The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis

Key message Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine ( Vitis spp.). Members of th...

Full description

Saved in:
Bibliographic Details
Published inPlant cell reports Vol. 39; no. 5; pp. 621 - 634
Main Authors Su, Lingye, Fang, Linchuan, Zhu, Zhenfei, Zhang, Langlang, Sun, Xiaoming, Wang, Yi, Wang, Qingfeng, Li, Shaohua, Xin, Haiping
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key message Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine ( Vitis spp.). Members of the NAC ( N AM, A TAF1/2, and C UC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis , a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17 -expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3 , AOC1 and OPR3 ) and signaling (such as MYC2 , JAZ1 , VSP1 and CORI3 ) pathways. Endogenous JA levels increased in VaNAC17 -OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging.
AbstractList Key message Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine ( Vitis spp.). Members of the NAC ( N AM, A TAF1/2, and C UC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis , a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17 -expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3 , AOC1 and OPR3 ) and signaling (such as MYC2 , JAZ1 , VSP1 and CORI3 ) pathways. Endogenous JA levels increased in VaNAC17 -OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging.
Key messageExpression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging.Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging.
KEY MESSAGE: Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging.
Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging.KEY MESSAGEExpression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging.
Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging.
Author Wang, Yi
Su, Lingye
Fang, Linchuan
Li, Shaohua
Zhu, Zhenfei
Wang, Qingfeng
Xin, Haiping
Sun, Xiaoming
Zhang, Langlang
Author_xml – sequence: 1
  givenname: Lingye
  surname: Su
  fullname: Su, Lingye
  organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization/Guangdong Academy of Forestry
– sequence: 2
  givenname: Linchuan
  surname: Fang
  fullname: Fang, Linchuan
  organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences
– sequence: 3
  givenname: Zhenfei
  surname: Zhu
  fullname: Zhu, Zhenfei
  organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Langlang
  surname: Zhang
  fullname: Zhang, Langlang
  organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences
– sequence: 5
  givenname: Xiaoming
  surname: Sun
  fullname: Sun, Xiaoming
  organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences
– sequence: 6
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  organization: Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 7
  givenname: Qingfeng
  surname: Wang
  fullname: Wang, Qingfeng
  organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences
– sequence: 8
  givenname: Shaohua
  surname: Li
  fullname: Li, Shaohua
  email: shhli@ibcas.ac.cn
  organization: Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences
– sequence: 9
  givenname: Haiping
  orcidid: 0000-0002-4652-1683
  surname: Xin
  fullname: Xin, Haiping
  email: xinhaiping215@hotmail.com
  organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32107612$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URKeFF2CBLLEpi4B_knG8HI2AIlWwKRU7y7FvZjxK7MF2qs7T8Kp4mlZIXZSFZcnnO1f3-p4zdOKDB4TeUvKREiI-JUKYlBVhpJyGyuruBVrQmrOKEf7rBC2IYLQSgtan6CylHSFFFMtX6JQzSsSSsgX6c70FnKP2yUS3zy543GuTQ8Q3-vtqTQXuYxjxJuo93DoP-OLGZZewHqcIPrn0AYPfam8gYRvDtNlmnMMA8fiEuwMeg50GnZ3f4J1OY_DOYG2cxZ0L6eDzFkoR7PzcxAaO-irqztmwL8pr9LLXQ4I3D_c5-vnl8_X6srr68fXbenVVmZq0udIdXRKuG9m3naHQ286yTtAW7JKQvi9zt4Y30BIJIDQznSVEatHVVloqmebn6GKuu4_h9wQpq9ElA8OgPYQpKVZzWVPJ6-b_KF9K3opayIK-f4LuwhR9GaRQktK6aRtSqHcP1NSNYNU-ulHHg3rcUgHaGTAxpBShV8ZlfVxW-TQ3KErUMRBqDoQqgVD3gVB3xcqeWB-rP2visykV2G8g_mv7GddfbGbLdg
CitedBy_id crossref_primary_10_1007_s12298_022_01232_1
crossref_primary_10_3390_ijms22168568
crossref_primary_10_3390_plants11243430
crossref_primary_10_1007_s12298_024_01465_2
crossref_primary_10_1186_s12870_025_06185_7
crossref_primary_10_1007_s00299_021_02730_4
crossref_primary_10_3390_plants13131726
crossref_primary_10_1016_j_cj_2023_06_002
crossref_primary_10_1007_s11101_024_09976_2
crossref_primary_10_3390_plants12173029
crossref_primary_10_3389_fpls_2023_1128002
crossref_primary_10_3390_jof10040246
crossref_primary_10_1016_j_plantsci_2023_111894
crossref_primary_10_3389_fpls_2020_572137
crossref_primary_10_1016_j_jprot_2023_105010
crossref_primary_10_1016_j_micpath_2024_106772
crossref_primary_10_1016_j_plaphy_2023_108259
crossref_primary_10_1371_journal_pone_0296254
crossref_primary_10_1007_s10343_022_00795_z
crossref_primary_10_1093_hr_uhab046
crossref_primary_10_1093_plphys_kiad578
crossref_primary_10_1155_2024_6704238
crossref_primary_10_1016_j_plaphy_2023_107768
crossref_primary_10_1111_ppl_14366
crossref_primary_10_3390_agronomy11091886
crossref_primary_10_1007_s10343_025_01115_x
crossref_primary_10_1016_j_scienta_2024_113769
crossref_primary_10_1016_j_scienta_2023_112019
crossref_primary_10_1093_jxb_erae482
crossref_primary_10_1007_s10653_023_01823_1
crossref_primary_10_3390_ijms24087227
crossref_primary_10_1016_j_agwat_2024_109029
crossref_primary_10_1111_ppl_13328
crossref_primary_10_1186_s12870_022_03918_w
crossref_primary_10_1016_j_envexpbot_2022_105174
crossref_primary_10_1007_s11105_022_01336_8
crossref_primary_10_3389_fpls_2024_1432494
crossref_primary_10_1007_s10681_023_03153_w
crossref_primary_10_1016_j_plantsci_2024_112293
Cites_doi 10.3389/fpls.2013.00529
10.1016/j.scienta.2013.05.013
10.1186/1746-4811-4-16
10.1016/j.plaphy.2007.09.010
10.1016/j.jplph.2015.06.014
10.1371/journal.pone.0003699
10.1016/j.tplants.2015.02.001
10.1111/j.1365-313X.2004.02171.x
10.1007/s10725-007-9166-2
10.1105/tpc.106.047399
10.1038/srep23609
10.1016/j.aca.2018.05.055
10.1104/pp.114.239004
10.1093/jxb/erw122
10.1016/S0176-1617(11)81192-2
10.1016/j.cell.2016.08.029
10.1046/j.1365-313x.1998.00343.x
10.1111/j.1365-313X.2011.04687.x
10.1007/s00299-012-1340-y
10.1104/pp.113.214908
10.1093/jxb/erl164
10.1023/A:1014732714549
10.3389/fpls.2015.01077
10.1007/PL00008647
10.1111/j.1399-3054.1962.tb08052.x
10.1111/j.1365-313X.2009.04107.x
10.1186/s12870-016-0897-y
10.1007/s10142-007-0051-x
10.1186/gb-2007-8-2-r19
10.1093/pcp/pct204
10.1007/s11103-016-0503-6
10.4161/psb.3.3.5536
10.1105/tpc.104.022699
10.1186/s12870-015-0459-8
10.1016/j.envexpbot.2015.02.010
10.1111/j.1365-313X.2005.02575.x
10.1016/j.tplants.2004.12.010
10.1038/cr.2008.53
10.1186/1471-2105-7-191
10.1016/j.tplants.2012.02.004
10.1111/j.1365-313X.2005.02560.x
10.1007/s11103-008-9304-x
10.1104/pp.16.01096
10.1016/j.plantsci.2009.06.011
10.1105/tpc.006130
10.1016/j.ecoenv.2014.03.014
10.1111/pbi.12114
10.1016/j.plaphy.2014.03.004
10.3389/fpls.2016.00004
10.1093/jexbot/51.345.659
10.1071/FP09191
10.1093/aob/mct067
10.1016/j.jmb.2009.07.023
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T5
7T7
7TM
7U9
7X2
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
DOI 10.1007/s00299-020-02519-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Agricultural Science Database
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1432-203X
EndPage 634
ExternalDocumentID 32107612
10_1007_s00299_020_02519_x
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31672132
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences (CN)
  grantid: 2015281
– fundername: Grape Breeding Project of Ningxia
  grantid: NXNYYZ201502
– fundername: National Natural Science Foundation of China
  grantid: 31672132
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
7X7
88A
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECGQY
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0K
M0L
M1P
M4Y
M7P
MA-
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
N~3
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z8O
Z8P
Z8Q
Z8S
Z8W
ZMTXR
ZOVNA
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7T7
7TM
7U9
7XB
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-ab1603a59f8bc1efdbd2b718ed600ff1438c35e809ee7a2cbd009a7b4d9d192a3
IEDL.DBID U2A
ISSN 0721-7714
1432-203X
IngestDate Fri Jul 11 16:53:12 EDT 2025
Fri Jul 11 06:42:35 EDT 2025
Sat Aug 23 13:33:45 EDT 2025
Wed Feb 19 02:26:26 EST 2025
Thu Apr 24 22:52:17 EDT 2025
Tue Jul 01 01:04:47 EDT 2025
Fri Feb 21 02:34:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Drought stress
Jasmonic acid
Vitis amurensis
VaNAC17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-ab1603a59f8bc1efdbd2b718ed600ff1438c35e809ee7a2cbd009a7b4d9d192a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4652-1683
PMID 32107612
PQID 2391145850
PQPubID 54035
PageCount 14
ParticipantIDs proquest_miscellaneous_2439419345
proquest_miscellaneous_2369387479
proquest_journals_2391145850
pubmed_primary_32107612
crossref_citationtrail_10_1007_s00299_020_02519_x
crossref_primary_10_1007_s00299_020_02519_x
springer_journals_10_1007_s00299_020_02519_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200500
2020-05-00
2020-May
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Berlin
PublicationTitle Plant cell reports
PublicationTitleAbbrev Plant Cell Rep
PublicationTitleAlternate Plant Cell Rep
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Dar, Uddin, Khan, Hakeem, Jaleel (CR11) 2015; 115
Tak, Negi, Ganapathi (CR46) 2016; 254
Abe, Urao, Ito, Seki, Shinozaki, Yamaguchi-Shinozaki (CR1) 2003; 15
He, Mu, Cao, Zhang, Zhang, Chen (CR19) 2005; 44
Fujita, Fujita, Maruyama, Seki, Hiratsu, Ohme-Takagi (CR17) 2004; 39
Munné-Bosch, Müller (CR32) 2013; 4
Murashige, Skoog (CR33) 1962; 15
Hao, Wei, Song, Chen, Zhang, Wang (CR18) 2011; 68
Zhang, Turner (CR58) 2008; 3
Hellemans, Mortier, De Paepe, Speleman, Vandesompele (CR20) 2007; 8
Sasaki-Sekimoto, Taki, Obayashi, Aono, Matsumoto, Sakurai (CR42) 2005; 44
Olsen, Ernst, Leggio, Skriver (CR36) 2005; 10
Das, Roychoudhury (CR12) 2014; 2
Wellburn (CR52) 1994; 144
Clough, Bent (CR9) 1998; 16
Riemann, Dhakarey, Hazman, Miro, Kohli, Nick (CR40) 2015; 6
Kikuchi, Ueguchi-Tanaka, Yoshida, Nagato, Matsusoka, Hirano (CR27) 2000; 262
Wang, Zheng, Xin, Fang, Li (CR50) 2013; 32
Zhang, Huang (CR57) 2013; 159
Yoshii, Yamazaki, Rakwal, Kishi-Kaboshi, Miyao, Hirochika (CR56) 2010; 61
Cruz de Carvalho (CR10) 2008; 3
Oda-Yamamizo, Mitsuda, Sakamoto, Ogawa, Ohme-Takagi, Ohmiya (CR35) 2016; 6
Puranik, Sahu, Srivastava, Prasad (CR38) 2012; 17
Simpson, Tantitadapitak, Reed, Mather, Bunce, White (CR44) 2009; 392
Bies-Etheve, Gaubier-Comella, Debures, Lasserre, Jobet, Raynal (CR5) 2008; 67
de Ollas, Dodd (CR13) 2016; 91
Jiang, Zhang, Lü, Jiang, Liu, Dai (CR25) 2014; 12
Maxwell, Johnson (CR31) 2000; 51
Noir, Bömer, Takahashi, Ishida, Tsui, Balbi (CR34) 2013; 161
Ismail, Seo, Takebayashi, Kamiya, Nick (CR23) 2015; 185
Chen, Wang, Lv, Li, Luo, Lu (CR7) 2014; 55
Lovisolo, Perrone, Carra, Ferrandino, Flexas, Medrano (CR29) 2010; 37
Shinozaki, Yamaguchi-Shinozaki (CR43) 2007; 58
Forcat, Bennett, Mansfield, Grant (CR16) 2008; 4
Hong, Zhang, Huang, Li, Song (CR21) 2016; 7
Kazan (CR26) 2015; 20
Xiao, Cai, Ye, Ding, Feng (CR54) 2018; 1031
Huang, Hong, Zhang, Li, Song (CR22) 2016; 16
Ernst, Bar-Joseph (CR14) 2006; 7
Mahmood, Xu, El-Kereamy, Casaretto, Rothstein (CR30) 2016; 7
Samarah (CR41) 2016
Kleinow, Himbert, Krenz, Jeske, Koncz (CR28) 2009; 177
Ying, Chen, Cai (CR55) 2014; 79
Attaran, Major, Cruz, Rosa, Koo, Chen (CR3) 2014; 165
Pedranzani, Sierra-de-Grado, Vigliocco, Miersch, Abdala (CR37) 2007; 52
Zhu (CR60) 2016; 167
Wu, Fu, Sun, Xiao, Liu (CR53) 2016; 172
Su, Dai, Li, Xin (CR45) 2015; 15
Fang, Su, Sun, Li, Sun, Karungo (CR15) 2016; 67
Tran, Nakashima, Sakuma, Simpson, Fujita, Maruyama (CR48) 2004; 16
Zhong, Demura, Ye (CR59) 2006; 18
Tattersall, Grimplet, DeLuc, Wheatley, Vincent, Osborne (CR47) 2007; 7
Bajji, Kinet, Lutts (CR4) 2002; 36
Qiu, Guo, Zhu, Zhang, Zhang (CR39) 2014; 104
Wasternack, Hause (CR51) 2013; 111
Jaleel, Manivannan, Wahid, Farooq, Al-Juburi, Somasundaram (CR24) 2009; 11
Vishwakarma, Upadhyay, Kumar, Yadav, Singh, Mishra (CR49) 2017; 8
Chong, Le Henanff, Bertsch, Walter (CR8) 2008; 46
Ahmad, Rasool, Gul, Sheikh, Akram, Ashraf (CR2) 2016; 7
Bu, Jiang, Li, Zhai, Zhang, Wu (CR6) 2008; 18
H Tak (2519_CR46) 2016; 254
N Bies-Etheve (2519_CR5) 2008; 67
C Lovisolo (2519_CR29) 2010; 37
SJ Clough (2519_CR9) 1998; 16
EA Tattersall (2519_CR47) 2007; 7
MH Cruz de Carvalho (2519_CR10) 2008; 3
T Murashige (2519_CR33) 1962; 15
AN Olsen (2519_CR36) 2005; 10
C Wasternack (2519_CR51) 2013; 111
X Jiang (2519_CR25) 2014; 12
Y Zhang (2519_CR58) 2008; 3
K Vishwakarma (2519_CR49) 2017; 8
L Ying (2519_CR55) 2014; 79
Y Sasaki-Sekimoto (2519_CR42) 2005; 44
H-M Xiao (2519_CR54) 2018; 1031
C Zhang (2519_CR57) 2013; 159
TA Dar (2519_CR11) 2015; 115
L Huang (2519_CR22) 2016; 16
H Wu (2519_CR53) 2016; 172
Q Bu (2519_CR6) 2008; 18
M Fujita (2519_CR17) 2004; 39
K Kazan (2519_CR26) 2015; 20
X Chen (2519_CR7) 2014; 55
M Riemann (2519_CR40) 2015; 6
J-K Zhu (2519_CR60) 2016; 167
E Attaran (2519_CR3) 2014; 165
A Ismail (2519_CR23) 2015; 185
K Mahmood (2519_CR30) 2016; 7
K Maxwell (2519_CR31) 2000; 51
H Abe (2519_CR1) 2003; 15
R Zhong (2519_CR59) 2006; 18
H Pedranzani (2519_CR37) 2007; 52
S Forcat (2519_CR16) 2008; 4
K Das (2519_CR12) 2014; 2
L Fang (2519_CR15) 2016; 67
Z Qiu (2519_CR39) 2014; 104
L-SP Tran (2519_CR48) 2004; 16
K Kikuchi (2519_CR27) 2000; 262
CA Jaleel (2519_CR24) 2009; 11
AR Wellburn (2519_CR52) 1994; 144
S Noir (2519_CR34) 2013; 161
M Bajji (2519_CR4) 2002; 36
P Ahmad (2519_CR2) 2016; 7
J Hellemans (2519_CR20) 2007; 8
L Su (2519_CR45) 2015; 15
XJ He (2519_CR19) 2005; 44
NH Samarah (2519_CR41) 2016
T Kleinow (2519_CR28) 2009; 177
C de Ollas (2519_CR13) 2016; 91
C Oda-Yamamizo (2519_CR35) 2016; 6
N Wang (2519_CR50) 2013; 32
PJ Simpson (2519_CR44) 2009; 392
YJ Hao (2519_CR18) 2011; 68
J Chong (2519_CR8) 2008; 46
M Yoshii (2519_CR56) 2010; 61
J Ernst (2519_CR14) 2006; 7
Y Hong (2519_CR21) 2016; 7
S Puranik (2519_CR38) 2012; 17
S Munné-Bosch (2519_CR32) 2013; 4
K Shinozaki (2519_CR43) 2007; 58
References_xml – volume: 6
  start-page: 1077
  year: 2015
  ident: CR40
  article-title: Exploring jasmonates in the hormonal network of drought and salinity responses
  publication-title: Front Plant Sci
– volume: 39
  start-page: 863
  year: 2004
  end-page: 876
  ident: CR17
  article-title: A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway
  publication-title: Plant J
– volume: 7
  start-page: 191
  issue: 1
  year: 2006
  ident: CR14
  article-title: STEM: a tool for the analysis of short time series gene expression data
  publication-title: BMC Bioinform
– volume: 3
  start-page: 156
  year: 2008
  end-page: 165
  ident: CR10
  article-title: Drought stress and reactive oxygen species: production, scavenging and signaling
  publication-title: Plant Signal Behav
– volume: 20
  start-page: 219
  year: 2015
  end-page: 229
  ident: CR26
  article-title: Diverse roles of jasmonates and ethylene in abiotic stress tolerance
  publication-title: Trends Plant Sci
– volume: 159
  start-page: 172
  year: 2013
  end-page: 177
  ident: CR57
  article-title: Effects of endogenous abscisic acid, jasmonic acid, polyamines, and polyamine oxidase activity in tomato seedlings under drought stress
  publication-title: Sci Hortic
– volume: 18
  start-page: 756
  issue: 7
  year: 2008
  ident: CR6
  article-title: Role of the NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses
  publication-title: Cell Res
– start-page: 1
  year: 2016
  end-page: 37
  ident: CR41
  publication-title: Understanding how plants respond to drought stress at the molecular and whole plant levels. Drought stress tolerance in plants
– volume: 58
  start-page: 221
  year: 2007
  end-page: 227
  ident: CR43
  article-title: Gene networks involved in drought stress response and tolerance
  publication-title: J Exp Bot
– volume: 7
  start-page: 317
  year: 2007
  end-page: 333
  ident: CR47
  article-title: Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress
  publication-title: Funct Integr Genom
– volume: 1031
  start-page: 119
  year: 2018
  end-page: 127
  ident: CR54
  article-title: Spatio-temporal profiling of abscisic acid, indoleacetic acid and jasmonic acid in single rice seed during seed germination
  publication-title: Anal Chim Acta
– volume: 15
  start-page: 473
  year: 1962
  end-page: 497
  ident: CR33
  article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures
  publication-title: Physiol Plant
– volume: 55
  start-page: 604
  year: 2014
  end-page: 619
  ident: CR7
  article-title: The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway
  publication-title: Plant Cell Physiol
– volume: 8
  start-page: 161
  year: 2017
  ident: CR49
  article-title: Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects
  publication-title: Front Plant Sci
– volume: 15
  start-page: 63
  year: 2003
  end-page: 78
  ident: CR1
  article-title: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling
  publication-title: Plant Cell
– volume: 32
  start-page: 61
  year: 2013
  end-page: 75
  ident: CR50
  article-title: Comprehensive analysis of NAC domain transcription factor gene family in
  publication-title: Plant Cell Rep
– volume: 67
  start-page: 2829
  year: 2016
  end-page: 2845
  ident: CR15
  article-title: Expression of in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis
  publication-title: J Exp Bot
– volume: 7
  start-page: 813
  year: 2016
  ident: CR2
  article-title: Jasmonates: multifunctional roles in stress tolerance
  publication-title: Front Plant Sci
– volume: 10
  start-page: 79
  year: 2005
  end-page: 87
  ident: CR36
  article-title: NAC transcription factors: structurally distinct, functionally diverse
  publication-title: Trends Plant Sci
– volume: 15
  start-page: 82
  year: 2015
  ident: CR45
  article-title: A novel system for evaluating drought–cold tolerance of grapevines using chlorophyll fluorescence
  publication-title: BMC Plant Biol
– volume: 16
  start-page: 2481
  year: 2004
  end-page: 2498
  ident: CR48
  article-title: Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive -element in the early responsive to dehydration stress 1 promoter
  publication-title: Plant Cell
– volume: 111
  start-page: 1021
  year: 2013
  end-page: 1058
  ident: CR51
  article-title: Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany
  publication-title: Ann Bot
– volume: 11
  start-page: 100
  year: 2009
  end-page: 105
  ident: CR24
  article-title: Drought stress in plants: a review on morphological characteristics and pigments composition
  publication-title: Int J Agric Biol
– volume: 177
  start-page: 360
  year: 2009
  end-page: 370
  ident: CR28
  article-title: NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis
  publication-title: Plant Sci
– volume: 2
  start-page: 53
  year: 2014
  ident: CR12
  article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants
  publication-title: Front Environ Sci
– volume: 51
  start-page: 659
  year: 2000
  end-page: 668
  ident: CR31
  article-title: Chlorophyll fluorescence—a practical guide
  publication-title: J Exp Bot
– volume: 36
  start-page: 61
  year: 2002
  end-page: 70
  ident: CR4
  article-title: The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat
  publication-title: Plant Growth Regul
– volume: 172
  start-page: 1532
  year: 2016
  end-page: 1547
  ident: CR53
  article-title: A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance
  publication-title: Plant Physiol
– volume: 79
  start-page: 77
  year: 2014
  end-page: 87
  ident: CR55
  article-title: BnNAC485 is involved in abiotic stress responses and flowering time in
  publication-title: Plant Physiol Biochem
– volume: 4
  start-page: 16
  year: 2008
  ident: CR16
  article-title: A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress
  publication-title: Plant Methods
– volume: 61
  start-page: 804
  year: 2010
  end-page: 815
  ident: CR56
  article-title: The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling
  publication-title: Plant J
– volume: 44
  start-page: 653
  year: 2005
  end-page: 668
  ident: CR42
  article-title: Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis
  publication-title: Plant J
– volume: 185
  start-page: 57
  year: 2015
  end-page: 64
  ident: CR23
  article-title: A balanced JA/ABA status may correlate with adaptation to osmotic stress in cells
  publication-title: J Plant Physiol
– volume: 68
  start-page: 302
  year: 2011
  end-page: 313
  ident: CR18
  article-title: Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants
  publication-title: Plant J
– volume: 44
  start-page: 903
  year: 2005
  end-page: 916
  ident: CR19
  article-title: AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development
  publication-title: Plant J
– volume: 12
  start-page: 38
  year: 2014
  end-page: 48
  ident: CR25
  article-title: RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals
  publication-title: Plant Biotechnol J
– volume: 8
  start-page: R19
  year: 2007
  ident: CR20
  article-title: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data
  publication-title: Genome Biol
– volume: 7
  start-page: 1548
  year: 2016
  ident: CR30
  article-title: The Arabidopsis transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses
  publication-title: Front Plant Sci
– volume: 18
  start-page: 3158
  year: 2006
  end-page: 3170
  ident: CR59
  article-title: SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis
  publication-title: Plant Cell
– volume: 4
  start-page: 529
  year: 2013
  ident: CR32
  article-title: Hormonal cross-talk in plant development and stress responses
  publication-title: Front Plant Sci
– volume: 392
  start-page: 465
  year: 2009
  end-page: 480
  ident: CR44
  article-title: Characterization of two novel aldo–keto reductases from Arabidopsis: expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress
  publication-title: J Mol Biol
– volume: 7
  start-page: 4
  year: 2016
  ident: CR21
  article-title: Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice
  publication-title: Front Plant Sci
– volume: 67
  start-page: 107
  year: 2008
  end-page: 124
  ident: CR5
  article-title: Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in
  publication-title: Plant Mol Biol
– volume: 6
  start-page: 23609
  year: 2016
  ident: CR35
  article-title: The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves
  publication-title: Sci Rep
– volume: 262
  start-page: 1047
  year: 2000
  end-page: 1051
  ident: CR27
  article-title: Molecular analysis of the gene family in rice
  publication-title: Mol Gen Genet
– volume: 3
  start-page: e3699
  year: 2008
  ident: CR58
  article-title: Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis
  publication-title: PLoS ONE
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  ident: CR9
  article-title: Floral dip: a simplified method for -mediated transformation of
  publication-title: Plant J
– volume: 91
  start-page: 641
  year: 2016
  end-page: 650
  ident: CR13
  article-title: Physiological impacts of ABA–JA interactions under water-limitation
  publication-title: Plant Mol Biol
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  ident: CR60
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 52
  start-page: 111
  year: 2007
  end-page: 116
  ident: CR37
  article-title: Cold and water stresses produce changes in endogenous jasmonates in two populations of Ait
  publication-title: Plant Growth Regul
– volume: 115
  start-page: 49
  year: 2015
  end-page: 57
  ident: CR11
  article-title: Jasmonates counter plant stress: a review
  publication-title: Environ Exp Bot
– volume: 165
  start-page: 1302
  year: 2014
  end-page: 1314
  ident: CR3
  article-title: Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling
  publication-title: Plant Physiol
– volume: 161
  start-page: 1930
  year: 2013
  end-page: 1951
  ident: CR34
  article-title: Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode
  publication-title: Plant Physiol
– volume: 16
  start-page: 203
  year: 2016
  ident: CR22
  article-title: Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance
  publication-title: BMC Plant Biol
– volume: 104
  start-page: 202
  year: 2014
  end-page: 208
  ident: CR39
  article-title: Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress
  publication-title: Ecotoxicol Environ Saf
– volume: 254
  start-page: 1
  year: 2016
  end-page: 14
  ident: CR46
  article-title: Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance
  publication-title: Protoplasma
– volume: 37
  start-page: 98
  year: 2010
  end-page: 116
  ident: CR29
  article-title: Drought-induced changes in development and function of grapevine ( spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update
  publication-title: Funct Plant Biol
– volume: 46
  start-page: 469
  year: 2008
  end-page: 481
  ident: CR8
  article-title: Identification, expression analysis and characterization of defense and signaling genes in
  publication-title: Plant Physiol Biochem
– volume: 144
  start-page: 307
  year: 1994
  end-page: 313
  ident: CR52
  article-title: The spectral determination of chlorophylls and , as well as total carotenoids, using various solvents with spectrophotometers of different resolution
  publication-title: J Plant Physiol
– volume: 17
  start-page: 369
  year: 2012
  end-page: 381
  ident: CR38
  article-title: NAC proteins: regulation and role in stress tolerance
  publication-title: Trends Plant Sci
– volume: 4
  start-page: 529
  year: 2013
  ident: 2519_CR32
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2013.00529
– volume: 159
  start-page: 172
  year: 2013
  ident: 2519_CR57
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2013.05.013
– volume: 4
  start-page: 16
  year: 2008
  ident: 2519_CR16
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-4-16
– volume: 46
  start-page: 469
  year: 2008
  ident: 2519_CR8
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2007.09.010
– volume: 185
  start-page: 57
  year: 2015
  ident: 2519_CR23
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2015.06.014
– volume: 3
  start-page: e3699
  year: 2008
  ident: 2519_CR58
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003699
– volume: 2
  start-page: 53
  year: 2014
  ident: 2519_CR12
  publication-title: Front Environ Sci
– volume: 20
  start-page: 219
  year: 2015
  ident: 2519_CR26
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2015.02.001
– volume: 39
  start-page: 863
  year: 2004
  ident: 2519_CR17
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02171.x
– volume: 52
  start-page: 111
  year: 2007
  ident: 2519_CR37
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-007-9166-2
– volume: 18
  start-page: 3158
  year: 2006
  ident: 2519_CR59
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.047399
– volume: 6
  start-page: 23609
  year: 2016
  ident: 2519_CR35
  publication-title: Sci Rep
  doi: 10.1038/srep23609
– volume: 1031
  start-page: 119
  year: 2018
  ident: 2519_CR54
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2018.05.055
– volume: 165
  start-page: 1302
  year: 2014
  ident: 2519_CR3
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.239004
– volume: 254
  start-page: 1
  year: 2016
  ident: 2519_CR46
  publication-title: Protoplasma
– volume: 67
  start-page: 2829
  year: 2016
  ident: 2519_CR15
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erw122
– volume: 144
  start-page: 307
  year: 1994
  ident: 2519_CR52
  publication-title: J Plant Physiol
  doi: 10.1016/S0176-1617(11)81192-2
– volume: 167
  start-page: 313
  year: 2016
  ident: 2519_CR60
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.029
– volume: 16
  start-page: 735
  year: 1998
  ident: 2519_CR9
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1998.00343.x
– volume: 68
  start-page: 302
  year: 2011
  ident: 2519_CR18
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2011.04687.x
– volume: 32
  start-page: 61
  year: 2013
  ident: 2519_CR50
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-012-1340-y
– volume: 161
  start-page: 1930
  year: 2013
  ident: 2519_CR34
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.214908
– volume: 58
  start-page: 221
  year: 2007
  ident: 2519_CR43
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erl164
– volume: 36
  start-page: 61
  year: 2002
  ident: 2519_CR4
  publication-title: Plant Growth Regul
  doi: 10.1023/A:1014732714549
– volume: 6
  start-page: 1077
  year: 2015
  ident: 2519_CR40
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.01077
– volume: 262
  start-page: 1047
  year: 2000
  ident: 2519_CR27
  publication-title: Mol Gen Genet
  doi: 10.1007/PL00008647
– volume: 15
  start-page: 473
  year: 1962
  ident: 2519_CR33
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– volume: 61
  start-page: 804
  year: 2010
  ident: 2519_CR56
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.04107.x
– volume: 16
  start-page: 203
  year: 2016
  ident: 2519_CR22
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-016-0897-y
– volume: 7
  start-page: 317
  year: 2007
  ident: 2519_CR47
  publication-title: Funct Integr Genom
  doi: 10.1007/s10142-007-0051-x
– volume: 8
  start-page: R19
  year: 2007
  ident: 2519_CR20
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-2-r19
– volume: 55
  start-page: 604
  year: 2014
  ident: 2519_CR7
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pct204
– volume: 91
  start-page: 641
  year: 2016
  ident: 2519_CR13
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-016-0503-6
– volume: 3
  start-page: 156
  year: 2008
  ident: 2519_CR10
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.3.3.5536
– volume: 16
  start-page: 2481
  year: 2004
  ident: 2519_CR48
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.022699
– volume: 15
  start-page: 82
  year: 2015
  ident: 2519_CR45
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-015-0459-8
– volume: 115
  start-page: 49
  year: 2015
  ident: 2519_CR11
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2015.02.010
– volume: 44
  start-page: 903
  year: 2005
  ident: 2519_CR19
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02575.x
– volume: 10
  start-page: 79
  year: 2005
  ident: 2519_CR36
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2004.12.010
– volume: 7
  start-page: 813
  year: 2016
  ident: 2519_CR2
  publication-title: Front Plant Sci
– volume: 18
  start-page: 756
  issue: 7
  year: 2008
  ident: 2519_CR6
  publication-title: Cell Res
  doi: 10.1038/cr.2008.53
– volume: 7
  start-page: 191
  issue: 1
  year: 2006
  ident: 2519_CR14
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-7-191
– volume: 17
  start-page: 369
  year: 2012
  ident: 2519_CR38
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2012.02.004
– volume: 7
  start-page: 1548
  year: 2016
  ident: 2519_CR30
  publication-title: Front Plant Sci
– volume: 44
  start-page: 653
  year: 2005
  ident: 2519_CR42
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02560.x
– volume: 8
  start-page: 161
  year: 2017
  ident: 2519_CR49
  publication-title: Front Plant Sci
– volume: 67
  start-page: 107
  year: 2008
  ident: 2519_CR5
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-008-9304-x
– volume: 172
  start-page: 1532
  year: 2016
  ident: 2519_CR53
  publication-title: Plant Physiol
  doi: 10.1104/pp.16.01096
– volume: 177
  start-page: 360
  year: 2009
  ident: 2519_CR28
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2009.06.011
– volume: 15
  start-page: 63
  year: 2003
  ident: 2519_CR1
  publication-title: Plant Cell
  doi: 10.1105/tpc.006130
– volume: 104
  start-page: 202
  year: 2014
  ident: 2519_CR39
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2014.03.014
– volume: 12
  start-page: 38
  year: 2014
  ident: 2519_CR25
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12114
– volume: 11
  start-page: 100
  year: 2009
  ident: 2519_CR24
  publication-title: Int J Agric Biol
– volume: 79
  start-page: 77
  year: 2014
  ident: 2519_CR55
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2014.03.004
– volume: 7
  start-page: 4
  year: 2016
  ident: 2519_CR21
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00004
– start-page: 1
  volume-title: Understanding how plants respond to drought stress at the molecular and whole plant levels. Drought stress tolerance in plants
  year: 2016
  ident: 2519_CR41
– volume: 51
  start-page: 659
  year: 2000
  ident: 2519_CR31
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/51.345.659
– volume: 37
  start-page: 98
  year: 2010
  ident: 2519_CR29
  publication-title: Funct Plant Biol
  doi: 10.1071/FP09191
– volume: 111
  start-page: 1021
  year: 2013
  ident: 2519_CR51
  publication-title: Ann Bot
  doi: 10.1093/aob/mct067
– volume: 392
  start-page: 465
  year: 2009
  ident: 2519_CR44
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2009.07.023
SSID ssj0014376
Score 2.468937
Snippet Key message Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and...
Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing...
Key messageExpression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and...
KEY MESSAGE: Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 621
SubjectTerms Abscisic acid
Abscisic Acid - pharmacology
Acetates - pharmacology
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - physiology
Arabidopsis thaliana
Biomedical and Life Sciences
Biosynthesis
Biotechnology
Cell Biology
Cyclopentanes - metabolism
Cyclopentanes - pharmacology
Drought
Drought resistance
drought tolerance
Droughts
Endopeptidases - metabolism
Gene expression
gene expression regulation
Gene Expression Regulation, Plant - drug effects
Genes
growth and development
heterologous gene expression
Jasmonic acid
Life Sciences
Methyl jasmonate
Original Article
Oxidoreductases - metabolism
Oxylipins - metabolism
Oxylipins - pharmacology
Plant Biochemistry
Plant Growth Regulators - metabolism
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Sciences
Plants, Genetically Modified
Reactive oxygen species
Reactive Oxygen Species - metabolism
Ribonucleic acid
RNA
RNA-Seq
Scavenging
sequence analysis
Signal transduction
Stress, Physiological - genetics
Stress, Physiological - physiology
transactivators
transcription (genetics)
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
transgenic plants
Vitis - genetics
Vitis amurensis
Water deficit
water stress
Yeast
yeasts
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagcOCCeBMoyEgcQGCxSZzYPqGloqqQ6IlWe4v8Cl3UdZZNVur-Gv4qM86jQhV7thONMmPP54zn-wh5W3hXe4VV_zLTjEtnmZTcstLWeeaElsphc_L30_LkjH9bFIvhh1s7XKsc98S4UbvG4j_yT1kOy5IDuJ19Xv9mqBqF1dVBQuM2uYPUZRjVYjEduAAKRHE5pAADFJnyoWkmts5hOUoxPDwhylbs6t_EdANt3qiUxgR0_IDcH5Ajnfeufkhu-fCI3P3SALrbPSZ_wN-0w8QzbgO0l9Kh5_p0fpQKio0kFPmpIRUGT9-dI5sR1avtBu-wt--pDxcYAi11Ubqno11z6VF3w1Ozo6vGRaWv8JP-0u0KGXWptktHzbJpdwFwJLyELkNvBIQljM832ixds4aRJ-Ts-OuPoxM2iC8wy2eyY9qgALUuVC2NTX3tjMsMJDLvACLVNaqm27zwcqa8FzqzxgFa08JwpxygRp0_JQehCf45oU4KJRy3PvWo7CGUtDq3rrSyVqUus4Sk45ev7MBMjgIZl9XEqRy9VYG3quit6iohH6Zn1j0vx97Zh6NDq2GNttV1RCXkzTQMqwtLJjr4ZotzSpVLOHKpPXOwuRhwMC8S8qwPlskk7JASACIT8nGMnmsD_m_vi_32viT3shi5eO_ykBx0m61_BdioM6_jAvgL7aANMQ
  priority: 102
  providerName: ProQuest
Title The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis
URI https://link.springer.com/article/10.1007/s00299-020-02519-x
https://www.ncbi.nlm.nih.gov/pubmed/32107612
https://www.proquest.com/docview/2391145850
https://www.proquest.com/docview/2369387479
https://www.proquest.com/docview/2439419345
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELag5cAF8SalrIzEAQSRNokT28dstUsFYoUQWy2nyK-URd2k2mSl7q_pX-1MXlVVqMTJBzvWKGN7vtE8PkLexc7mTmLUPwmVz4Q1vhDM-InJo9ByJaTF4uRv8-R4wb4s42VXFFb12e59SLJ5qYdiNwwgSR_dHcTF0gfkuB-D746JXIswHWIHLGoo5bDxF2DHgHWlMn_f46Y5uoUxb8VHG7Mze0wedXiRpq2Cn5B7rnhKHkxKwHS7Z-QStExrNDf95actgQ49UfP0KOAUy0codqUGA1g4-v4EexhRtd5uMHO9-kBd8RsVX1HbEPbUtC7PHLJtOKp3dF3aht-rOKV_VLXGPrpUmZWlelVWuwLQI2xCV0UrBBxGmE83Sq9seQ4zz8liNv15dOx3lAu-YWNR-0oj7bSKZS60CVxutQ01mC9nARjlOXKlmyh2Yiyd4yo02gJGU1wzKy1gRRW9IHtFWbhXhFrBJbfMuMAhnweXwqjI2MSIXCYqCT0S9H8-M10_cqTFOMuGTsqNtjLQVtZoK7vwyMfhm_O2G8edqw97hWbdzayyMILnnYGTNPbI22Ea7hQGSlThyi2uSWQkwNGSd6zBkmJAvyz2yMv2sAwiYV0UB-jokU_96bkW4N_yHvzf8tfkYdicZMy-PCR79Wbr3gBCqvWI3OdLPiL76WwymeP4-dfXKYyT6fz7j1FzXa4APAIQNQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VggQXxBtDgUUCCQQW8Xv3gFAoVCltc2qr3My-3AY1dogd0fwa_gG_kRm_KlSRW8-7tkae1zfenfkAXkXWZFbQqX_sSzfkRruch9qNdRb4JpFcGGpOPhjHo6Pw2ySabMCfrheGrlV2MbEO1KbQ9I_8gx-gW4YIbgef5j9dYo2i09WOQqMxiz27-oUlW_lx9wvq97Xv73w93B65LauAq8MBr1ypiFlZRiLjSns2M8r4CiO0NZj7s4zowHUQWT4Q1ibS18ogDJGJCo0wCIdkgO-9Btcx8Q6o2EsmfYGHj9ZkdjRyDFGrF7ZNOnWrHh1_CZeKNUL1wj3_NxFeQreXTmbrhLdzB263SJUNG9O6Cxs2vwc3PheIJlf34TfaF6so0XVhhzXUPexYjofbXsKocYXRPGxMvbllb45pehKTs-WC7syXb5nNT8nkSmZqqqCKVcWZJZ4Py9SKzQpTM4vlJ-yHLGc0wZdJPTVMTYtylSNuxZewad4IgW6A68OFVFNTzHHlARxdiVoewmZe5PYxMMMTkZhQW88Sk0giuJaBNrHmmYhl7DvgdV8-1e0kdCLkOEv7Gc61tlLUVlprKz134F3_zLyZA7J291an0LSNCWV6YcEOvOyX0ZvpiEbmtljSnlgEHEs8sWYPNTMj7g4jBx41xtKLRB1ZCYJWB9531nMhwP_lfbJe3hdwc3R4sJ_u7473nsItv7ZiuvO5BZvVYmmfIS6r1PPaGRh8v2rv-wu3Y0uU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VFCFeEDeBAosEEohaje_dB4TSI2opRBWiVd_MXoagxg6xI5pfw__g1zHjq0IVeevzrq2R59hvPccH8DK0JrWCsv6RJ52AG-1wHmgn0qnvmVhyYag5-dM42j8OPpyGp2vwp-2FobLKNiZWgdrkmv6Rb3k-umWA4HawlTZlEUe7o_eznw4xSFGmtaXTqE3k0C5_4fWteHewi7p-5XmjvS87-07DMODoYMBLRypiWZahSLnSrk2NMp7CaG0N4oA0JWpw7YeWD4S1sfS0MghJZKwCIwxCI-nje6_Beky3oh6sb--Njz53OYzAr6jtaAAZYlg3aFp2qsY9SoYJh65uhPGFc_7vsXgJ617K01bH3-g23GpwKxvWhnYH1mx2F65v54gtl_fgN1obK-nYa4MQq4l82IkcD3fcmFEbC6Pp2HgQZ5a9PqFZSkxOF3OqoC_eMJt9JwMsmKmIg0pW5meWWD8sU0s2zU3FM5Z9Yz9kMaV5vkzqiWFqkhfLDFEsvoRNsloIdApcH86lmph8hiv34fhKFPMAelme2UfADI9FbAJtXUu8IrHgWvraRJqnIpKR1we3_fKJbuaiEz3HWdJNdK60laC2kkpbyXkf3nbPzOqpICt3b7QKTZoIUSQX9tyHF90y-jYlbGRm8wXtiYTP8cInVuyh1mZE4UHYh4e1sXQiUX9WjBC2D5ut9VwI8H95H6-W9zncQM9LPh6MD5_ATa8yYioA3YBeOV_YpwjSSvWs8QYGX6_aAf8CwnRRLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+transcription+factor+VaNAC17+from+grapevine+%28Vitis+amurensis%29+enhances+drought+tolerance+by+modulating+jasmonic+acid+biosynthesis+in+transgenic+Arabidopsis&rft.jtitle=Plant+cell+reports&rft.au=Su%2C+Lingye&rft.au=Fang%2C+Linchuan&rft.au=Zhu%2C+Zhenfei&rft.au=Zhang%2C+Langlang&rft.date=2020-05-01&rft.issn=1432-203X&rft.eissn=1432-203X&rft.volume=39&rft.issue=5&rft.spage=621&rft_id=info:doi/10.1007%2Fs00299-020-02519-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0721-7714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0721-7714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0721-7714&client=summon