24 McKay, Friedmann, Gómez-Silva, Cáceres-Villanueva, Andersen, Landheim (bib30) 2003; 3 Gonzalez-Teuber, Vilo, Bascunan-Godoy (bib17) 2017; 11 Wagg, Bender, Widmer, van der Heijden (bib52) 2014; 111 Wu, Senbayram, Well, Brüggemann, Pfeiffer, Loick, Stempfhuber, Dittert, Bol (bib58) 2017; 104 Toyoda, Yoshida (bib48) 1999; 71 Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Peña, Goodrich, Gordon, Huttley, Kelley, Knights, Koenig, Ley, Lozupone, McDonald, Muegge, Pirrung, Knight (bib11) 2010; 7 Santiago, Gonçalves, Gómez-Silva, Galetovic, Rosa (bib44) 2018; 111 Laughlin, Stenvens (bib25) 2002; 66 Walvoord, Phillips, Stonestrom, Evans, Hartsough, Newman, Striegl (bib54) 2003; 302 Jones, Olivera-Ardid, Klumpp, Knief, Hill, Lehndorff, Bol (bib22) 2018; 117 Uritskiy, Getsin, Munn, Gomez-Silva, Davila, Glass, Taylor, DiRuggiero (bib50) 2019; 13 Yao, Chen, Zhang, Feng, Huang, Lin (bib61) 2020; 154 Lewicka-Szczebak, Well, Köster, Fuß, Senbayram, Dittert, Flessa (bib26) 2014; 134 Frame, Casciotti (bib15) 2010; 7 de Vries, Griffiths, Bailey, Craig, Girlanda, Gweon, Hallin, Kaisermann, Keith, Kretzschmar, Lemanceau, Lumini, Mason, Oliver, Ostle, Prosser, Thion, Thomson, Bardgett (bib13) 2018; 9 Attard, Recous, Chabbi, Berranger, Guillaumaud, Labreuche, Philippot, Schmid, Roux (bib1) 2011; 17 Jones, Murphy (bib21) 2007; 39 Firestone (bib14) 1982 Jing, Chen, Wei, Feng, Zhang, Lin (bib20) 2017; 105 Quade, Rech, Latorre, Betancourt, Gleeson, Kalin (bib41) 2007; 71 Graham, Knelman, Schindlbacher, Siciliano, Breulmann, Yannarell, Bemans, Abell, Philippot, Prosser (bib18) 2016; 7 Hoffmeister (bib19) 2018 McKeon, Jordan, Glenn, Waugh, Nelson (bib31) 2005; 61 Wu, Well, Cárdenas, Fuß, Lewicka-Szczebak, Köster, Brüggemann, Bol (bib59) 2019; 179 Zheng, Zhu, Sardans, Peñuelas, Su (bib64) 2018; 61 Blagodatskaya, Kuzyakov (bib7) 2013; 67 Bowden (bib8) 1986; 2 Azua-Bustos, Urrejola, Vicuña (bib3) 2012; 586 Toyoda (10.1016/j.soilbio.2021.108248_bib48) 1999; 71 Wei (10.1016/j.soilbio.2021.108248_bib56) 2017; 7 Philippot (10.1016/j.soilbio.2021.108248_bib40) 2007; 96 Wilcox (10.1016/j.soilbio.2021.108248_bib57) 2016; 43 Barnard (10.1016/j.soilbio.2021.108248_bib5) 2013; 7 Wu (10.1016/j.soilbio.2021.108248_bib58) 2017; 104 Bowden (10.1016/j.soilbio.2021.108248_bib8) 1986; 2 Toyoda (10.1016/j.soilbio.2021.108248_bib49) 2017; 36 Oyarzun (10.1016/j.soilbio.2021.108248_bib39) 2007; 49 Xu (10.1016/j.soilbio.2021.108248_bib60) 2019; 10 Mörchen (10.1016/j.soilbio.2021.108248_bib34) 2019; 181 Mayol (10.1016/j.soilbio.2021.108248_bib29) 2017; 8 Michalski (10.1016/j.soilbio.2021.108248_bib33) 2004; 68 Schulze-Makuch (10.1016/j.soilbio.2021.108248_bib45) 2018; 115 McKay (10.1016/j.soilbio.2021.108248_bib30) 2003; 3 Maeda (10.1016/j.soilbio.2021.108248_bib27) 2015; 5 Glass (10.1016/j.soilbio.2021.108248_bib16) 1999; 33 Jing (10.1016/j.soilbio.2021.108248_bib20) 2017; 105 Azua-Bustos (10.1016/j.soilbio.2021.108248_bib2) 2018; 8 Meseguer-Ruiz (10.1016/j.soilbio.2021.108248_bib32) 2020; 236 Ochoa-Hueso (10.1016/j.soilbio.2021.108248_bib36) 2018; 24 Orlando (10.1016/j.soilbio.2021.108248_bib38) 2012; 3 Firestone (10.1016/j.soilbio.2021.108248_bib14) 1982 Quade (10.1016/j.soilbio.2021.108248_bib41) 2007; 71 Azua-Bustos (10.1016/j.soilbio.2021.108248_bib3) 2012; 586 Senbayram (10.1016/j.soilbio.2021.108248_bib46) 2018; 126 Zhu (10.1016/j.soilbio.2021.108248_bib65) 2017; 2 Valdivia-Silva (10.1016/j.soilbio.2021.108248_bib51) 2012; 50 Billings (10.1016/j.soilbio.2021.108248_bib6) 2002; 34 Wu (10.1016/j.soilbio.2021.108248_bib59) 2019; 179 Köster (10.1016/j.soilbio.2021.108248_bib24) 2015; 84 Blagodatskaya (10.1016/j.soilbio.2021.108248_bib7) 2013; 67 Yao (10.1016/j.soilbio.2021.108248_bib61) 2020; 154 Raut (10.1016/j.soilbio.2021.108248_bib42) 2018; 24 Bull (10.1016/j.soilbio.2021.108248_bib9) 2016; 70 Laughlin (10.1016/j.soilbio.2021.108248_bib25) 2002; 66 Nadeem (10.1016/j.soilbio.2021.108248_bib35) 2013; 57 Walvoord (10.1016/j.soilbio.2021.108248_bib54) 2003; 302 Jones (10.1016/j.soilbio.2021.108248_bib22) 2018; 117 Cardinale (10.1016/j.soilbio.2021.108248_bib12) 2006; 443 Maestre (10.1016/j.soilbio.2021.108248_bib28) 2015; 112 Gonzalez-Teuber (10.1016/j.soilbio.2021.108248_bib17) 2017; 11 Jones (10.1016/j.soilbio.2021.108248_bib21) 2007; 39 Zheng (10.1016/j.soilbio.2021.108248_bib64) 2018; 61 Graham (10.1016/j.soilbio.2021.108248_bib18) 2016; 7 Shoun (10.1016/j.soilbio.2021.108248_bib47) 2012; 367 Uritskiy (10.1016/j.soilbio.2021.108248_bib50) 2019; 13 Caporaso (10.1016/j.soilbio.2021.108248_bib11) 2010; 7 Wagg (10.1016/j.soilbio.2021.108248_bib52) 2014; 111 McKeon (10.1016/j.soilbio.2021.108248_bib31) 2005; 61 Orlando (10.1016/j.soilbio.2021.108248_bib37) 2010; 42 Bardgett (10.1016/j.soilbio.2021.108248_bib4) 2014; 515 Knief (10.1016/j.soilbio.2021.108248_bib23) 2020; 184 Lewicka-Szczebak (10.1016/j.soilbio.2021.108248_bib26) 2014; 134 Santiago (10.1016/j.soilbio.2021.108248_bib44) 2018; 111 Wall (10.1016/j.soilbio.2021.108248_bib53) 1999; 13 Yu (10.1016/j.soilbio.2021.108248_bib62) 2020; 34 Attard (10.1016/j.soilbio.2021.108248_bib1) 2011; 17 Hoffmeister (10.1016/j.soilbio.2021.108248_bib19) 2018 de Vries (10.1016/j.soilbio.2021.108248_bib13) 2018; 9 Reich (10.1016/j.soilbio.2021.108248_bib43) 2018; 14 Frame (10.1016/j.soilbio.2021.108248_bib15) 2010; 7 Calderón (10.1016/j.soilbio.2021.108248_bib10) 2014; 66 Zhang (10.1016/j.soilbio.2021.108248_bib63) 2019; 4 |
References_xml | – volume: 236 year: 2020 ident: bib32 article-title: Weather regimes linked to daily precipitation anomalies in Northern Chile publication-title: Atmospheric Research – volume: 126 start-page: 204 year: 2018 end-page: 212 ident: bib46 article-title: Interaction of straw amendment and soil NO publication-title: Soil Biology and Biochemistry – volume: 57 start-page: 606 year: 2013 end-page: 614 ident: bib35 article-title: Autoxidation and acetylene-accelerated oxidation of NO in a 2-phase system: implications for the expression of denitrification in ex situ experiments publication-title: Soil Biology and Biochemistry – volume: 71 start-page: 3772 year: 2007 end-page: 3795 ident: bib41 article-title: Soils at the hyperarid margin: the isotopic composition of soil carbonate from the Atacama Desert, Northern Chile publication-title: Geochimica et Cosmochimica Acta – volume: 9 start-page: 3033 year: 2018 ident: bib13 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nature Communications – volume: 24 start-page: 2818 year: 2018 end-page: 2827 ident: bib36 article-title: Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents publication-title: Global Change Biology – volume: 154 year: 2020 ident: bib61 article-title: Divergent patterns of microbial community composition shift under two fertilization regimes revealed by responding species publication-title: Applied Soil Ecology – volume: 2 start-page: 1 year: 2017 end-page: 7 ident: bib65 article-title: Continental-scale pollution of estuaries with antibiotic resistance genes publication-title: Nat. Microbiol. – volume: 3 start-page: 393 year: 2003 end-page: 406 ident: bib30 article-title: Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Niño of 1997–1998 publication-title: Astrobiology – volume: 61 start-page: 1451 year: 2018 end-page: 1462 ident: bib64 article-title: QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling publication-title: Science China Life Sciences – volume: 7 start-page: 2695 year: 2010 end-page: 2709 ident: bib15 article-title: Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium publication-title: Biogeosciences – volume: 39 start-page: 2178 year: 2007 end-page: 2182 ident: bib21 article-title: Microbial response time to sugar and amino acid additions to soil publication-title: Soil Biology and Biochemistry – volume: 115 start-page: 2670 year: 2018 end-page: 2675 ident: bib45 article-title: Transitory microbial habitat in the hyperarid Atacama Desert publication-title: Proceedings of the National Academy of Sciences – volume: 3 start-page: 101 year: 2012 ident: bib38 article-title: Diversity and activity of denitrifiers of Chilean arid soil ecosystems publication-title: Frontiers in Microbiology – volume: 96 start-page: 249 year: 2007 end-page: 305 ident: bib40 article-title: Ecology of denitrifying prokaryotes in agricultural soil publication-title: Advances in Agronomy – volume: 443 start-page: 989 year: 2006 end-page: 992 ident: bib12 article-title: Effects of biodiversity on the functioning of trophic groups and ecosystems publication-title: Nature – volume: 117 start-page: 68 year: 2018 end-page: 71 ident: bib22 article-title: Moisture activation and carbon use efficiency of soil microbial communities along an aridity gradient in the Atacama Desert publication-title: Soil Biology and Biochemistry – volume: 7 start-page: 2229 year: 2013 end-page: 2241 ident: bib5 article-title: Responses of soil bacterial and fungal communities to extreme desiccation and rewetting publication-title: The ISME Journal – volume: 7 start-page: 335 year: 2010 end-page: 336 ident: bib11 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nature Methods – volume: 17 start-page: 1975 year: 2011 end-page: 1989 ident: bib1 article-title: Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses publication-title: Global Change Biology – volume: 367 start-page: 1186 year: 2012 end-page: 1194 ident: bib47 article-title: Fungal denitrification and nitric oxide reductase cytochrome P450nor publication-title: Phil. Trans. R. Soc. B – volume: 5 start-page: 9697 year: 2015 ident: bib27 article-title: N publication-title: Scientific Reports – volume: 24 start-page: 5815 year: 2018 end-page: 5827 ident: bib42 article-title: Bacterial community response to a preindustrial-to-future CO publication-title: Global Change Biology – volume: 11 start-page: 109 year: 2017 end-page: 112 ident: bib17 article-title: Molecular characterization of endophytic fungi associated with the roots of publication-title: Genomics Data – volume: 67 start-page: 192 year: 2013 end-page: 211 ident: bib7 article-title: Active microorganisms in soil: critical review of estimation criteria and approaches publication-title: Soil Biology and Biochemistry – volume: 13 start-page: 137 year: 1999 end-page: 150 ident: bib53 article-title: Controls on soil biodiversity: insights from extreme environments publication-title: Applied Soil Ecology – volume: 4 year: 2019 ident: bib63 article-title: Salinity is a key determinant for soil microbial communities in a desert ecosystem publication-title: mSystems – volume: 43 start-page: 8035 year: 2016 end-page: 8043 ident: bib57 article-title: An integrated analysis of the March 2015 Atacama floods publication-title: Geophysical Research Letters – volume: 302 start-page: 1021 year: 2003 end-page: 1024 ident: bib54 article-title: A reservoir of nitrate beneath desert soils publication-title: Science – volume: 104 start-page: 197 year: 2017 end-page: 207 ident: bib58 article-title: Nitrification inhibitors mitigate N publication-title: Soil Biology and Biochemistry – volume: 111 start-page: 1345 year: 2018 end-page: 1360 ident: bib44 article-title: Fungal diversity in the Atacama Desert publication-title: Antonie van Leeuwenhoek – volume: 179 year: 2019 ident: bib59 article-title: Quantifying N publication-title: Environmental Research – volume: 66 start-page: 1540 year: 2002 end-page: 1548 ident: bib25 article-title: Evidence for fungal dominance of denitrification and codenitrification in a grassland soil publication-title: Soil Science Society of America Journal – volume: 2 start-page: 249 year: 1986 end-page: 279 ident: bib8 article-title: Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: an assessment of their impacts on local and global nitrogen budgets publication-title: Biogeochemistry – volume: 134 start-page: 55 year: 2014 end-page: 73 ident: bib26 article-title: Experimental determinations of isotopic fractionation factors associated with N publication-title: Geochimica et Cosmochimica Acta – volume: 84 start-page: 65 year: 2015 end-page: 74 ident: bib24 article-title: Anaerobic digestates lower N publication-title: Soil Biology and Biochemistry – volume: 181 year: 2019 ident: bib34 article-title: Carbon accrual in the Atacama Desert publication-title: Global and Planetary Change – volume: 34 start-page: 1777 year: 2002 end-page: 1784 ident: bib6 article-title: Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO publication-title: Soil Biology and Biochemistry – volume: 184 year: 2020 ident: bib23 article-title: Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert publication-title: Global and Planetary Change – volume: 36 start-page: 135 year: 2017 end-page: 160 ident: bib49 article-title: Isotopocule analysis of biologically produced nitrous oxide in various environments publication-title: Mass Spectrometry Reviews – volume: 515 start-page: 505 year: 2014 end-page: 511 ident: bib4 article-title: Belowground biodiversity and ecosystem functioning publication-title: Nature – volume: 33 start-page: 223 year: 1999 end-page: 229 ident: bib16 article-title: Denitrification of high-nitrate, high-salinity wastewater publication-title: Water Research – volume: 68 start-page: 4023 year: 2004 end-page: 4038 ident: bib33 article-title: Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions publication-title: Geochimica et Cosmochimica Acta – volume: 66 start-page: 155 year: 2014 end-page: 161 ident: bib10 article-title: Perchlorate levels in soil and waters from the Atacama Desert publication-title: Archives of Environmental Contamination and Toxicology – volume: 61 start-page: 119 year: 2005 end-page: 136 ident: bib31 article-title: Rapid nitrate loss from a contaminated desert soil publication-title: Journal of Arid Environments – volume: 586 start-page: 2939 year: 2012 end-page: 2945 ident: bib3 article-title: Life at the dry edge: microorganisms of the Atacama Desert publication-title: FEBS Letters – volume: 42 start-page: 1183 year: 2010 end-page: 1188 ident: bib37 article-title: Bacterial diversity and occurrence of ammonia-oxidizing bacteria in the Atacama Desert soil during a “desert bloom” event publication-title: Soil Biology and Biochemistry – volume: 70 start-page: 215 year: 2016 end-page: 234 ident: bib9 article-title: The Atacama Desert: technical resources and the growing importance of novel microbial diversity publication-title: Annual Review of Microbiology – volume: 49 start-page: 962 year: 2007 end-page: 968 ident: bib39 article-title: Massive volcanism in the Altiplano-Puna volcanic plateau and formation of the huge Atacama Desert nitrate deposits: a case for thermal and electric fixation of atmospheric nitrogen publication-title: International Geology Review – volume: 8 start-page: 1 year: 2018 end-page: 10 ident: bib2 article-title: Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert publication-title: Scientific Reports – volume: 7 start-page: 1642 year: 2017 ident: bib56 article-title: Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica publication-title: Frontiers in Microbiology – volume: 111 start-page: 5266 year: 2014 end-page: 5270 ident: bib52 article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality publication-title: Proceedings of the National Academy of Sciences – volume: 10 start-page: 117 year: 2019 ident: bib60 article-title: Characterization of fungal nirK-containing communities and N publication-title: Frontiers in Microbiology – volume: 8 start-page: 1 year: 2017 end-page: 9 ident: bib29 article-title: Long-range transport of airborne microbes over the global tropical and subtropical ocean publication-title: Nature Communications – volume: 112 start-page: 15684 year: 2015 end-page: 15689 ident: bib28 article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands publication-title: Proceedings of the National Academy of Sciences – volume: 14 start-page: 251 year: 2018 end-page: 256 ident: bib43 article-title: Nitrate deposits of the Atacama Desert: a marker of long-term hyperaridity publication-title: Elements – start-page: 289 year: 1982 end-page: 326 ident: bib14 article-title: 8. Biological Denitrification. Nitrogen in Agricultural Soils – volume: 7 start-page: 214 year: 2016 ident: bib18 article-title: Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? publication-title: Frontiers in Microbiology – volume: 71 start-page: 4711 year: 1999 end-page: 4718 ident: bib48 article-title: Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer publication-title: Analytical Chemistry – year: 2018 ident: bib19 article-title: Meteorological and soil measurements of the permanent master weather station 33 - Quebrada Grande, Chile [Data set] publication-title: CRC1211 Database CRC1211DB – volume: 50 start-page: 108 year: 2012 end-page: 122 ident: bib51 article-title: Soil carbon distribution and site characteristics in hyper-arid soils of the Atacama Desert: a site with Mars-like soils publication-title: Advances in Space Research – volume: 105 start-page: 111 year: 2017 end-page: 120 ident: bib20 article-title: Response and feedback of C mineralization to P availability driven by soil microorganisms publication-title: Soil Biology and Biochemistry – volume: 13 start-page: 2737 year: 2019 end-page: 2749 ident: bib50 article-title: Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert publication-title: The ISME Journal – volume: 34 year: 2020 ident: bib62 article-title: What can we learn from N publication-title: Rapid Communications in Mass Spectrometry – volume: 14 start-page: 251 year: 2018 ident: 10.1016/j.soilbio.2021.108248_bib43 article-title: Nitrate deposits of the Atacama Desert: a marker of long-term hyperaridity publication-title: Elements doi: 10.2138/gselements.14.4.251 – volume: 34 start-page: 1777 year: 2002 ident: 10.1016/j.soilbio.2021.108248_bib6 article-title: Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2 publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(02)00166-9 – volume: 3 start-page: 393 year: 2003 ident: 10.1016/j.soilbio.2021.108248_bib30 article-title: Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Niño of 1997–1998 publication-title: Astrobiology doi: 10.1089/153110703769016460 – volume: 111 start-page: 1345 year: 2018 ident: 10.1016/j.soilbio.2021.108248_bib44 article-title: Fungal diversity in the Atacama Desert publication-title: Antonie van Leeuwenhoek doi: 10.1007/s10482-018-1060-6 – volume: 154 year: 2020 ident: 10.1016/j.soilbio.2021.108248_bib61 article-title: Divergent patterns of microbial community composition shift under two fertilization regimes revealed by responding species publication-title: Applied Soil Ecology doi: 10.1016/j.apsoil.2020.103590 – volume: 13 start-page: 2737 year: 2019 ident: 10.1016/j.soilbio.2021.108248_bib50 article-title: Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert publication-title: The ISME Journal doi: 10.1038/s41396-019-0468-y – volume: 34 year: 2020 ident: 10.1016/j.soilbio.2021.108248_bib62 article-title: What can we learn from N2O isotope data? Analytics, processes and modelling publication-title: Rapid Communications in Mass Spectrometry doi: 10.1002/rcm.8858 – volume: 17 start-page: 1975 year: 2011 ident: 10.1016/j.soilbio.2021.108248_bib1 article-title: Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2010.02340.x – volume: 586 start-page: 2939 year: 2012 ident: 10.1016/j.soilbio.2021.108248_bib3 article-title: Life at the dry edge: microorganisms of the Atacama Desert publication-title: FEBS Letters doi: 10.1016/j.febslet.2012.07.025 – volume: 5 start-page: 9697 year: 2015 ident: 10.1016/j.soilbio.2021.108248_bib27 article-title: N2O production, a widespread trait in fungi publication-title: Scientific Reports doi: 10.1038/srep09697 – volume: 96 start-page: 249 year: 2007 ident: 10.1016/j.soilbio.2021.108248_bib40 article-title: Ecology of denitrifying prokaryotes in agricultural soil publication-title: Advances in Agronomy doi: 10.1016/S0065-2113(07)96003-4 – volume: 2 start-page: 1 year: 2017 ident: 10.1016/j.soilbio.2021.108248_bib65 article-title: Continental-scale pollution of estuaries with antibiotic resistance genes publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.270 – volume: 61 start-page: 119 year: 2005 ident: 10.1016/j.soilbio.2021.108248_bib31 article-title: Rapid nitrate loss from a contaminated desert soil publication-title: Journal of Arid Environments doi: 10.1016/j.jaridenv.2004.08.006 – volume: 4 year: 2019 ident: 10.1016/j.soilbio.2021.108248_bib63 article-title: Salinity is a key determinant for soil microbial communities in a desert ecosystem publication-title: mSystems doi: 10.1128/mSystems.00225-18 – volume: 68 start-page: 4023 year: 2004 ident: 10.1016/j.soilbio.2021.108248_bib33 article-title: Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2004.04.009 – volume: 36 start-page: 135 year: 2017 ident: 10.1016/j.soilbio.2021.108248_bib49 article-title: Isotopocule analysis of biologically produced nitrous oxide in various environments publication-title: Mass Spectrometry Reviews doi: 10.1002/mas.21459 – volume: 49 start-page: 962 year: 2007 ident: 10.1016/j.soilbio.2021.108248_bib39 article-title: Massive volcanism in the Altiplano-Puna volcanic plateau and formation of the huge Atacama Desert nitrate deposits: a case for thermal and electric fixation of atmospheric nitrogen publication-title: International Geology Review doi: 10.2747/0020-6814.49.10.962 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.soilbio.2021.108248_bib2 article-title: Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert publication-title: Scientific Reports doi: 10.1038/s41598-018-35051-w – volume: 7 start-page: 1642 year: 2017 ident: 10.1016/j.soilbio.2021.108248_bib56 article-title: Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica publication-title: Frontiers in Microbiology – volume: 9 start-page: 3033 year: 2018 ident: 10.1016/j.soilbio.2021.108248_bib13 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nature Communications doi: 10.1038/s41467-018-05516-7 – volume: 11 start-page: 109 year: 2017 ident: 10.1016/j.soilbio.2021.108248_bib17 article-title: Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile publication-title: Genomics Data doi: 10.1016/j.gdata.2016.12.015 – volume: 126 start-page: 204 year: 2018 ident: 10.1016/j.soilbio.2021.108248_bib46 article-title: Interaction of straw amendment and soil NO3- content controls fungal denitrification and denitrification product stoichiometry in a sandy soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.09.005 – volume: 10 start-page: 117 year: 2019 ident: 10.1016/j.soilbio.2021.108248_bib60 article-title: Characterization of fungal nirK-containing communities and N2O emission from fungal denitrification in arable soils publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2019.00117 – volume: 42 start-page: 1183 year: 2010 ident: 10.1016/j.soilbio.2021.108248_bib37 article-title: Bacterial diversity and occurrence of ammonia-oxidizing bacteria in the Atacama Desert soil during a “desert bloom” event publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2010.03.025 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.soilbio.2021.108248_bib29 article-title: Long-range transport of airborne microbes over the global tropical and subtropical ocean publication-title: Nature Communications doi: 10.1038/s41467-017-00110-9 – volume: 67 start-page: 192 year: 2013 ident: 10.1016/j.soilbio.2021.108248_bib7 article-title: Active microorganisms in soil: critical review of estimation criteria and approaches publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2013.08.024 – volume: 7 start-page: 335 year: 2010 ident: 10.1016/j.soilbio.2021.108248_bib11 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nature Methods doi: 10.1038/nmeth.f.303 – volume: 515 start-page: 505 year: 2014 ident: 10.1016/j.soilbio.2021.108248_bib4 article-title: Belowground biodiversity and ecosystem functioning publication-title: Nature doi: 10.1038/nature13855 – volume: 104 start-page: 197 year: 2017 ident: 10.1016/j.soilbio.2021.108248_bib58 article-title: Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2016.10.022 – volume: 24 start-page: 2818 year: 2018 ident: 10.1016/j.soilbio.2021.108248_bib36 article-title: Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents publication-title: Global Change Biology doi: 10.1111/gcb.14113 – year: 2018 ident: 10.1016/j.soilbio.2021.108248_bib19 article-title: Meteorological and soil measurements of the permanent master weather station 33 - Quebrada Grande, Chile [Data set] publication-title: CRC1211 Database CRC1211DB – volume: 66 start-page: 1540 year: 2002 ident: 10.1016/j.soilbio.2021.108248_bib25 article-title: Evidence for fungal dominance of denitrification and codenitrification in a grassland soil publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2002.1540 – volume: 71 start-page: 3772 year: 2007 ident: 10.1016/j.soilbio.2021.108248_bib41 article-title: Soils at the hyperarid margin: the isotopic composition of soil carbonate from the Atacama Desert, Northern Chile publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2007.02.016 – volume: 236 year: 2020 ident: 10.1016/j.soilbio.2021.108248_bib32 article-title: Weather regimes linked to daily precipitation anomalies in Northern Chile publication-title: Atmospheric Research doi: 10.1016/j.atmosres.2019.104802 – volume: 13 start-page: 137 year: 1999 ident: 10.1016/j.soilbio.2021.108248_bib53 article-title: Controls on soil biodiversity: insights from extreme environments publication-title: Applied Soil Ecology doi: 10.1016/S0929-1393(99)00029-3 – volume: 7 start-page: 2229 year: 2013 ident: 10.1016/j.soilbio.2021.108248_bib5 article-title: Responses of soil bacterial and fungal communities to extreme desiccation and rewetting publication-title: The ISME Journal doi: 10.1038/ismej.2013.104 – volume: 7 start-page: 2695 year: 2010 ident: 10.1016/j.soilbio.2021.108248_bib15 article-title: Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium publication-title: Biogeosciences doi: 10.5194/bg-7-2695-2010 – volume: 33 start-page: 223 year: 1999 ident: 10.1016/j.soilbio.2021.108248_bib16 article-title: Denitrification of high-nitrate, high-salinity wastewater publication-title: Water Research doi: 10.1016/S0043-1354(98)00177-8 – volume: 117 start-page: 68 year: 2018 ident: 10.1016/j.soilbio.2021.108248_bib22 article-title: Moisture activation and carbon use efficiency of soil microbial communities along an aridity gradient in the Atacama Desert publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2017.10.026 – volume: 112 start-page: 15684 year: 2015 ident: 10.1016/j.soilbio.2021.108248_bib28 article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1516684112 – volume: 7 start-page: 214 year: 2016 ident: 10.1016/j.soilbio.2021.108248_bib18 article-title: Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2016.00214 – volume: 2 start-page: 249 year: 1986 ident: 10.1016/j.soilbio.2021.108248_bib8 article-title: Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: an assessment of their impacts on local and global nitrogen budgets publication-title: Biogeochemistry doi: 10.1007/BF02180161 – volume: 66 start-page: 155 year: 2014 ident: 10.1016/j.soilbio.2021.108248_bib10 article-title: Perchlorate levels in soil and waters from the Atacama Desert publication-title: Archives of Environmental Contamination and Toxicology doi: 10.1007/s00244-013-9960-y – start-page: 289 year: 1982 ident: 10.1016/j.soilbio.2021.108248_bib14 – volume: 181 year: 2019 ident: 10.1016/j.soilbio.2021.108248_bib34 article-title: Carbon accrual in the Atacama Desert publication-title: Global and Planetary Change doi: 10.1016/j.gloplacha.2019.102993 – volume: 3 start-page: 101 year: 2012 ident: 10.1016/j.soilbio.2021.108248_bib38 article-title: Diversity and activity of denitrifiers of Chilean arid soil ecosystems publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2012.00101 – volume: 443 start-page: 989 year: 2006 ident: 10.1016/j.soilbio.2021.108248_bib12 article-title: Effects of biodiversity on the functioning of trophic groups and ecosystems publication-title: Nature doi: 10.1038/nature05202 – volume: 61 start-page: 1451 year: 2018 ident: 10.1016/j.soilbio.2021.108248_bib64 article-title: QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling publication-title: Science China Life Sciences doi: 10.1007/s11427-018-9364-7 – volume: 39 start-page: 2178 year: 2007 ident: 10.1016/j.soilbio.2021.108248_bib21 article-title: Microbial response time to sugar and amino acid additions to soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2007.03.017 – volume: 302 start-page: 1021 year: 2003 ident: 10.1016/j.soilbio.2021.108248_bib54 article-title: A reservoir of nitrate beneath desert soils publication-title: Science doi: 10.1126/science.1086435 – volume: 115 start-page: 2670 year: 2018 ident: 10.1016/j.soilbio.2021.108248_bib45 article-title: Transitory microbial habitat in the hyperarid Atacama Desert publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1714341115 – volume: 57 start-page: 606 year: 2013 ident: 10.1016/j.soilbio.2021.108248_bib35 article-title: Autoxidation and acetylene-accelerated oxidation of NO in a 2-phase system: implications for the expression of denitrification in ex situ experiments publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2012.10.007 – volume: 184 year: 2020 ident: 10.1016/j.soilbio.2021.108248_bib23 article-title: Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert publication-title: Global and Planetary Change doi: 10.1016/j.gloplacha.2019.103078 – volume: 43 start-page: 8035 issue: 15 year: 2016 ident: 10.1016/j.soilbio.2021.108248_bib57 article-title: An integrated analysis of the March 2015 Atacama floods publication-title: Geophysical Research Letters doi: 10.1002/2016GL069751 – volume: 24 start-page: 5815 year: 2018 ident: 10.1016/j.soilbio.2021.108248_bib42 article-title: Bacterial community response to a preindustrial-to-future CO2 gradient is limited and soil specific in Texas Prairie grassland publication-title: Global Change Biology doi: 10.1111/gcb.14453 – volume: 71 start-page: 4711 year: 1999 ident: 10.1016/j.soilbio.2021.108248_bib48 article-title: Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer publication-title: Analytical Chemistry doi: 10.1021/ac9904563 – volume: 179 year: 2019 ident: 10.1016/j.soilbio.2021.108248_bib59 article-title: Quantifying N2O reduction to N2 during denitrification in soils via isotopic mapping approach: model evaluation and uncertainty analysis publication-title: Environmental Research doi: 10.1016/j.envres.2019.108806 – volume: 367 start-page: 1186 year: 2012 ident: 10.1016/j.soilbio.2021.108248_bib47 article-title: Fungal denitrification and nitric oxide reductase cytochrome P450nor publication-title: Phil. Trans. R. Soc. B doi: 10.1098/rstb.2011.0335 – volume: 50 start-page: 108 year: 2012 ident: 10.1016/j.soilbio.2021.108248_bib51 article-title: Soil carbon distribution and site characteristics in hyper-arid soils of the Atacama Desert: a site with Mars-like soils publication-title: Advances in Space Research doi: 10.1016/j.asr.2012.03.003 – volume: 70 start-page: 215 year: 2016 ident: 10.1016/j.soilbio.2021.108248_bib9 article-title: The Atacama Desert: technical resources and the growing importance of novel microbial diversity publication-title: Annual Review of Microbiology doi: 10.1146/annurev-micro-102215-095236 – volume: 111 start-page: 5266 year: 2014 ident: 10.1016/j.soilbio.2021.108248_bib52 article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1320054111 – volume: 105 start-page: 111 year: 2017 ident: 10.1016/j.soilbio.2021.108248_bib20 article-title: Response and feedback of C mineralization to P availability driven by soil microorganisms publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2016.11.014 – volume: 134 start-page: 55 year: 2014 ident: 10.1016/j.soilbio.2021.108248_bib26 article-title: Experimental determinations of isotopic fractionation factors associated with N2O production and reduction during denitrification in soils publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2014.03.010 – volume: 84 start-page: 65 year: 2015 ident: 10.1016/j.soilbio.2021.108248_bib24 article-title: Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification – an N2O isotopomer case study publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.01.021 |
SSID | ssj0002513 |
Score | 2.4666686 |
Snippet | The hyperarid soils of the Atacama Desert, Chile, contain the largest known nitrate deposits in the world. They also represent one of the most hostile... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108248 |
SubjectTerms | biosphere Chile climate Denitification denitrification dry environmental conditions fungi genes glucose Greenhouse gases hypoxia labile carbon land use Moisture status nitrates Nitrogen cycling oxygen rain soil bacteria Xerophile |
Title | Microbial potential for denitrification in the hyperarid Atacama Desert soils |
URI | https://dx.doi.org/10.1016/j.soilbio.2021.108248 https://www.proquest.com/docview/2551978513 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SzSHNobRpSx5tUKBXZ23Z1uO4LA3bls0pgdyELMmpQ-JdNs61v70ztpzSEgjkZhtGiBnpmxk88w3AV2mVT61ME9W35KQlXilXiqSyoSoyXnnXW3p5IRZXxY_r8noL5mMvDJVVRuwfML1H6_hlGrU5XTcN9fgSWTqlMD0xmdqGHZ5rUU5gZ_b95-LiCZDRhUfuXUX9OvJvI8_0lihz76qG2gB5RgV3nCYBPe-i_gPr3gOdv4O3MXRks2F372ErtPuwN7vZRPqMsA-783F-2wdYLpueZAlF1quOioLwCUNUhkjTdBsqEeqtwpqWYRTIfmFGSpmzZ7POOntvGeakYdMx2vvDR7g6_3Y5XyRxeELiilR1ia3yjDvtCl1rmXJf55gJprXPvMiDFuiVHBeVFcprpb2y0jrBeaotsefYWuafYNKu2nAALJOeJNO6xOjJ6qALWfosSLywLvBKHEIx6su4yCxOAy7uzFhCdmuimg2p2QxqPoSzJ7H1QK3xkoAajWH-OSMG4f8l0dPReAbNQD9FbBtWjw8GU6oMM2k8IkevX_4Y3tDbUEL2GSbd5jF8wWClq05g--x3dhKP5B8J1ui- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPUAPqOWhAn24EtewifOwfVytirYtywkkbpZjO5AVZFdLuPLbmUkcEKgSUm9RorGsGXseyjffABwLI11sRBzJriUnzvFK2byISuPLLOGls52lZ-fF9DL7c5VfrcFk6IUhWGXw_b1P77x1eDMK2hwt65p6fIksnUqYjphMrsOHLE8F4fpOHl9wHhjAA_OupG4d8dLGM5oTYe5tWVMTIE8IbsdpDtC_A9QbV93Fn9NPsB0SRzbu9_YZ1nyzAx_H16tAnuF3YHMyTG_bhdms7iiWUGS5aAkShE-YoDL0M3W7IoBQZxNWNwxzQHaD9SjVzY6NW2PNnWFYkfpVy2jv93twefrrYjKNwuiEyGaxbCNTpgm3ymaqUiLmrkqxDowrl7gi9arAmGR5UZpCOiWVk0YYW3AeK0PcOaYS6T5sNIvGfwGWCEeScZVj7mSUV5nIXeIFXlfreVkcQDboS9vAK07jLW71ACCb66BmTWrWvZoP4ORZbNkTa7wnIAdj6FcnRKPzf0_052A8jWagXyKm8YuHe40FVYJ1NB6Rw_9f_gdsTi9mZ_rs9_nfI9iiLz2Y7CtstKsH_w3Tlrb83h3LJwCK6Yk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+potential+for+denitrification+in+the+hyperarid+Atacama+Desert+soils&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Wu%2C+Di&rft.au=Senbayram%2C+Mehmet&rft.au=Moradi%2C+Ghazal&rft.au=M%C3%B6rchen%2C+Ramona&rft.date=2021-06-01&rft.issn=0038-0717&rft.volume=157+p.108248-&rft_id=info:doi/10.1016%2Fj.soilbio.2021.108248&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |