Microbial potential for denitrification in the hyperarid Atacama Desert soils

The hyperarid soils of the Atacama Desert, Chile, contain the largest known nitrate deposits in the world. They also represent one of the most hostile environments for microbial life anywhere in the terrestrial biosphere. Despite known for its extreme dryness, several heavy rainfall events causing l...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 157; p. 108248
Main Authors Wu, Di, Senbayram, Mehmet, Moradi, Ghazal, Mörchen, Ramona, Knief, Claudia, Klumpp, Erwin, Jones, Davey L., Well, Reinhard, Chen, Ruirui, Bol, Roland
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text
ISSN0038-0717
1879-3428
DOI10.1016/j.soilbio.2021.108248

Cover

Abstract The hyperarid soils of the Atacama Desert, Chile, contain the largest known nitrate deposits in the world. They also represent one of the most hostile environments for microbial life anywhere in the terrestrial biosphere. Despite known for its extreme dryness, several heavy rainfall events causing localised flash flooding have struck Atacama Desert core regions during the last five years. It remains unclear, however, whether these soils can support microbial denitrification. To answer this, we sampled soils along a hyperaridity gradient in the Atacama Desert and conducted incubation experiments using a robotized continuous flow system under a He/O2 atmosphere. The impacts of four successive extreme weather events on soil-borne N2O and N2 emissions were investigated, i) water addition, ii) NO3− addition, iii) labile carbon (C) addition, and iv) oxygen depletion. The 15N–N2O site-preference (SP) approach was further used to examine the source of N2O produced. Extremely low N2O fluxes were detected shortly after water and NO3− addition, whereas pronounced N2O and N2 emissions were recorded after labile-C (glucose) amendment in all soils. Under anoxia, N2 emissions increased drastically while N2O emissions decreased concomitantly, indicating the potential for complete denitrification at all sites. Although increasing aridity significantly reduced soil bacterial richness, microbial potential for denitrification and associated gene abundance (i.e., napA, narG, nirS, nirK, cnorB, qnorB and nosZ) was not affected. The N2O15N site preference values based on two end-member model suggested that fungal and bacterial denitrification co-contributed to N2O production in less arid sites, whereas bacterial denitrification dominated with increasing aridity. We conclude that soil denitrification functionality is preserved even with lowered microbial richness in the extreme hyperarid Atacama Desert. Future changes in land-use or extreme climate events therefore have a potential to destabilize the immense reserves of nitrate and induce significant N2O losses in the region. •Denitrification was shown to occur in the hyperarid Atacama Desert.•Denitrification potential and associated gene abundance was not affected by aridity.•Increasing aridity reduced soil bacterial richness.•Fungal and bacterial denitrification co-contributed to N2O production.•Bacterial denitrification dominated N2O production with increasing hyperaridity.
AbstractList The hyperarid soils of the Atacama Desert, Chile, contain the largest known nitrate deposits in the world. They also represent one of the most hostile environments for microbial life anywhere in the terrestrial biosphere. Despite known for its extreme dryness, several heavy rainfall events causing localised flash flooding have struck Atacama Desert core regions during the last five years. It remains unclear, however, whether these soils can support microbial denitrification. To answer this, we sampled soils along a hyperaridity gradient in the Atacama Desert and conducted incubation experiments using a robotized continuous flow system under a He/O2 atmosphere. The impacts of four successive extreme weather events on soil-borne N2O and N2 emissions were investigated, i) water addition, ii) NO3− addition, iii) labile carbon (C) addition, and iv) oxygen depletion. The 15N–N2O site-preference (SP) approach was further used to examine the source of N2O produced. Extremely low N2O fluxes were detected shortly after water and NO3− addition, whereas pronounced N2O and N2 emissions were recorded after labile-C (glucose) amendment in all soils. Under anoxia, N2 emissions increased drastically while N2O emissions decreased concomitantly, indicating the potential for complete denitrification at all sites. Although increasing aridity significantly reduced soil bacterial richness, microbial potential for denitrification and associated gene abundance (i.e., napA, narG, nirS, nirK, cnorB, qnorB and nosZ) was not affected. The N2O15N site preference values based on two end-member model suggested that fungal and bacterial denitrification co-contributed to N2O production in less arid sites, whereas bacterial denitrification dominated with increasing aridity. We conclude that soil denitrification functionality is preserved even with lowered microbial richness in the extreme hyperarid Atacama Desert. Future changes in land-use or extreme climate events therefore have a potential to destabilize the immense reserves of nitrate and induce significant N2O losses in the region. •Denitrification was shown to occur in the hyperarid Atacama Desert.•Denitrification potential and associated gene abundance was not affected by aridity.•Increasing aridity reduced soil bacterial richness.•Fungal and bacterial denitrification co-contributed to N2O production.•Bacterial denitrification dominated N2O production with increasing hyperaridity.
The hyperarid soils of the Atacama Desert, Chile, contain the largest known nitrate deposits in the world. They also represent one of the most hostile environments for microbial life anywhere in the terrestrial biosphere. Despite known for its extreme dryness, several heavy rainfall events causing localised flash flooding have struck Atacama Desert core regions during the last five years. It remains unclear, however, whether these soils can support microbial denitrification. To answer this, we sampled soils along a hyperaridity gradient in the Atacama Desert and conducted incubation experiments using a robotized continuous flow system under a He/O₂ atmosphere. The impacts of four successive extreme weather events on soil-borne N₂O and N₂ emissions were investigated, i) water addition, ii) NO₃⁻ addition, iii) labile carbon (C) addition, and iv) oxygen depletion. The ¹⁵N–N₂O site-preference (SP) approach was further used to examine the source of N₂O produced. Extremely low N₂O fluxes were detected shortly after water and NO₃⁻ addition, whereas pronounced N₂O and N₂ emissions were recorded after labile-C (glucose) amendment in all soils. Under anoxia, N₂ emissions increased drastically while N₂O emissions decreased concomitantly, indicating the potential for complete denitrification at all sites. Although increasing aridity significantly reduced soil bacterial richness, microbial potential for denitrification and associated gene abundance (i.e., napA, narG, nirS, nirK, cnorB, qnorB and nosZ) was not affected. The N₂O¹⁵N site preference values based on two end-member model suggested that fungal and bacterial denitrification co-contributed to N₂O production in less arid sites, whereas bacterial denitrification dominated with increasing aridity. We conclude that soil denitrification functionality is preserved even with lowered microbial richness in the extreme hyperarid Atacama Desert. Future changes in land-use or extreme climate events therefore have a potential to destabilize the immense reserves of nitrate and induce significant N₂O losses in the region.
ArticleNumber 108248
Author Knief, Claudia
Klumpp, Erwin
Chen, Ruirui
Jones, Davey L.
Mörchen, Ramona
Well, Reinhard
Senbayram, Mehmet
Moradi, Ghazal
Wu, Di
Bol, Roland
Author_xml – sequence: 1
  givenname: Di
  surname: Wu
  fullname: Wu, Di
  organization: Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100083, China
– sequence: 2
  givenname: Mehmet
  surname: Senbayram
  fullname: Senbayram, Mehmet
  organization: Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, Braunschweig, 38116, Germany
– sequence: 3
  givenname: Ghazal
  surname: Moradi
  fullname: Moradi, Ghazal
  organization: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
– sequence: 4
  givenname: Ramona
  surname: Mörchen
  fullname: Mörchen, Ramona
  organization: Soil Science & Soil Ecology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53115, Germany
– sequence: 5
  givenname: Claudia
  surname: Knief
  fullname: Knief, Claudia
  organization: Institute of Crop Science and Resource Conservation, Molecular Biology of the Rhizosphere, University of Bonn, Bonn, 53115, Germany
– sequence: 6
  givenname: Erwin
  surname: Klumpp
  fullname: Klumpp, Erwin
  organization: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
– sequence: 7
  givenname: Davey L.
  orcidid: 0000-0002-1482-4209
  surname: Jones
  fullname: Jones, Davey L.
  organization: Environment Centre Wales, Bangor University, Gwynedd, LL57 2UW, UK
– sequence: 8
  givenname: Reinhard
  surname: Well
  fullname: Well, Reinhard
  organization: Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, Braunschweig, 38116, Germany
– sequence: 9
  givenname: Ruirui
  surname: Chen
  fullname: Chen, Ruirui
  email: rrchen@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
– sequence: 10
  givenname: Roland
  orcidid: 0000-0003-3015-7706
  surname: Bol
  fullname: Bol, Roland
  organization: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
BookMark eNqFkM1LAzEQxYNUsK3-CcIevWxNsl8JHqTUT2jxoueQJrN0ynazJqnQ_95d25OXnmYY3nvM-03IqHUtEHLL6IxRVt5vZ8Fhs0Y345Sz_iZ4Li7ImIlKplnOxYiMKc1ESitWXZFJCFtKKS9YNiarFRrv1qibpHMR2jhstfOJhRajxxqNjujaBNskbiDZHDrw2qNN5lEbvdPJEwTwMRleCNfkstZNgJvTnJKvl-fPxVu6_Hh9X8yXqcmpiKleZ4wbaXJZy4pyW2dFLmltmS0zkCUXueHlWpfCSiGt0JU2JedUalZKpusqm5K7Y27n3fceQlQ7DAaaRrfg9kHxomCyEn3DXlocpX3NEDzUqvO40_6gGFUDPrVVJ3xqwKeO-Hrfwz-fwfiHInqNzVn349ENPYUfBK-CQWgNWPRgorIOzyT8AqcMkWE
CitedBy_id crossref_primary_10_1007_s00374_023_01711_x
crossref_primary_10_1128_mmbr_00109_21
crossref_primary_10_3389_fpls_2024_1411073
crossref_primary_10_1080_10256016_2021_1990913
crossref_primary_10_1016_j_catena_2024_108171
crossref_primary_10_1080_01490451_2022_2069888
crossref_primary_10_1002_imt2_122
crossref_primary_10_1016_j_apsoil_2024_105447
crossref_primary_10_1016_j_soilbio_2023_109128
crossref_primary_10_3390_microorganisms12020320
crossref_primary_10_1016_j_scitotenv_2023_164785
crossref_primary_10_1016_j_geoderma_2022_116206
crossref_primary_10_1007_s00374_024_01886_x
crossref_primary_10_1007_s11756_024_01731_4
crossref_primary_10_3390_d14010014
crossref_primary_10_1038_s42003_024_06741_1
crossref_primary_10_1111_ejss_13425
crossref_primary_10_1016_j_apsoil_2023_105194
crossref_primary_10_3390_jof8080858
Cites_doi 10.2138/gselements.14.4.251
10.1016/S0038-0717(02)00166-9
10.1089/153110703769016460
10.1007/s10482-018-1060-6
10.1016/j.apsoil.2020.103590
10.1038/s41396-019-0468-y
10.1002/rcm.8858
10.1111/j.1365-2486.2010.02340.x
10.1016/j.febslet.2012.07.025
10.1038/srep09697
10.1016/S0065-2113(07)96003-4
10.1038/nmicrobiol.2016.270
10.1016/j.jaridenv.2004.08.006
10.1128/mSystems.00225-18
10.1016/j.gca.2004.04.009
10.1002/mas.21459
10.2747/0020-6814.49.10.962
10.1038/s41598-018-35051-w
10.1038/s41467-018-05516-7
10.1016/j.gdata.2016.12.015
10.1016/j.soilbio.2018.09.005
10.3389/fmicb.2019.00117
10.1016/j.soilbio.2010.03.025
10.1038/s41467-017-00110-9
10.1016/j.soilbio.2013.08.024
10.1038/nmeth.f.303
10.1038/nature13855
10.1016/j.soilbio.2016.10.022
10.1111/gcb.14113
10.2136/sssaj2002.1540
10.1016/j.gca.2007.02.016
10.1016/j.atmosres.2019.104802
10.1016/S0929-1393(99)00029-3
10.1038/ismej.2013.104
10.5194/bg-7-2695-2010
10.1016/S0043-1354(98)00177-8
10.1016/j.soilbio.2017.10.026
10.1073/pnas.1516684112
10.3389/fmicb.2016.00214
10.1007/BF02180161
10.1007/s00244-013-9960-y
10.1016/j.gloplacha.2019.102993
10.3389/fmicb.2012.00101
10.1038/nature05202
10.1007/s11427-018-9364-7
10.1016/j.soilbio.2007.03.017
10.1126/science.1086435
10.1073/pnas.1714341115
10.1016/j.soilbio.2012.10.007
10.1016/j.gloplacha.2019.103078
10.1002/2016GL069751
10.1111/gcb.14453
10.1021/ac9904563
10.1016/j.envres.2019.108806
10.1098/rstb.2011.0335
10.1016/j.asr.2012.03.003
10.1146/annurev-micro-102215-095236
10.1073/pnas.1320054111
10.1016/j.soilbio.2016.11.014
10.1016/j.gca.2014.03.010
10.1016/j.soilbio.2015.01.021
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2021.108248
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
ExternalDocumentID 10_1016_j_soilbio_2021_108248
S0038071721001218
GeographicLocations Chile
GeographicLocations_xml – name: Chile
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c408t-ab312c9c49f9702df35490fd1d63e96284c26ba68d989d8a7ac62209a1691af73
IEDL.DBID AIKHN
ISSN 0038-0717
IngestDate Fri Sep 05 09:57:35 EDT 2025
Tue Jul 01 03:20:04 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Fri Feb 23 02:46:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Xerophile
Moisture status
Greenhouse gases
Nitrogen cycling
Denitification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-ab312c9c49f9702df35490fd1d63e96284c26ba68d989d8a7ac62209a1691af73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3015-7706
0000-0002-1482-4209
PQID 2551978513
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551978513
crossref_primary_10_1016_j_soilbio_2021_108248
crossref_citationtrail_10_1016_j_soilbio_2021_108248
elsevier_sciencedirect_doi_10_1016_j_soilbio_2021_108248
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Soil biology & biochemistry
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Raut, Polley, Fay, Kang (bib42) 2018; 24
Glass, Silverstein (bib16) 1999; 33
Maeda, Spor, Edel-Hermann, Heraud, Breuil, Bizouard, Toyoda, Yoshida, Steinberg, Philippot (bib27) 2015; 5
Wei, Lacap-Bugler, Lau, Caruso, Rao, Rios, Archer, Chiu, Higgins, Van Nostrand, Zhou, Hopkins, Pointing (bib56) 2017; 7
Köster, Cárdenas, Bol, Lewicka-Szczebak, Senbayram, Well, Giesemann, Dittert (bib24) 2015; 84
Michalski, Böhlke, Thiemens (bib33) 2004; 68
Zhu, Zhao, Li, Huang, Zhang, Yu, Chen, Zhang, Gillings, Su (bib65) 2017; 2
Reich, Bao (bib43) 2018; 14
Shoun, Fushinobu, Jiang, Kim, Wakagi (bib47) 2012; 367
Knief, Bol, Amelung, Kusch, Frindte, Eckmeier, Jaeschke, Dunai, Fuentes, Mörchen, Schütte, Lücke, Klumpp, Kaiser, Rethemeyer (bib23) 2020; 184
Billings, Schaeffer, Evans (bib6) 2002; 34
Mörchen, Lehndorff, Diaz, Moradi, Bol, Fuentes, Klumpp, Amelung (bib34) 2019; 181
Oyarzun, Oyarzun (bib39) 2007; 49
Valdivia-Silva, Navarro-González, Fletcher, Perez-Montaño, Condori-Apaza, Mckay (bib51) 2012; 50
Orlando, Alfaro, Bravo, Guevara, Carú (bib37) 2010; 42
Nadeem, Dörsch, Bakken (bib35) 2013; 57
Calderón, Palma, Parker, Molina, Godoy, Escudey (bib10) 2014; 66
Cardinale, Srivastava, Emmett Duffy, Wright, Downing, Sankaran, Jouseau (bib12) 2006; 443
Zhang, Shi, Cui, Yue, Li, Liu, Tripathi, Chu (bib63) 2019; 4
Bardgett, van der Putten (bib4) 2014; 515
Maestre, Delgado-Baquerizo, Jeffries, Eldridge, Ochoa, Gozalo, Quero, García-Gómez, Gallardo, Ulrich, Bowker, Arredondo, Barraza-Zepeda, Bran, Florentino, Gaitán, Gutiérrez, Huber-Sannwald, Jankju, Singh (bib28) 2015; 112
Azua-Bustos, Fairén, González-Silva, Ascaso, Carrizo, Fernández-Martínez, Fernández-Sampedro, García-Descalzo, García-Villadangos, Martin-Redondo, Sánchez-García, Wierzchos, Parro (bib2) 2018; 8
Orlando, Carú, Pommerenke, Braker (bib38) 2012; 3
Philippot, Hallin, Schloter (bib40) 2007; 96
Barnard, Osborne, Firestone (bib5) 2013; 7
Wilcox, Escauriaza, Agredano, Mignot, Zuazo, Otárola, Castro, Gironás, Cienfuegos, Mao (bib57) 2016; 43
Yu, Harris, Lewicka‐Szczebak, Barthel, Blomberg, Harris, Johnson, Lehmann, Liisberg, Müller, Ostrom, Six, Toyoda, Yoshida, Mohn (bib62) 2020; 34
Bull, Asenjo, Goodfellow, Gómez-Silva (bib9) 2016; 70
Wall, Virginia (bib53) 1999; 13
Mayol, Arrieta, Jiménez, Martínez-Asensio, Garcias-Bonet, Dachs, González-Gaya, Royer, Benítez-Barrios, Fraile-Nuez, Duarte (bib29) 2017; 8
Schulze-Makuch, Wagner, Kounaves, Mangelsdorf, Devine, Vera, Schmitt-Kopplin, Grossart, Parro, Kaupenjohann, Galy, Schneider, Airo, Frösler, Davila, Arens, Cáceres, Cornejo, Carrizo, Zamorano (bib45) 2018; 115
Senbayram, Well, Bol, Chadwick, Jones, Wu (bib46) 2018; 126
Toyoda, Yoshida, Koba (bib49) 2017; 36
Meseguer-Ruiz, Cortesi, Guijarro, Sarricolea (bib32) 2020; 236
Xu, Sheng, Xing, Zhang, Hou, Liu, Qin, Chen, Wei (bib60) 2019; 10
Ochoa-Hueso, Collins, Delgado-Baquerizo, Hamonts, Pockman, Sinsabaugh, Smith, Knapp, Power (bib36) 2018; 24
McKay, Friedmann, Gómez-Silva, Cáceres-Villanueva, Andersen, Landheim (bib30) 2003; 3
Gonzalez-Teuber, Vilo, Bascunan-Godoy (bib17) 2017; 11
Wagg, Bender, Widmer, van der Heijden (bib52) 2014; 111
Wu, Senbayram, Well, Brüggemann, Pfeiffer, Loick, Stempfhuber, Dittert, Bol (bib58) 2017; 104
Toyoda, Yoshida (bib48) 1999; 71
Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Peña, Goodrich, Gordon, Huttley, Kelley, Knights, Koenig, Ley, Lozupone, McDonald, Muegge, Pirrung, Knight (bib11) 2010; 7
Santiago, Gonçalves, Gómez-Silva, Galetovic, Rosa (bib44) 2018; 111
Laughlin, Stenvens (bib25) 2002; 66
Walvoord, Phillips, Stonestrom, Evans, Hartsough, Newman, Striegl (bib54) 2003; 302
Jones, Olivera-Ardid, Klumpp, Knief, Hill, Lehndorff, Bol (bib22) 2018; 117
Uritskiy, Getsin, Munn, Gomez-Silva, Davila, Glass, Taylor, DiRuggiero (bib50) 2019; 13
Yao, Chen, Zhang, Feng, Huang, Lin (bib61) 2020; 154
Lewicka-Szczebak, Well, Köster, Fuß, Senbayram, Dittert, Flessa (bib26) 2014; 134
Frame, Casciotti (bib15) 2010; 7
de Vries, Griffiths, Bailey, Craig, Girlanda, Gweon, Hallin, Kaisermann, Keith, Kretzschmar, Lemanceau, Lumini, Mason, Oliver, Ostle, Prosser, Thion, Thomson, Bardgett (bib13) 2018; 9
Attard, Recous, Chabbi, Berranger, Guillaumaud, Labreuche, Philippot, Schmid, Roux (bib1) 2011; 17
Jones, Murphy (bib21) 2007; 39
Firestone (bib14) 1982
Jing, Chen, Wei, Feng, Zhang, Lin (bib20) 2017; 105
Quade, Rech, Latorre, Betancourt, Gleeson, Kalin (bib41) 2007; 71
Graham, Knelman, Schindlbacher, Siciliano, Breulmann, Yannarell, Bemans, Abell, Philippot, Prosser (bib18) 2016; 7
Hoffmeister (bib19) 2018
McKeon, Jordan, Glenn, Waugh, Nelson (bib31) 2005; 61
Wu, Well, Cárdenas, Fuß, Lewicka-Szczebak, Köster, Brüggemann, Bol (bib59) 2019; 179
Zheng, Zhu, Sardans, Peñuelas, Su (bib64) 2018; 61
Blagodatskaya, Kuzyakov (bib7) 2013; 67
Bowden (bib8) 1986; 2
Azua-Bustos, Urrejola, Vicuña (bib3) 2012; 586
Toyoda (10.1016/j.soilbio.2021.108248_bib48) 1999; 71
Wei (10.1016/j.soilbio.2021.108248_bib56) 2017; 7
Philippot (10.1016/j.soilbio.2021.108248_bib40) 2007; 96
Wilcox (10.1016/j.soilbio.2021.108248_bib57) 2016; 43
Barnard (10.1016/j.soilbio.2021.108248_bib5) 2013; 7
Wu (10.1016/j.soilbio.2021.108248_bib58) 2017; 104
Bowden (10.1016/j.soilbio.2021.108248_bib8) 1986; 2
Toyoda (10.1016/j.soilbio.2021.108248_bib49) 2017; 36
Oyarzun (10.1016/j.soilbio.2021.108248_bib39) 2007; 49
Xu (10.1016/j.soilbio.2021.108248_bib60) 2019; 10
Mörchen (10.1016/j.soilbio.2021.108248_bib34) 2019; 181
Mayol (10.1016/j.soilbio.2021.108248_bib29) 2017; 8
Michalski (10.1016/j.soilbio.2021.108248_bib33) 2004; 68
Schulze-Makuch (10.1016/j.soilbio.2021.108248_bib45) 2018; 115
McKay (10.1016/j.soilbio.2021.108248_bib30) 2003; 3
Maeda (10.1016/j.soilbio.2021.108248_bib27) 2015; 5
Glass (10.1016/j.soilbio.2021.108248_bib16) 1999; 33
Jing (10.1016/j.soilbio.2021.108248_bib20) 2017; 105
Azua-Bustos (10.1016/j.soilbio.2021.108248_bib2) 2018; 8
Meseguer-Ruiz (10.1016/j.soilbio.2021.108248_bib32) 2020; 236
Ochoa-Hueso (10.1016/j.soilbio.2021.108248_bib36) 2018; 24
Orlando (10.1016/j.soilbio.2021.108248_bib38) 2012; 3
Firestone (10.1016/j.soilbio.2021.108248_bib14) 1982
Quade (10.1016/j.soilbio.2021.108248_bib41) 2007; 71
Azua-Bustos (10.1016/j.soilbio.2021.108248_bib3) 2012; 586
Senbayram (10.1016/j.soilbio.2021.108248_bib46) 2018; 126
Zhu (10.1016/j.soilbio.2021.108248_bib65) 2017; 2
Valdivia-Silva (10.1016/j.soilbio.2021.108248_bib51) 2012; 50
Billings (10.1016/j.soilbio.2021.108248_bib6) 2002; 34
Wu (10.1016/j.soilbio.2021.108248_bib59) 2019; 179
Köster (10.1016/j.soilbio.2021.108248_bib24) 2015; 84
Blagodatskaya (10.1016/j.soilbio.2021.108248_bib7) 2013; 67
Yao (10.1016/j.soilbio.2021.108248_bib61) 2020; 154
Raut (10.1016/j.soilbio.2021.108248_bib42) 2018; 24
Bull (10.1016/j.soilbio.2021.108248_bib9) 2016; 70
Laughlin (10.1016/j.soilbio.2021.108248_bib25) 2002; 66
Nadeem (10.1016/j.soilbio.2021.108248_bib35) 2013; 57
Walvoord (10.1016/j.soilbio.2021.108248_bib54) 2003; 302
Jones (10.1016/j.soilbio.2021.108248_bib22) 2018; 117
Cardinale (10.1016/j.soilbio.2021.108248_bib12) 2006; 443
Maestre (10.1016/j.soilbio.2021.108248_bib28) 2015; 112
Gonzalez-Teuber (10.1016/j.soilbio.2021.108248_bib17) 2017; 11
Jones (10.1016/j.soilbio.2021.108248_bib21) 2007; 39
Zheng (10.1016/j.soilbio.2021.108248_bib64) 2018; 61
Graham (10.1016/j.soilbio.2021.108248_bib18) 2016; 7
Shoun (10.1016/j.soilbio.2021.108248_bib47) 2012; 367
Uritskiy (10.1016/j.soilbio.2021.108248_bib50) 2019; 13
Caporaso (10.1016/j.soilbio.2021.108248_bib11) 2010; 7
Wagg (10.1016/j.soilbio.2021.108248_bib52) 2014; 111
McKeon (10.1016/j.soilbio.2021.108248_bib31) 2005; 61
Orlando (10.1016/j.soilbio.2021.108248_bib37) 2010; 42
Bardgett (10.1016/j.soilbio.2021.108248_bib4) 2014; 515
Knief (10.1016/j.soilbio.2021.108248_bib23) 2020; 184
Lewicka-Szczebak (10.1016/j.soilbio.2021.108248_bib26) 2014; 134
Santiago (10.1016/j.soilbio.2021.108248_bib44) 2018; 111
Wall (10.1016/j.soilbio.2021.108248_bib53) 1999; 13
Yu (10.1016/j.soilbio.2021.108248_bib62) 2020; 34
Attard (10.1016/j.soilbio.2021.108248_bib1) 2011; 17
Hoffmeister (10.1016/j.soilbio.2021.108248_bib19) 2018
de Vries (10.1016/j.soilbio.2021.108248_bib13) 2018; 9
Reich (10.1016/j.soilbio.2021.108248_bib43) 2018; 14
Frame (10.1016/j.soilbio.2021.108248_bib15) 2010; 7
Calderón (10.1016/j.soilbio.2021.108248_bib10) 2014; 66
Zhang (10.1016/j.soilbio.2021.108248_bib63) 2019; 4
References_xml – volume: 236
  year: 2020
  ident: bib32
  article-title: Weather regimes linked to daily precipitation anomalies in Northern Chile
  publication-title: Atmospheric Research
– volume: 126
  start-page: 204
  year: 2018
  end-page: 212
  ident: bib46
  article-title: Interaction of straw amendment and soil NO
  publication-title: Soil Biology and Biochemistry
– volume: 57
  start-page: 606
  year: 2013
  end-page: 614
  ident: bib35
  article-title: Autoxidation and acetylene-accelerated oxidation of NO in a 2-phase system: implications for the expression of denitrification in ex situ experiments
  publication-title: Soil Biology and Biochemistry
– volume: 71
  start-page: 3772
  year: 2007
  end-page: 3795
  ident: bib41
  article-title: Soils at the hyperarid margin: the isotopic composition of soil carbonate from the Atacama Desert, Northern Chile
  publication-title: Geochimica et Cosmochimica Acta
– volume: 9
  start-page: 3033
  year: 2018
  ident: bib13
  article-title: Soil bacterial networks are less stable under drought than fungal networks
  publication-title: Nature Communications
– volume: 24
  start-page: 2818
  year: 2018
  end-page: 2827
  ident: bib36
  article-title: Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents
  publication-title: Global Change Biology
– volume: 154
  year: 2020
  ident: bib61
  article-title: Divergent patterns of microbial community composition shift under two fertilization regimes revealed by responding species
  publication-title: Applied Soil Ecology
– volume: 2
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib65
  article-title: Continental-scale pollution of estuaries with antibiotic resistance genes
  publication-title: Nat. Microbiol.
– volume: 3
  start-page: 393
  year: 2003
  end-page: 406
  ident: bib30
  article-title: Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Niño of 1997–1998
  publication-title: Astrobiology
– volume: 61
  start-page: 1451
  year: 2018
  end-page: 1462
  ident: bib64
  article-title: QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling
  publication-title: Science China Life Sciences
– volume: 7
  start-page: 2695
  year: 2010
  end-page: 2709
  ident: bib15
  article-title: Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium
  publication-title: Biogeosciences
– volume: 39
  start-page: 2178
  year: 2007
  end-page: 2182
  ident: bib21
  article-title: Microbial response time to sugar and amino acid additions to soil
  publication-title: Soil Biology and Biochemistry
– volume: 115
  start-page: 2670
  year: 2018
  end-page: 2675
  ident: bib45
  article-title: Transitory microbial habitat in the hyperarid Atacama Desert
  publication-title: Proceedings of the National Academy of Sciences
– volume: 3
  start-page: 101
  year: 2012
  ident: bib38
  article-title: Diversity and activity of denitrifiers of Chilean arid soil ecosystems
  publication-title: Frontiers in Microbiology
– volume: 96
  start-page: 249
  year: 2007
  end-page: 305
  ident: bib40
  article-title: Ecology of denitrifying prokaryotes in agricultural soil
  publication-title: Advances in Agronomy
– volume: 443
  start-page: 989
  year: 2006
  end-page: 992
  ident: bib12
  article-title: Effects of biodiversity on the functioning of trophic groups and ecosystems
  publication-title: Nature
– volume: 117
  start-page: 68
  year: 2018
  end-page: 71
  ident: bib22
  article-title: Moisture activation and carbon use efficiency of soil microbial communities along an aridity gradient in the Atacama Desert
  publication-title: Soil Biology and Biochemistry
– volume: 7
  start-page: 2229
  year: 2013
  end-page: 2241
  ident: bib5
  article-title: Responses of soil bacterial and fungal communities to extreme desiccation and rewetting
  publication-title: The ISME Journal
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  ident: bib11
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nature Methods
– volume: 17
  start-page: 1975
  year: 2011
  end-page: 1989
  ident: bib1
  article-title: Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses
  publication-title: Global Change Biology
– volume: 367
  start-page: 1186
  year: 2012
  end-page: 1194
  ident: bib47
  article-title: Fungal denitrification and nitric oxide reductase cytochrome P450nor
  publication-title: Phil. Trans. R. Soc. B
– volume: 5
  start-page: 9697
  year: 2015
  ident: bib27
  article-title: N
  publication-title: Scientific Reports
– volume: 24
  start-page: 5815
  year: 2018
  end-page: 5827
  ident: bib42
  article-title: Bacterial community response to a preindustrial-to-future CO
  publication-title: Global Change Biology
– volume: 11
  start-page: 109
  year: 2017
  end-page: 112
  ident: bib17
  article-title: Molecular characterization of endophytic fungi associated with the roots of
  publication-title: Genomics Data
– volume: 67
  start-page: 192
  year: 2013
  end-page: 211
  ident: bib7
  article-title: Active microorganisms in soil: critical review of estimation criteria and approaches
  publication-title: Soil Biology and Biochemistry
– volume: 13
  start-page: 137
  year: 1999
  end-page: 150
  ident: bib53
  article-title: Controls on soil biodiversity: insights from extreme environments
  publication-title: Applied Soil Ecology
– volume: 4
  year: 2019
  ident: bib63
  article-title: Salinity is a key determinant for soil microbial communities in a desert ecosystem
  publication-title: mSystems
– volume: 43
  start-page: 8035
  year: 2016
  end-page: 8043
  ident: bib57
  article-title: An integrated analysis of the March 2015 Atacama floods
  publication-title: Geophysical Research Letters
– volume: 302
  start-page: 1021
  year: 2003
  end-page: 1024
  ident: bib54
  article-title: A reservoir of nitrate beneath desert soils
  publication-title: Science
– volume: 104
  start-page: 197
  year: 2017
  end-page: 207
  ident: bib58
  article-title: Nitrification inhibitors mitigate N
  publication-title: Soil Biology and Biochemistry
– volume: 111
  start-page: 1345
  year: 2018
  end-page: 1360
  ident: bib44
  article-title: Fungal diversity in the Atacama Desert
  publication-title: Antonie van Leeuwenhoek
– volume: 179
  year: 2019
  ident: bib59
  article-title: Quantifying N
  publication-title: Environmental Research
– volume: 66
  start-page: 1540
  year: 2002
  end-page: 1548
  ident: bib25
  article-title: Evidence for fungal dominance of denitrification and codenitrification in a grassland soil
  publication-title: Soil Science Society of America Journal
– volume: 2
  start-page: 249
  year: 1986
  end-page: 279
  ident: bib8
  article-title: Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: an assessment of their impacts on local and global nitrogen budgets
  publication-title: Biogeochemistry
– volume: 134
  start-page: 55
  year: 2014
  end-page: 73
  ident: bib26
  article-title: Experimental determinations of isotopic fractionation factors associated with N
  publication-title: Geochimica et Cosmochimica Acta
– volume: 84
  start-page: 65
  year: 2015
  end-page: 74
  ident: bib24
  article-title: Anaerobic digestates lower N
  publication-title: Soil Biology and Biochemistry
– volume: 181
  year: 2019
  ident: bib34
  article-title: Carbon accrual in the Atacama Desert
  publication-title: Global and Planetary Change
– volume: 34
  start-page: 1777
  year: 2002
  end-page: 1784
  ident: bib6
  article-title: Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO
  publication-title: Soil Biology and Biochemistry
– volume: 184
  year: 2020
  ident: bib23
  article-title: Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert
  publication-title: Global and Planetary Change
– volume: 36
  start-page: 135
  year: 2017
  end-page: 160
  ident: bib49
  article-title: Isotopocule analysis of biologically produced nitrous oxide in various environments
  publication-title: Mass Spectrometry Reviews
– volume: 515
  start-page: 505
  year: 2014
  end-page: 511
  ident: bib4
  article-title: Belowground biodiversity and ecosystem functioning
  publication-title: Nature
– volume: 33
  start-page: 223
  year: 1999
  end-page: 229
  ident: bib16
  article-title: Denitrification of high-nitrate, high-salinity wastewater
  publication-title: Water Research
– volume: 68
  start-page: 4023
  year: 2004
  end-page: 4038
  ident: bib33
  article-title: Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions
  publication-title: Geochimica et Cosmochimica Acta
– volume: 66
  start-page: 155
  year: 2014
  end-page: 161
  ident: bib10
  article-title: Perchlorate levels in soil and waters from the Atacama Desert
  publication-title: Archives of Environmental Contamination and Toxicology
– volume: 61
  start-page: 119
  year: 2005
  end-page: 136
  ident: bib31
  article-title: Rapid nitrate loss from a contaminated desert soil
  publication-title: Journal of Arid Environments
– volume: 586
  start-page: 2939
  year: 2012
  end-page: 2945
  ident: bib3
  article-title: Life at the dry edge: microorganisms of the Atacama Desert
  publication-title: FEBS Letters
– volume: 42
  start-page: 1183
  year: 2010
  end-page: 1188
  ident: bib37
  article-title: Bacterial diversity and occurrence of ammonia-oxidizing bacteria in the Atacama Desert soil during a “desert bloom” event
  publication-title: Soil Biology and Biochemistry
– volume: 70
  start-page: 215
  year: 2016
  end-page: 234
  ident: bib9
  article-title: The Atacama Desert: technical resources and the growing importance of novel microbial diversity
  publication-title: Annual Review of Microbiology
– volume: 49
  start-page: 962
  year: 2007
  end-page: 968
  ident: bib39
  article-title: Massive volcanism in the Altiplano-Puna volcanic plateau and formation of the huge Atacama Desert nitrate deposits: a case for thermal and electric fixation of atmospheric nitrogen
  publication-title: International Geology Review
– volume: 8
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib2
  article-title: Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert
  publication-title: Scientific Reports
– volume: 7
  start-page: 1642
  year: 2017
  ident: bib56
  article-title: Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica
  publication-title: Frontiers in Microbiology
– volume: 111
  start-page: 5266
  year: 2014
  end-page: 5270
  ident: bib52
  article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality
  publication-title: Proceedings of the National Academy of Sciences
– volume: 10
  start-page: 117
  year: 2019
  ident: bib60
  article-title: Characterization of fungal nirK-containing communities and N
  publication-title: Frontiers in Microbiology
– volume: 8
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib29
  article-title: Long-range transport of airborne microbes over the global tropical and subtropical ocean
  publication-title: Nature Communications
– volume: 112
  start-page: 15684
  year: 2015
  end-page: 15689
  ident: bib28
  article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands
  publication-title: Proceedings of the National Academy of Sciences
– volume: 14
  start-page: 251
  year: 2018
  end-page: 256
  ident: bib43
  article-title: Nitrate deposits of the Atacama Desert: a marker of long-term hyperaridity
  publication-title: Elements
– start-page: 289
  year: 1982
  end-page: 326
  ident: bib14
  article-title: 8. Biological Denitrification. Nitrogen in Agricultural Soils
– volume: 7
  start-page: 214
  year: 2016
  ident: bib18
  article-title: Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes?
  publication-title: Frontiers in Microbiology
– volume: 71
  start-page: 4711
  year: 1999
  end-page: 4718
  ident: bib48
  article-title: Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer
  publication-title: Analytical Chemistry
– year: 2018
  ident: bib19
  article-title: Meteorological and soil measurements of the permanent master weather station 33 - Quebrada Grande, Chile [Data set]
  publication-title: CRC1211 Database CRC1211DB
– volume: 50
  start-page: 108
  year: 2012
  end-page: 122
  ident: bib51
  article-title: Soil carbon distribution and site characteristics in hyper-arid soils of the Atacama Desert: a site with Mars-like soils
  publication-title: Advances in Space Research
– volume: 105
  start-page: 111
  year: 2017
  end-page: 120
  ident: bib20
  article-title: Response and feedback of C mineralization to P availability driven by soil microorganisms
  publication-title: Soil Biology and Biochemistry
– volume: 13
  start-page: 2737
  year: 2019
  end-page: 2749
  ident: bib50
  article-title: Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert
  publication-title: The ISME Journal
– volume: 34
  year: 2020
  ident: bib62
  article-title: What can we learn from N
  publication-title: Rapid Communications in Mass Spectrometry
– volume: 14
  start-page: 251
  year: 2018
  ident: 10.1016/j.soilbio.2021.108248_bib43
  article-title: Nitrate deposits of the Atacama Desert: a marker of long-term hyperaridity
  publication-title: Elements
  doi: 10.2138/gselements.14.4.251
– volume: 34
  start-page: 1777
  year: 2002
  ident: 10.1016/j.soilbio.2021.108248_bib6
  article-title: Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(02)00166-9
– volume: 3
  start-page: 393
  year: 2003
  ident: 10.1016/j.soilbio.2021.108248_bib30
  article-title: Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Niño of 1997–1998
  publication-title: Astrobiology
  doi: 10.1089/153110703769016460
– volume: 111
  start-page: 1345
  year: 2018
  ident: 10.1016/j.soilbio.2021.108248_bib44
  article-title: Fungal diversity in the Atacama Desert
  publication-title: Antonie van Leeuwenhoek
  doi: 10.1007/s10482-018-1060-6
– volume: 154
  year: 2020
  ident: 10.1016/j.soilbio.2021.108248_bib61
  article-title: Divergent patterns of microbial community composition shift under two fertilization regimes revealed by responding species
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2020.103590
– volume: 13
  start-page: 2737
  year: 2019
  ident: 10.1016/j.soilbio.2021.108248_bib50
  article-title: Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert
  publication-title: The ISME Journal
  doi: 10.1038/s41396-019-0468-y
– volume: 34
  year: 2020
  ident: 10.1016/j.soilbio.2021.108248_bib62
  article-title: What can we learn from N2O isotope data? Analytics, processes and modelling
  publication-title: Rapid Communications in Mass Spectrometry
  doi: 10.1002/rcm.8858
– volume: 17
  start-page: 1975
  year: 2011
  ident: 10.1016/j.soilbio.2021.108248_bib1
  article-title: Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2010.02340.x
– volume: 586
  start-page: 2939
  year: 2012
  ident: 10.1016/j.soilbio.2021.108248_bib3
  article-title: Life at the dry edge: microorganisms of the Atacama Desert
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2012.07.025
– volume: 5
  start-page: 9697
  year: 2015
  ident: 10.1016/j.soilbio.2021.108248_bib27
  article-title: N2O production, a widespread trait in fungi
  publication-title: Scientific Reports
  doi: 10.1038/srep09697
– volume: 96
  start-page: 249
  year: 2007
  ident: 10.1016/j.soilbio.2021.108248_bib40
  article-title: Ecology of denitrifying prokaryotes in agricultural soil
  publication-title: Advances in Agronomy
  doi: 10.1016/S0065-2113(07)96003-4
– volume: 2
  start-page: 1
  year: 2017
  ident: 10.1016/j.soilbio.2021.108248_bib65
  article-title: Continental-scale pollution of estuaries with antibiotic resistance genes
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.270
– volume: 61
  start-page: 119
  year: 2005
  ident: 10.1016/j.soilbio.2021.108248_bib31
  article-title: Rapid nitrate loss from a contaminated desert soil
  publication-title: Journal of Arid Environments
  doi: 10.1016/j.jaridenv.2004.08.006
– volume: 4
  year: 2019
  ident: 10.1016/j.soilbio.2021.108248_bib63
  article-title: Salinity is a key determinant for soil microbial communities in a desert ecosystem
  publication-title: mSystems
  doi: 10.1128/mSystems.00225-18
– volume: 68
  start-page: 4023
  year: 2004
  ident: 10.1016/j.soilbio.2021.108248_bib33
  article-title: Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2004.04.009
– volume: 36
  start-page: 135
  year: 2017
  ident: 10.1016/j.soilbio.2021.108248_bib49
  article-title: Isotopocule analysis of biologically produced nitrous oxide in various environments
  publication-title: Mass Spectrometry Reviews
  doi: 10.1002/mas.21459
– volume: 49
  start-page: 962
  year: 2007
  ident: 10.1016/j.soilbio.2021.108248_bib39
  article-title: Massive volcanism in the Altiplano-Puna volcanic plateau and formation of the huge Atacama Desert nitrate deposits: a case for thermal and electric fixation of atmospheric nitrogen
  publication-title: International Geology Review
  doi: 10.2747/0020-6814.49.10.962
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.soilbio.2021.108248_bib2
  article-title: Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-35051-w
– volume: 7
  start-page: 1642
  year: 2017
  ident: 10.1016/j.soilbio.2021.108248_bib56
  article-title: Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica
  publication-title: Frontiers in Microbiology
– volume: 9
  start-page: 3033
  year: 2018
  ident: 10.1016/j.soilbio.2021.108248_bib13
  article-title: Soil bacterial networks are less stable under drought than fungal networks
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-05516-7
– volume: 11
  start-page: 109
  year: 2017
  ident: 10.1016/j.soilbio.2021.108248_bib17
  article-title: Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile
  publication-title: Genomics Data
  doi: 10.1016/j.gdata.2016.12.015
– volume: 126
  start-page: 204
  year: 2018
  ident: 10.1016/j.soilbio.2021.108248_bib46
  article-title: Interaction of straw amendment and soil NO3- content controls fungal denitrification and denitrification product stoichiometry in a sandy soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2018.09.005
– volume: 10
  start-page: 117
  year: 2019
  ident: 10.1016/j.soilbio.2021.108248_bib60
  article-title: Characterization of fungal nirK-containing communities and N2O emission from fungal denitrification in arable soils
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2019.00117
– volume: 42
  start-page: 1183
  year: 2010
  ident: 10.1016/j.soilbio.2021.108248_bib37
  article-title: Bacterial diversity and occurrence of ammonia-oxidizing bacteria in the Atacama Desert soil during a “desert bloom” event
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2010.03.025
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.soilbio.2021.108248_bib29
  article-title: Long-range transport of airborne microbes over the global tropical and subtropical ocean
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-00110-9
– volume: 67
  start-page: 192
  year: 2013
  ident: 10.1016/j.soilbio.2021.108248_bib7
  article-title: Active microorganisms in soil: critical review of estimation criteria and approaches
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2013.08.024
– volume: 7
  start-page: 335
  year: 2010
  ident: 10.1016/j.soilbio.2021.108248_bib11
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nature Methods
  doi: 10.1038/nmeth.f.303
– volume: 515
  start-page: 505
  year: 2014
  ident: 10.1016/j.soilbio.2021.108248_bib4
  article-title: Belowground biodiversity and ecosystem functioning
  publication-title: Nature
  doi: 10.1038/nature13855
– volume: 104
  start-page: 197
  year: 2017
  ident: 10.1016/j.soilbio.2021.108248_bib58
  article-title: Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2016.10.022
– volume: 24
  start-page: 2818
  year: 2018
  ident: 10.1016/j.soilbio.2021.108248_bib36
  article-title: Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents
  publication-title: Global Change Biology
  doi: 10.1111/gcb.14113
– year: 2018
  ident: 10.1016/j.soilbio.2021.108248_bib19
  article-title: Meteorological and soil measurements of the permanent master weather station 33 - Quebrada Grande, Chile [Data set]
  publication-title: CRC1211 Database CRC1211DB
– volume: 66
  start-page: 1540
  year: 2002
  ident: 10.1016/j.soilbio.2021.108248_bib25
  article-title: Evidence for fungal dominance of denitrification and codenitrification in a grassland soil
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2002.1540
– volume: 71
  start-page: 3772
  year: 2007
  ident: 10.1016/j.soilbio.2021.108248_bib41
  article-title: Soils at the hyperarid margin: the isotopic composition of soil carbonate from the Atacama Desert, Northern Chile
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2007.02.016
– volume: 236
  year: 2020
  ident: 10.1016/j.soilbio.2021.108248_bib32
  article-title: Weather regimes linked to daily precipitation anomalies in Northern Chile
  publication-title: Atmospheric Research
  doi: 10.1016/j.atmosres.2019.104802
– volume: 13
  start-page: 137
  year: 1999
  ident: 10.1016/j.soilbio.2021.108248_bib53
  article-title: Controls on soil biodiversity: insights from extreme environments
  publication-title: Applied Soil Ecology
  doi: 10.1016/S0929-1393(99)00029-3
– volume: 7
  start-page: 2229
  year: 2013
  ident: 10.1016/j.soilbio.2021.108248_bib5
  article-title: Responses of soil bacterial and fungal communities to extreme desiccation and rewetting
  publication-title: The ISME Journal
  doi: 10.1038/ismej.2013.104
– volume: 7
  start-page: 2695
  year: 2010
  ident: 10.1016/j.soilbio.2021.108248_bib15
  article-title: Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium
  publication-title: Biogeosciences
  doi: 10.5194/bg-7-2695-2010
– volume: 33
  start-page: 223
  year: 1999
  ident: 10.1016/j.soilbio.2021.108248_bib16
  article-title: Denitrification of high-nitrate, high-salinity wastewater
  publication-title: Water Research
  doi: 10.1016/S0043-1354(98)00177-8
– volume: 117
  start-page: 68
  year: 2018
  ident: 10.1016/j.soilbio.2021.108248_bib22
  article-title: Moisture activation and carbon use efficiency of soil microbial communities along an aridity gradient in the Atacama Desert
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2017.10.026
– volume: 112
  start-page: 15684
  year: 2015
  ident: 10.1016/j.soilbio.2021.108248_bib28
  article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1516684112
– volume: 7
  start-page: 214
  year: 2016
  ident: 10.1016/j.soilbio.2021.108248_bib18
  article-title: Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes?
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2016.00214
– volume: 2
  start-page: 249
  year: 1986
  ident: 10.1016/j.soilbio.2021.108248_bib8
  article-title: Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: an assessment of their impacts on local and global nitrogen budgets
  publication-title: Biogeochemistry
  doi: 10.1007/BF02180161
– volume: 66
  start-page: 155
  year: 2014
  ident: 10.1016/j.soilbio.2021.108248_bib10
  article-title: Perchlorate levels in soil and waters from the Atacama Desert
  publication-title: Archives of Environmental Contamination and Toxicology
  doi: 10.1007/s00244-013-9960-y
– start-page: 289
  year: 1982
  ident: 10.1016/j.soilbio.2021.108248_bib14
– volume: 181
  year: 2019
  ident: 10.1016/j.soilbio.2021.108248_bib34
  article-title: Carbon accrual in the Atacama Desert
  publication-title: Global and Planetary Change
  doi: 10.1016/j.gloplacha.2019.102993
– volume: 3
  start-page: 101
  year: 2012
  ident: 10.1016/j.soilbio.2021.108248_bib38
  article-title: Diversity and activity of denitrifiers of Chilean arid soil ecosystems
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2012.00101
– volume: 443
  start-page: 989
  year: 2006
  ident: 10.1016/j.soilbio.2021.108248_bib12
  article-title: Effects of biodiversity on the functioning of trophic groups and ecosystems
  publication-title: Nature
  doi: 10.1038/nature05202
– volume: 61
  start-page: 1451
  year: 2018
  ident: 10.1016/j.soilbio.2021.108248_bib64
  article-title: QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling
  publication-title: Science China Life Sciences
  doi: 10.1007/s11427-018-9364-7
– volume: 39
  start-page: 2178
  year: 2007
  ident: 10.1016/j.soilbio.2021.108248_bib21
  article-title: Microbial response time to sugar and amino acid additions to soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2007.03.017
– volume: 302
  start-page: 1021
  year: 2003
  ident: 10.1016/j.soilbio.2021.108248_bib54
  article-title: A reservoir of nitrate beneath desert soils
  publication-title: Science
  doi: 10.1126/science.1086435
– volume: 115
  start-page: 2670
  year: 2018
  ident: 10.1016/j.soilbio.2021.108248_bib45
  article-title: Transitory microbial habitat in the hyperarid Atacama Desert
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1714341115
– volume: 57
  start-page: 606
  year: 2013
  ident: 10.1016/j.soilbio.2021.108248_bib35
  article-title: Autoxidation and acetylene-accelerated oxidation of NO in a 2-phase system: implications for the expression of denitrification in ex situ experiments
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2012.10.007
– volume: 184
  year: 2020
  ident: 10.1016/j.soilbio.2021.108248_bib23
  article-title: Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert
  publication-title: Global and Planetary Change
  doi: 10.1016/j.gloplacha.2019.103078
– volume: 43
  start-page: 8035
  issue: 15
  year: 2016
  ident: 10.1016/j.soilbio.2021.108248_bib57
  article-title: An integrated analysis of the March 2015 Atacama floods
  publication-title: Geophysical Research Letters
  doi: 10.1002/2016GL069751
– volume: 24
  start-page: 5815
  year: 2018
  ident: 10.1016/j.soilbio.2021.108248_bib42
  article-title: Bacterial community response to a preindustrial-to-future CO2 gradient is limited and soil specific in Texas Prairie grassland
  publication-title: Global Change Biology
  doi: 10.1111/gcb.14453
– volume: 71
  start-page: 4711
  year: 1999
  ident: 10.1016/j.soilbio.2021.108248_bib48
  article-title: Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer
  publication-title: Analytical Chemistry
  doi: 10.1021/ac9904563
– volume: 179
  year: 2019
  ident: 10.1016/j.soilbio.2021.108248_bib59
  article-title: Quantifying N2O reduction to N2 during denitrification in soils via isotopic mapping approach: model evaluation and uncertainty analysis
  publication-title: Environmental Research
  doi: 10.1016/j.envres.2019.108806
– volume: 367
  start-page: 1186
  year: 2012
  ident: 10.1016/j.soilbio.2021.108248_bib47
  article-title: Fungal denitrification and nitric oxide reductase cytochrome P450nor
  publication-title: Phil. Trans. R. Soc. B
  doi: 10.1098/rstb.2011.0335
– volume: 50
  start-page: 108
  year: 2012
  ident: 10.1016/j.soilbio.2021.108248_bib51
  article-title: Soil carbon distribution and site characteristics in hyper-arid soils of the Atacama Desert: a site with Mars-like soils
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2012.03.003
– volume: 70
  start-page: 215
  year: 2016
  ident: 10.1016/j.soilbio.2021.108248_bib9
  article-title: The Atacama Desert: technical resources and the growing importance of novel microbial diversity
  publication-title: Annual Review of Microbiology
  doi: 10.1146/annurev-micro-102215-095236
– volume: 111
  start-page: 5266
  year: 2014
  ident: 10.1016/j.soilbio.2021.108248_bib52
  article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1320054111
– volume: 105
  start-page: 111
  year: 2017
  ident: 10.1016/j.soilbio.2021.108248_bib20
  article-title: Response and feedback of C mineralization to P availability driven by soil microorganisms
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2016.11.014
– volume: 134
  start-page: 55
  year: 2014
  ident: 10.1016/j.soilbio.2021.108248_bib26
  article-title: Experimental determinations of isotopic fractionation factors associated with N2O production and reduction during denitrification in soils
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2014.03.010
– volume: 84
  start-page: 65
  year: 2015
  ident: 10.1016/j.soilbio.2021.108248_bib24
  article-title: Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification – an N2O isotopomer case study
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2015.01.021
SSID ssj0002513
Score 2.4666686
Snippet The hyperarid soils of the Atacama Desert, Chile, contain the largest known nitrate deposits in the world. They also represent one of the most hostile...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108248
SubjectTerms biosphere
Chile
climate
Denitification
denitrification
dry environmental conditions
fungi
genes
glucose
Greenhouse gases
hypoxia
labile carbon
land use
Moisture status
nitrates
Nitrogen cycling
oxygen
rain
soil bacteria
Xerophile
Title Microbial potential for denitrification in the hyperarid Atacama Desert soils
URI https://dx.doi.org/10.1016/j.soilbio.2021.108248
https://www.proquest.com/docview/2551978513
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SzSHNobRpSx5tUKBXZ23Z1uO4LA3bls0pgdyELMmpQ-JdNs61v70ztpzSEgjkZhtGiBnpmxk88w3AV2mVT61ME9W35KQlXilXiqSyoSoyXnnXW3p5IRZXxY_r8noL5mMvDJVVRuwfML1H6_hlGrU5XTcN9fgSWTqlMD0xmdqGHZ5rUU5gZ_b95-LiCZDRhUfuXUX9OvJvI8_0lihz76qG2gB5RgV3nCYBPe-i_gPr3gOdv4O3MXRks2F372ErtPuwN7vZRPqMsA-783F-2wdYLpueZAlF1quOioLwCUNUhkjTdBsqEeqtwpqWYRTIfmFGSpmzZ7POOntvGeakYdMx2vvDR7g6_3Y5XyRxeELiilR1ia3yjDvtCl1rmXJf55gJprXPvMiDFuiVHBeVFcprpb2y0jrBeaotsefYWuafYNKu2nAALJOeJNO6xOjJ6qALWfosSLywLvBKHEIx6su4yCxOAy7uzFhCdmuimg2p2QxqPoSzJ7H1QK3xkoAajWH-OSMG4f8l0dPReAbNQD9FbBtWjw8GU6oMM2k8IkevX_4Y3tDbUEL2GSbd5jF8wWClq05g--x3dhKP5B8J1ui-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPUAPqOWhAn24EtewifOwfVytirYtywkkbpZjO5AVZFdLuPLbmUkcEKgSUm9RorGsGXseyjffABwLI11sRBzJriUnzvFK2byISuPLLOGls52lZ-fF9DL7c5VfrcFk6IUhWGXw_b1P77x1eDMK2hwt65p6fIksnUqYjphMrsOHLE8F4fpOHl9wHhjAA_OupG4d8dLGM5oTYe5tWVMTIE8IbsdpDtC_A9QbV93Fn9NPsB0SRzbu9_YZ1nyzAx_H16tAnuF3YHMyTG_bhdms7iiWUGS5aAkShE-YoDL0M3W7IoBQZxNWNwxzQHaD9SjVzY6NW2PNnWFYkfpVy2jv93twefrrYjKNwuiEyGaxbCNTpgm3ymaqUiLmrkqxDowrl7gi9arAmGR5UZpCOiWVk0YYW3AeK0PcOaYS6T5sNIvGfwGWCEeScZVj7mSUV5nIXeIFXlfreVkcQDboS9vAK07jLW71ACCb66BmTWrWvZoP4ORZbNkTa7wnIAdj6FcnRKPzf0_052A8jWagXyKm8YuHe40FVYJ1NB6Rw_9f_gdsTi9mZ_rs9_nfI9iiLz2Y7CtstKsH_w3Tlrb83h3LJwCK6Yk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+potential+for+denitrification+in+the+hyperarid+Atacama+Desert+soils&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Wu%2C+Di&rft.au=Senbayram%2C+Mehmet&rft.au=Moradi%2C+Ghazal&rft.au=M%C3%B6rchen%2C+Ramona&rft.date=2021-06-01&rft.issn=0038-0717&rft.volume=157+p.108248-&rft_id=info:doi/10.1016%2Fj.soilbio.2021.108248&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon