The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis
Key message Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine ( Vitis spp.). Members of th...
Saved in:
Published in | Plant cell reports Vol. 39; no. 5; pp. 621 - 634 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Key message
Expression of
VaNAC17
improved drought tolerance in transgenic
Arabidopsis
by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging.
Water deficit severely affects the growth and development of plants such as grapevine (
Vitis
spp.). Members of the NAC (
N
AM,
A
TAF1/2, and
C
UC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of
NAC
genes in drought tolerance in grapevine. Here, we explored the role of
VaNAC17
in
Vitis amurensis
, a cold-hardy, drought-tolerant species of grapevine.
VaNAC17
was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of
VaNAC17
in
Arabidopsis thaliana
enhanced drought tolerance.
VaNAC17
-expressing
Arabidopsis
plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that
VaNAC17
expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as
LOX3
,
AOC1
and
OPR3
) and signaling (such as
MYC2
,
JAZ1
,
VSP1
and
CORI3
) pathways. Endogenous JA levels increased in
VaNAC17
-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging. |
---|---|
AbstractList | Key message
Expression of
VaNAC17
improved drought tolerance in transgenic
Arabidopsis
by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging.
Water deficit severely affects the growth and development of plants such as grapevine (
Vitis
spp.). Members of the NAC (
N
AM,
A
TAF1/2, and
C
UC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of
NAC
genes in drought tolerance in grapevine. Here, we explored the role of
VaNAC17
in
Vitis amurensis
, a cold-hardy, drought-tolerant species of grapevine.
VaNAC17
was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of
VaNAC17
in
Arabidopsis thaliana
enhanced drought tolerance.
VaNAC17
-expressing
Arabidopsis
plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that
VaNAC17
expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as
LOX3
,
AOC1
and
OPR3
) and signaling (such as
MYC2
,
JAZ1
,
VSP1
and
CORI3
) pathways. Endogenous JA levels increased in
VaNAC17
-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging. Key messageExpression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging.Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging. KEY MESSAGE: Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging. Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging.KEY MESSAGEExpression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging. Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing ROS scavenging. Water deficit severely affects the growth and development of plants such as grapevine (Vitis spp.). Members of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family participate in drought-stress-induced signal transduction in plants, but little is known about the roles of NAC genes in drought tolerance in grapevine. Here, we explored the role of VaNAC17 in Vitis amurensis, a cold-hardy, drought-tolerant species of grapevine. VaNAC17 was strongly induced in grapevine by drought, exogenous abscisic acid (ABA), and methyl jasmonate (MeJA). A transient expression assay in yeast indicated that VaNAC17 functions as a transcriptional activator. Notably, heterologous expression of VaNAC17 in Arabidopsis thaliana enhanced drought tolerance. VaNAC17-expressing Arabidopsis plants showed decreased reactive oxygen species (ROS) accumulation compared to wild-type plants under drought conditions. RNA-seq analysis indicated that VaNAC17 expression increased the transcription of downstream stress-responsive genes after 5 days of drought treatment, especially genes involved in jasmonic acid (JA) biosynthesis (such as LOX3, AOC1 and OPR3) and signaling (such as MYC2, JAZ1, VSP1 and CORI3) pathways. Endogenous JA levels increased in VaNAC17-OE plants under drought stress. Taken together, these results indicate that VaNAC17 plays a positive role in drought tolerance by modulating endogenous JA biosynthesis and ROS scavenging. |
Author | Wang, Yi Su, Lingye Fang, Linchuan Li, Shaohua Zhu, Zhenfei Wang, Qingfeng Xin, Haiping Sun, Xiaoming Zhang, Langlang |
Author_xml | – sequence: 1 givenname: Lingye surname: Su fullname: Su, Lingye organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization/Guangdong Academy of Forestry – sequence: 2 givenname: Linchuan surname: Fang fullname: Fang, Linchuan organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences – sequence: 3 givenname: Zhenfei surname: Zhu fullname: Zhu, Zhenfei organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 4 givenname: Langlang surname: Zhang fullname: Zhang, Langlang organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences – sequence: 5 givenname: Xiaoming surname: Sun fullname: Sun, Xiaoming organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences – sequence: 6 givenname: Yi surname: Wang fullname: Wang, Yi organization: Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 7 givenname: Qingfeng surname: Wang fullname: Wang, Qingfeng organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences – sequence: 8 givenname: Shaohua surname: Li fullname: Li, Shaohua email: shhli@ibcas.ac.cn organization: Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences – sequence: 9 givenname: Haiping orcidid: 0000-0002-4652-1683 surname: Xin fullname: Xin, Haiping email: xinhaiping215@hotmail.com organization: Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32107612$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhS1URKeFF2CBLLEpi4B_knG8HI2AIlWwKRU7y7FvZjxK7MF2qs7T8Kp4mlZIXZSFZcnnO1f3-p4zdOKDB4TeUvKREiI-JUKYlBVhpJyGyuruBVrQmrOKEf7rBC2IYLQSgtan6CylHSFFFMtX6JQzSsSSsgX6c70FnKP2yUS3zy543GuTQ8Q3-vtqTQXuYxjxJuo93DoP-OLGZZewHqcIPrn0AYPfam8gYRvDtNlmnMMA8fiEuwMeg50GnZ3f4J1OY_DOYG2cxZ0L6eDzFkoR7PzcxAaO-irqztmwL8pr9LLXQ4I3D_c5-vnl8_X6srr68fXbenVVmZq0udIdXRKuG9m3naHQ286yTtAW7JKQvi9zt4Y30BIJIDQznSVEatHVVloqmebn6GKuu4_h9wQpq9ElA8OgPYQpKVZzWVPJ6-b_KF9K3opayIK-f4LuwhR9GaRQktK6aRtSqHcP1NSNYNU-ulHHg3rcUgHaGTAxpBShV8ZlfVxW-TQ3KErUMRBqDoQqgVD3gVB3xcqeWB-rP2visykV2G8g_mv7GddfbGbLdg |
CitedBy_id | crossref_primary_10_1007_s12298_022_01232_1 crossref_primary_10_3390_ijms22168568 crossref_primary_10_3390_plants11243430 crossref_primary_10_1007_s12298_024_01465_2 crossref_primary_10_1186_s12870_025_06185_7 crossref_primary_10_1007_s00299_021_02730_4 crossref_primary_10_3390_plants13131726 crossref_primary_10_1016_j_cj_2023_06_002 crossref_primary_10_1007_s11101_024_09976_2 crossref_primary_10_3390_plants12173029 crossref_primary_10_3389_fpls_2023_1128002 crossref_primary_10_3390_jof10040246 crossref_primary_10_1016_j_plantsci_2023_111894 crossref_primary_10_3389_fpls_2020_572137 crossref_primary_10_1016_j_jprot_2023_105010 crossref_primary_10_1016_j_micpath_2024_106772 crossref_primary_10_1016_j_plaphy_2023_108259 crossref_primary_10_1371_journal_pone_0296254 crossref_primary_10_1007_s10343_022_00795_z crossref_primary_10_1093_hr_uhab046 crossref_primary_10_1093_plphys_kiad578 crossref_primary_10_1155_2024_6704238 crossref_primary_10_1016_j_plaphy_2023_107768 crossref_primary_10_1111_ppl_14366 crossref_primary_10_3390_agronomy11091886 crossref_primary_10_1007_s10343_025_01115_x crossref_primary_10_1016_j_scienta_2024_113769 crossref_primary_10_1016_j_scienta_2023_112019 crossref_primary_10_1093_jxb_erae482 crossref_primary_10_1007_s10653_023_01823_1 crossref_primary_10_3390_ijms24087227 crossref_primary_10_1016_j_agwat_2024_109029 crossref_primary_10_1111_ppl_13328 crossref_primary_10_1186_s12870_022_03918_w crossref_primary_10_1016_j_envexpbot_2022_105174 crossref_primary_10_1007_s11105_022_01336_8 crossref_primary_10_3389_fpls_2024_1432494 crossref_primary_10_1007_s10681_023_03153_w crossref_primary_10_1016_j_plantsci_2024_112293 |
Cites_doi | 10.3389/fpls.2013.00529 10.1016/j.scienta.2013.05.013 10.1186/1746-4811-4-16 10.1016/j.plaphy.2007.09.010 10.1016/j.jplph.2015.06.014 10.1371/journal.pone.0003699 10.1016/j.tplants.2015.02.001 10.1111/j.1365-313X.2004.02171.x 10.1007/s10725-007-9166-2 10.1105/tpc.106.047399 10.1038/srep23609 10.1016/j.aca.2018.05.055 10.1104/pp.114.239004 10.1093/jxb/erw122 10.1016/S0176-1617(11)81192-2 10.1016/j.cell.2016.08.029 10.1046/j.1365-313x.1998.00343.x 10.1111/j.1365-313X.2011.04687.x 10.1007/s00299-012-1340-y 10.1104/pp.113.214908 10.1093/jxb/erl164 10.1023/A:1014732714549 10.3389/fpls.2015.01077 10.1007/PL00008647 10.1111/j.1399-3054.1962.tb08052.x 10.1111/j.1365-313X.2009.04107.x 10.1186/s12870-016-0897-y 10.1007/s10142-007-0051-x 10.1186/gb-2007-8-2-r19 10.1093/pcp/pct204 10.1007/s11103-016-0503-6 10.4161/psb.3.3.5536 10.1105/tpc.104.022699 10.1186/s12870-015-0459-8 10.1016/j.envexpbot.2015.02.010 10.1111/j.1365-313X.2005.02575.x 10.1016/j.tplants.2004.12.010 10.1038/cr.2008.53 10.1186/1471-2105-7-191 10.1016/j.tplants.2012.02.004 10.1111/j.1365-313X.2005.02560.x 10.1007/s11103-008-9304-x 10.1104/pp.16.01096 10.1016/j.plantsci.2009.06.011 10.1105/tpc.006130 10.1016/j.ecoenv.2014.03.014 10.1111/pbi.12114 10.1016/j.plaphy.2014.03.004 10.3389/fpls.2016.00004 10.1093/jexbot/51.345.659 10.1071/FP09191 10.1093/aob/mct067 10.1016/j.jmb.2009.07.023 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T5 7T7 7TM 7U9 7X2 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0K M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 |
DOI | 10.1007/s00299-020-02519-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1432-203X |
EndPage | 634 |
ExternalDocumentID | 32107612 10_1007_s00299_020_02519_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31672132 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences (CN) grantid: 2015281 – fundername: Grape Breeding Project of Ningxia grantid: NXNYYZ201502 – fundername: National Natural Science Foundation of China grantid: 31672132 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 7X7 88A 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECGQY EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0K M0L M1P M4Y M7P MA- MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 N~3 O9- O93 O9G O9I O9J OAM P0- P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z83 Z8O Z8P Z8Q Z8S Z8W ZMTXR ZOVNA ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7T5 7T7 7TM 7U9 7XB 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-ab1603a59f8bc1efdbd2b718ed600ff1438c35e809ee7a2cbd009a7b4d9d192a3 |
IEDL.DBID | U2A |
ISSN | 0721-7714 1432-203X |
IngestDate | Fri Jul 11 16:53:12 EDT 2025 Fri Jul 11 06:42:35 EDT 2025 Sat Aug 23 13:33:45 EDT 2025 Wed Feb 19 02:26:26 EST 2025 Thu Apr 24 22:52:17 EDT 2025 Tue Jul 01 01:04:47 EDT 2025 Fri Feb 21 02:34:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Drought stress Jasmonic acid Vitis amurensis VaNAC17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-ab1603a59f8bc1efdbd2b718ed600ff1438c35e809ee7a2cbd009a7b4d9d192a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4652-1683 |
PMID | 32107612 |
PQID | 2391145850 |
PQPubID | 54035 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2439419345 proquest_miscellaneous_2369387479 proquest_journals_2391145850 pubmed_primary_32107612 crossref_citationtrail_10_1007_s00299_020_02519_x crossref_primary_10_1007_s00299_020_02519_x springer_journals_10_1007_s00299_020_02519_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200500 2020-05-00 2020-May 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200500 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Berlin |
PublicationTitle | Plant cell reports |
PublicationTitleAbbrev | Plant Cell Rep |
PublicationTitleAlternate | Plant Cell Rep |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Dar, Uddin, Khan, Hakeem, Jaleel (CR11) 2015; 115 Tak, Negi, Ganapathi (CR46) 2016; 254 Abe, Urao, Ito, Seki, Shinozaki, Yamaguchi-Shinozaki (CR1) 2003; 15 He, Mu, Cao, Zhang, Zhang, Chen (CR19) 2005; 44 Fujita, Fujita, Maruyama, Seki, Hiratsu, Ohme-Takagi (CR17) 2004; 39 Munné-Bosch, Müller (CR32) 2013; 4 Murashige, Skoog (CR33) 1962; 15 Hao, Wei, Song, Chen, Zhang, Wang (CR18) 2011; 68 Zhang, Turner (CR58) 2008; 3 Hellemans, Mortier, De Paepe, Speleman, Vandesompele (CR20) 2007; 8 Sasaki-Sekimoto, Taki, Obayashi, Aono, Matsumoto, Sakurai (CR42) 2005; 44 Olsen, Ernst, Leggio, Skriver (CR36) 2005; 10 Das, Roychoudhury (CR12) 2014; 2 Wellburn (CR52) 1994; 144 Clough, Bent (CR9) 1998; 16 Riemann, Dhakarey, Hazman, Miro, Kohli, Nick (CR40) 2015; 6 Kikuchi, Ueguchi-Tanaka, Yoshida, Nagato, Matsusoka, Hirano (CR27) 2000; 262 Wang, Zheng, Xin, Fang, Li (CR50) 2013; 32 Zhang, Huang (CR57) 2013; 159 Yoshii, Yamazaki, Rakwal, Kishi-Kaboshi, Miyao, Hirochika (CR56) 2010; 61 Cruz de Carvalho (CR10) 2008; 3 Oda-Yamamizo, Mitsuda, Sakamoto, Ogawa, Ohme-Takagi, Ohmiya (CR35) 2016; 6 Puranik, Sahu, Srivastava, Prasad (CR38) 2012; 17 Simpson, Tantitadapitak, Reed, Mather, Bunce, White (CR44) 2009; 392 Bies-Etheve, Gaubier-Comella, Debures, Lasserre, Jobet, Raynal (CR5) 2008; 67 de Ollas, Dodd (CR13) 2016; 91 Jiang, Zhang, Lü, Jiang, Liu, Dai (CR25) 2014; 12 Maxwell, Johnson (CR31) 2000; 51 Noir, Bömer, Takahashi, Ishida, Tsui, Balbi (CR34) 2013; 161 Ismail, Seo, Takebayashi, Kamiya, Nick (CR23) 2015; 185 Chen, Wang, Lv, Li, Luo, Lu (CR7) 2014; 55 Lovisolo, Perrone, Carra, Ferrandino, Flexas, Medrano (CR29) 2010; 37 Shinozaki, Yamaguchi-Shinozaki (CR43) 2007; 58 Forcat, Bennett, Mansfield, Grant (CR16) 2008; 4 Hong, Zhang, Huang, Li, Song (CR21) 2016; 7 Kazan (CR26) 2015; 20 Xiao, Cai, Ye, Ding, Feng (CR54) 2018; 1031 Huang, Hong, Zhang, Li, Song (CR22) 2016; 16 Ernst, Bar-Joseph (CR14) 2006; 7 Mahmood, Xu, El-Kereamy, Casaretto, Rothstein (CR30) 2016; 7 Samarah (CR41) 2016 Kleinow, Himbert, Krenz, Jeske, Koncz (CR28) 2009; 177 Ying, Chen, Cai (CR55) 2014; 79 Attaran, Major, Cruz, Rosa, Koo, Chen (CR3) 2014; 165 Pedranzani, Sierra-de-Grado, Vigliocco, Miersch, Abdala (CR37) 2007; 52 Zhu (CR60) 2016; 167 Wu, Fu, Sun, Xiao, Liu (CR53) 2016; 172 Su, Dai, Li, Xin (CR45) 2015; 15 Fang, Su, Sun, Li, Sun, Karungo (CR15) 2016; 67 Tran, Nakashima, Sakuma, Simpson, Fujita, Maruyama (CR48) 2004; 16 Zhong, Demura, Ye (CR59) 2006; 18 Tattersall, Grimplet, DeLuc, Wheatley, Vincent, Osborne (CR47) 2007; 7 Bajji, Kinet, Lutts (CR4) 2002; 36 Qiu, Guo, Zhu, Zhang, Zhang (CR39) 2014; 104 Wasternack, Hause (CR51) 2013; 111 Jaleel, Manivannan, Wahid, Farooq, Al-Juburi, Somasundaram (CR24) 2009; 11 Vishwakarma, Upadhyay, Kumar, Yadav, Singh, Mishra (CR49) 2017; 8 Chong, Le Henanff, Bertsch, Walter (CR8) 2008; 46 Ahmad, Rasool, Gul, Sheikh, Akram, Ashraf (CR2) 2016; 7 Bu, Jiang, Li, Zhai, Zhang, Wu (CR6) 2008; 18 H Tak (2519_CR46) 2016; 254 N Bies-Etheve (2519_CR5) 2008; 67 C Lovisolo (2519_CR29) 2010; 37 SJ Clough (2519_CR9) 1998; 16 EA Tattersall (2519_CR47) 2007; 7 MH Cruz de Carvalho (2519_CR10) 2008; 3 T Murashige (2519_CR33) 1962; 15 AN Olsen (2519_CR36) 2005; 10 C Wasternack (2519_CR51) 2013; 111 X Jiang (2519_CR25) 2014; 12 Y Zhang (2519_CR58) 2008; 3 K Vishwakarma (2519_CR49) 2017; 8 L Ying (2519_CR55) 2014; 79 Y Sasaki-Sekimoto (2519_CR42) 2005; 44 H-M Xiao (2519_CR54) 2018; 1031 C Zhang (2519_CR57) 2013; 159 TA Dar (2519_CR11) 2015; 115 L Huang (2519_CR22) 2016; 16 H Wu (2519_CR53) 2016; 172 Q Bu (2519_CR6) 2008; 18 M Fujita (2519_CR17) 2004; 39 K Kazan (2519_CR26) 2015; 20 X Chen (2519_CR7) 2014; 55 M Riemann (2519_CR40) 2015; 6 J-K Zhu (2519_CR60) 2016; 167 E Attaran (2519_CR3) 2014; 165 A Ismail (2519_CR23) 2015; 185 K Mahmood (2519_CR30) 2016; 7 K Maxwell (2519_CR31) 2000; 51 H Abe (2519_CR1) 2003; 15 R Zhong (2519_CR59) 2006; 18 H Pedranzani (2519_CR37) 2007; 52 S Forcat (2519_CR16) 2008; 4 K Das (2519_CR12) 2014; 2 L Fang (2519_CR15) 2016; 67 Z Qiu (2519_CR39) 2014; 104 L-SP Tran (2519_CR48) 2004; 16 K Kikuchi (2519_CR27) 2000; 262 CA Jaleel (2519_CR24) 2009; 11 AR Wellburn (2519_CR52) 1994; 144 S Noir (2519_CR34) 2013; 161 M Bajji (2519_CR4) 2002; 36 P Ahmad (2519_CR2) 2016; 7 J Hellemans (2519_CR20) 2007; 8 L Su (2519_CR45) 2015; 15 XJ He (2519_CR19) 2005; 44 NH Samarah (2519_CR41) 2016 T Kleinow (2519_CR28) 2009; 177 C de Ollas (2519_CR13) 2016; 91 C Oda-Yamamizo (2519_CR35) 2016; 6 N Wang (2519_CR50) 2013; 32 PJ Simpson (2519_CR44) 2009; 392 YJ Hao (2519_CR18) 2011; 68 J Chong (2519_CR8) 2008; 46 M Yoshii (2519_CR56) 2010; 61 J Ernst (2519_CR14) 2006; 7 Y Hong (2519_CR21) 2016; 7 S Puranik (2519_CR38) 2012; 17 S Munné-Bosch (2519_CR32) 2013; 4 K Shinozaki (2519_CR43) 2007; 58 |
References_xml | – volume: 6 start-page: 1077 year: 2015 ident: CR40 article-title: Exploring jasmonates in the hormonal network of drought and salinity responses publication-title: Front Plant Sci – volume: 39 start-page: 863 year: 2004 end-page: 876 ident: CR17 article-title: A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway publication-title: Plant J – volume: 7 start-page: 191 issue: 1 year: 2006 ident: CR14 article-title: STEM: a tool for the analysis of short time series gene expression data publication-title: BMC Bioinform – volume: 3 start-page: 156 year: 2008 end-page: 165 ident: CR10 article-title: Drought stress and reactive oxygen species: production, scavenging and signaling publication-title: Plant Signal Behav – volume: 20 start-page: 219 year: 2015 end-page: 229 ident: CR26 article-title: Diverse roles of jasmonates and ethylene in abiotic stress tolerance publication-title: Trends Plant Sci – volume: 159 start-page: 172 year: 2013 end-page: 177 ident: CR57 article-title: Effects of endogenous abscisic acid, jasmonic acid, polyamines, and polyamine oxidase activity in tomato seedlings under drought stress publication-title: Sci Hortic – volume: 18 start-page: 756 issue: 7 year: 2008 ident: CR6 article-title: Role of the NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses publication-title: Cell Res – start-page: 1 year: 2016 end-page: 37 ident: CR41 publication-title: Understanding how plants respond to drought stress at the molecular and whole plant levels. Drought stress tolerance in plants – volume: 58 start-page: 221 year: 2007 end-page: 227 ident: CR43 article-title: Gene networks involved in drought stress response and tolerance publication-title: J Exp Bot – volume: 7 start-page: 317 year: 2007 end-page: 333 ident: CR47 article-title: Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress publication-title: Funct Integr Genom – volume: 1031 start-page: 119 year: 2018 end-page: 127 ident: CR54 article-title: Spatio-temporal profiling of abscisic acid, indoleacetic acid and jasmonic acid in single rice seed during seed germination publication-title: Anal Chim Acta – volume: 15 start-page: 473 year: 1962 end-page: 497 ident: CR33 article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures publication-title: Physiol Plant – volume: 55 start-page: 604 year: 2014 end-page: 619 ident: CR7 article-title: The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway publication-title: Plant Cell Physiol – volume: 8 start-page: 161 year: 2017 ident: CR49 article-title: Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects publication-title: Front Plant Sci – volume: 15 start-page: 63 year: 2003 end-page: 78 ident: CR1 article-title: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling publication-title: Plant Cell – volume: 32 start-page: 61 year: 2013 end-page: 75 ident: CR50 article-title: Comprehensive analysis of NAC domain transcription factor gene family in publication-title: Plant Cell Rep – volume: 67 start-page: 2829 year: 2016 end-page: 2845 ident: CR15 article-title: Expression of in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis publication-title: J Exp Bot – volume: 7 start-page: 813 year: 2016 ident: CR2 article-title: Jasmonates: multifunctional roles in stress tolerance publication-title: Front Plant Sci – volume: 10 start-page: 79 year: 2005 end-page: 87 ident: CR36 article-title: NAC transcription factors: structurally distinct, functionally diverse publication-title: Trends Plant Sci – volume: 15 start-page: 82 year: 2015 ident: CR45 article-title: A novel system for evaluating drought–cold tolerance of grapevines using chlorophyll fluorescence publication-title: BMC Plant Biol – volume: 16 start-page: 2481 year: 2004 end-page: 2498 ident: CR48 article-title: Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive -element in the early responsive to dehydration stress 1 promoter publication-title: Plant Cell – volume: 111 start-page: 1021 year: 2013 end-page: 1058 ident: CR51 article-title: Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany publication-title: Ann Bot – volume: 11 start-page: 100 year: 2009 end-page: 105 ident: CR24 article-title: Drought stress in plants: a review on morphological characteristics and pigments composition publication-title: Int J Agric Biol – volume: 177 start-page: 360 year: 2009 end-page: 370 ident: CR28 article-title: NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis publication-title: Plant Sci – volume: 2 start-page: 53 year: 2014 ident: CR12 article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants publication-title: Front Environ Sci – volume: 51 start-page: 659 year: 2000 end-page: 668 ident: CR31 article-title: Chlorophyll fluorescence—a practical guide publication-title: J Exp Bot – volume: 36 start-page: 61 year: 2002 end-page: 70 ident: CR4 article-title: The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat publication-title: Plant Growth Regul – volume: 172 start-page: 1532 year: 2016 end-page: 1547 ident: CR53 article-title: A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance publication-title: Plant Physiol – volume: 79 start-page: 77 year: 2014 end-page: 87 ident: CR55 article-title: BnNAC485 is involved in abiotic stress responses and flowering time in publication-title: Plant Physiol Biochem – volume: 4 start-page: 16 year: 2008 ident: CR16 article-title: A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress publication-title: Plant Methods – volume: 61 start-page: 804 year: 2010 end-page: 815 ident: CR56 article-title: The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling publication-title: Plant J – volume: 44 start-page: 653 year: 2005 end-page: 668 ident: CR42 article-title: Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis publication-title: Plant J – volume: 185 start-page: 57 year: 2015 end-page: 64 ident: CR23 article-title: A balanced JA/ABA status may correlate with adaptation to osmotic stress in cells publication-title: J Plant Physiol – volume: 68 start-page: 302 year: 2011 end-page: 313 ident: CR18 article-title: Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants publication-title: Plant J – volume: 44 start-page: 903 year: 2005 end-page: 916 ident: CR19 article-title: AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development publication-title: Plant J – volume: 12 start-page: 38 year: 2014 end-page: 48 ident: CR25 article-title: RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals publication-title: Plant Biotechnol J – volume: 8 start-page: R19 year: 2007 ident: CR20 article-title: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data publication-title: Genome Biol – volume: 7 start-page: 1548 year: 2016 ident: CR30 article-title: The Arabidopsis transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses publication-title: Front Plant Sci – volume: 18 start-page: 3158 year: 2006 end-page: 3170 ident: CR59 article-title: SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis publication-title: Plant Cell – volume: 4 start-page: 529 year: 2013 ident: CR32 article-title: Hormonal cross-talk in plant development and stress responses publication-title: Front Plant Sci – volume: 392 start-page: 465 year: 2009 end-page: 480 ident: CR44 article-title: Characterization of two novel aldo–keto reductases from Arabidopsis: expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress publication-title: J Mol Biol – volume: 7 start-page: 4 year: 2016 ident: CR21 article-title: Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice publication-title: Front Plant Sci – volume: 67 start-page: 107 year: 2008 end-page: 124 ident: CR5 article-title: Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in publication-title: Plant Mol Biol – volume: 6 start-page: 23609 year: 2016 ident: CR35 article-title: The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves publication-title: Sci Rep – volume: 262 start-page: 1047 year: 2000 end-page: 1051 ident: CR27 article-title: Molecular analysis of the gene family in rice publication-title: Mol Gen Genet – volume: 3 start-page: e3699 year: 2008 ident: CR58 article-title: Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis publication-title: PLoS ONE – volume: 16 start-page: 735 year: 1998 end-page: 743 ident: CR9 article-title: Floral dip: a simplified method for -mediated transformation of publication-title: Plant J – volume: 91 start-page: 641 year: 2016 end-page: 650 ident: CR13 article-title: Physiological impacts of ABA–JA interactions under water-limitation publication-title: Plant Mol Biol – volume: 167 start-page: 313 year: 2016 end-page: 324 ident: CR60 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 52 start-page: 111 year: 2007 end-page: 116 ident: CR37 article-title: Cold and water stresses produce changes in endogenous jasmonates in two populations of Ait publication-title: Plant Growth Regul – volume: 115 start-page: 49 year: 2015 end-page: 57 ident: CR11 article-title: Jasmonates counter plant stress: a review publication-title: Environ Exp Bot – volume: 165 start-page: 1302 year: 2014 end-page: 1314 ident: CR3 article-title: Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling publication-title: Plant Physiol – volume: 161 start-page: 1930 year: 2013 end-page: 1951 ident: CR34 article-title: Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode publication-title: Plant Physiol – volume: 16 start-page: 203 year: 2016 ident: CR22 article-title: Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance publication-title: BMC Plant Biol – volume: 104 start-page: 202 year: 2014 end-page: 208 ident: CR39 article-title: Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress publication-title: Ecotoxicol Environ Saf – volume: 254 start-page: 1 year: 2016 end-page: 14 ident: CR46 article-title: Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance publication-title: Protoplasma – volume: 37 start-page: 98 year: 2010 end-page: 116 ident: CR29 article-title: Drought-induced changes in development and function of grapevine ( spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update publication-title: Funct Plant Biol – volume: 46 start-page: 469 year: 2008 end-page: 481 ident: CR8 article-title: Identification, expression analysis and characterization of defense and signaling genes in publication-title: Plant Physiol Biochem – volume: 144 start-page: 307 year: 1994 end-page: 313 ident: CR52 article-title: The spectral determination of chlorophylls and , as well as total carotenoids, using various solvents with spectrophotometers of different resolution publication-title: J Plant Physiol – volume: 17 start-page: 369 year: 2012 end-page: 381 ident: CR38 article-title: NAC proteins: regulation and role in stress tolerance publication-title: Trends Plant Sci – volume: 4 start-page: 529 year: 2013 ident: 2519_CR32 publication-title: Front Plant Sci doi: 10.3389/fpls.2013.00529 – volume: 159 start-page: 172 year: 2013 ident: 2519_CR57 publication-title: Sci Hortic doi: 10.1016/j.scienta.2013.05.013 – volume: 4 start-page: 16 year: 2008 ident: 2519_CR16 publication-title: Plant Methods doi: 10.1186/1746-4811-4-16 – volume: 46 start-page: 469 year: 2008 ident: 2519_CR8 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2007.09.010 – volume: 185 start-page: 57 year: 2015 ident: 2519_CR23 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2015.06.014 – volume: 3 start-page: e3699 year: 2008 ident: 2519_CR58 publication-title: PLoS ONE doi: 10.1371/journal.pone.0003699 – volume: 2 start-page: 53 year: 2014 ident: 2519_CR12 publication-title: Front Environ Sci – volume: 20 start-page: 219 year: 2015 ident: 2519_CR26 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2015.02.001 – volume: 39 start-page: 863 year: 2004 ident: 2519_CR17 publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02171.x – volume: 52 start-page: 111 year: 2007 ident: 2519_CR37 publication-title: Plant Growth Regul doi: 10.1007/s10725-007-9166-2 – volume: 18 start-page: 3158 year: 2006 ident: 2519_CR59 publication-title: Plant Cell doi: 10.1105/tpc.106.047399 – volume: 6 start-page: 23609 year: 2016 ident: 2519_CR35 publication-title: Sci Rep doi: 10.1038/srep23609 – volume: 1031 start-page: 119 year: 2018 ident: 2519_CR54 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2018.05.055 – volume: 165 start-page: 1302 year: 2014 ident: 2519_CR3 publication-title: Plant Physiol doi: 10.1104/pp.114.239004 – volume: 254 start-page: 1 year: 2016 ident: 2519_CR46 publication-title: Protoplasma – volume: 67 start-page: 2829 year: 2016 ident: 2519_CR15 publication-title: J Exp Bot doi: 10.1093/jxb/erw122 – volume: 144 start-page: 307 year: 1994 ident: 2519_CR52 publication-title: J Plant Physiol doi: 10.1016/S0176-1617(11)81192-2 – volume: 167 start-page: 313 year: 2016 ident: 2519_CR60 publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 16 start-page: 735 year: 1998 ident: 2519_CR9 publication-title: Plant J doi: 10.1046/j.1365-313x.1998.00343.x – volume: 68 start-page: 302 year: 2011 ident: 2519_CR18 publication-title: Plant J doi: 10.1111/j.1365-313X.2011.04687.x – volume: 32 start-page: 61 year: 2013 ident: 2519_CR50 publication-title: Plant Cell Rep doi: 10.1007/s00299-012-1340-y – volume: 161 start-page: 1930 year: 2013 ident: 2519_CR34 publication-title: Plant Physiol doi: 10.1104/pp.113.214908 – volume: 58 start-page: 221 year: 2007 ident: 2519_CR43 publication-title: J Exp Bot doi: 10.1093/jxb/erl164 – volume: 36 start-page: 61 year: 2002 ident: 2519_CR4 publication-title: Plant Growth Regul doi: 10.1023/A:1014732714549 – volume: 6 start-page: 1077 year: 2015 ident: 2519_CR40 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.01077 – volume: 262 start-page: 1047 year: 2000 ident: 2519_CR27 publication-title: Mol Gen Genet doi: 10.1007/PL00008647 – volume: 15 start-page: 473 year: 1962 ident: 2519_CR33 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1962.tb08052.x – volume: 61 start-page: 804 year: 2010 ident: 2519_CR56 publication-title: Plant J doi: 10.1111/j.1365-313X.2009.04107.x – volume: 16 start-page: 203 year: 2016 ident: 2519_CR22 publication-title: BMC Plant Biol doi: 10.1186/s12870-016-0897-y – volume: 7 start-page: 317 year: 2007 ident: 2519_CR47 publication-title: Funct Integr Genom doi: 10.1007/s10142-007-0051-x – volume: 8 start-page: R19 year: 2007 ident: 2519_CR20 publication-title: Genome Biol doi: 10.1186/gb-2007-8-2-r19 – volume: 55 start-page: 604 year: 2014 ident: 2519_CR7 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pct204 – volume: 91 start-page: 641 year: 2016 ident: 2519_CR13 publication-title: Plant Mol Biol doi: 10.1007/s11103-016-0503-6 – volume: 3 start-page: 156 year: 2008 ident: 2519_CR10 publication-title: Plant Signal Behav doi: 10.4161/psb.3.3.5536 – volume: 16 start-page: 2481 year: 2004 ident: 2519_CR48 publication-title: Plant Cell doi: 10.1105/tpc.104.022699 – volume: 15 start-page: 82 year: 2015 ident: 2519_CR45 publication-title: BMC Plant Biol doi: 10.1186/s12870-015-0459-8 – volume: 115 start-page: 49 year: 2015 ident: 2519_CR11 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2015.02.010 – volume: 44 start-page: 903 year: 2005 ident: 2519_CR19 publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02575.x – volume: 10 start-page: 79 year: 2005 ident: 2519_CR36 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2004.12.010 – volume: 7 start-page: 813 year: 2016 ident: 2519_CR2 publication-title: Front Plant Sci – volume: 18 start-page: 756 issue: 7 year: 2008 ident: 2519_CR6 publication-title: Cell Res doi: 10.1038/cr.2008.53 – volume: 7 start-page: 191 issue: 1 year: 2006 ident: 2519_CR14 publication-title: BMC Bioinform doi: 10.1186/1471-2105-7-191 – volume: 17 start-page: 369 year: 2012 ident: 2519_CR38 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2012.02.004 – volume: 7 start-page: 1548 year: 2016 ident: 2519_CR30 publication-title: Front Plant Sci – volume: 44 start-page: 653 year: 2005 ident: 2519_CR42 publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02560.x – volume: 8 start-page: 161 year: 2017 ident: 2519_CR49 publication-title: Front Plant Sci – volume: 67 start-page: 107 year: 2008 ident: 2519_CR5 publication-title: Plant Mol Biol doi: 10.1007/s11103-008-9304-x – volume: 172 start-page: 1532 year: 2016 ident: 2519_CR53 publication-title: Plant Physiol doi: 10.1104/pp.16.01096 – volume: 177 start-page: 360 year: 2009 ident: 2519_CR28 publication-title: Plant Sci doi: 10.1016/j.plantsci.2009.06.011 – volume: 15 start-page: 63 year: 2003 ident: 2519_CR1 publication-title: Plant Cell doi: 10.1105/tpc.006130 – volume: 104 start-page: 202 year: 2014 ident: 2519_CR39 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2014.03.014 – volume: 12 start-page: 38 year: 2014 ident: 2519_CR25 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12114 – volume: 11 start-page: 100 year: 2009 ident: 2519_CR24 publication-title: Int J Agric Biol – volume: 79 start-page: 77 year: 2014 ident: 2519_CR55 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2014.03.004 – volume: 7 start-page: 4 year: 2016 ident: 2519_CR21 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00004 – start-page: 1 volume-title: Understanding how plants respond to drought stress at the molecular and whole plant levels. Drought stress tolerance in plants year: 2016 ident: 2519_CR41 – volume: 51 start-page: 659 year: 2000 ident: 2519_CR31 publication-title: J Exp Bot doi: 10.1093/jexbot/51.345.659 – volume: 37 start-page: 98 year: 2010 ident: 2519_CR29 publication-title: Funct Plant Biol doi: 10.1071/FP09191 – volume: 111 start-page: 1021 year: 2013 ident: 2519_CR51 publication-title: Ann Bot doi: 10.1093/aob/mct067 – volume: 392 start-page: 465 year: 2009 ident: 2519_CR44 publication-title: J Mol Biol doi: 10.1016/j.jmb.2009.07.023 |
SSID | ssj0014376 |
Score | 2.468937 |
Snippet | Key message
Expression of
VaNAC17
improved drought tolerance in transgenic
Arabidopsis
by upregulating stress-responsive genes, modulating JA biosynthesis, and... Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and enhancing... Key messageExpression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis, and... KEY MESSAGE: Expression of VaNAC17 improved drought tolerance in transgenic Arabidopsis by upregulating stress-responsive genes, modulating JA biosynthesis,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 621 |
SubjectTerms | Abscisic acid Abscisic Acid - pharmacology Acetates - pharmacology Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis - physiology Arabidopsis thaliana Biomedical and Life Sciences Biosynthesis Biotechnology Cell Biology Cyclopentanes - metabolism Cyclopentanes - pharmacology Drought Drought resistance drought tolerance Droughts Endopeptidases - metabolism Gene expression gene expression regulation Gene Expression Regulation, Plant - drug effects Genes growth and development heterologous gene expression Jasmonic acid Life Sciences Methyl jasmonate Original Article Oxidoreductases - metabolism Oxylipins - metabolism Oxylipins - pharmacology Plant Biochemistry Plant Growth Regulators - metabolism Plant Proteins - genetics Plant Proteins - metabolism Plant Sciences Plants, Genetically Modified Reactive oxygen species Reactive Oxygen Species - metabolism Ribonucleic acid RNA RNA-Seq Scavenging sequence analysis Signal transduction Stress, Physiological - genetics Stress, Physiological - physiology transactivators transcription (genetics) Transcription factors Transcription Factors - genetics Transcription Factors - metabolism transgenic plants Vitis - genetics Vitis amurensis Water deficit water stress Yeast yeasts |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagcOCCeBMoyEgcQGCxSZzYPqGloqqQ6IlWe4v8Cl3UdZZNVur-Gv4qM86jQhV7thONMmPP54zn-wh5W3hXe4VV_zLTjEtnmZTcstLWeeaElsphc_L30_LkjH9bFIvhh1s7XKsc98S4UbvG4j_yT1kOy5IDuJ19Xv9mqBqF1dVBQuM2uYPUZRjVYjEduAAKRHE5pAADFJnyoWkmts5hOUoxPDwhylbs6t_EdANt3qiUxgR0_IDcH5Ajnfeufkhu-fCI3P3SALrbPSZ_wN-0w8QzbgO0l9Kh5_p0fpQKio0kFPmpIRUGT9-dI5sR1avtBu-wt--pDxcYAi11Ubqno11z6VF3w1Ozo6vGRaWv8JP-0u0KGXWptktHzbJpdwFwJLyELkNvBIQljM832ixds4aRJ-Ts-OuPoxM2iC8wy2eyY9qgALUuVC2NTX3tjMsMJDLvACLVNaqm27zwcqa8FzqzxgFa08JwpxygRp0_JQehCf45oU4KJRy3PvWo7CGUtDq3rrSyVqUus4Sk45ev7MBMjgIZl9XEqRy9VYG3quit6iohH6Zn1j0vx97Zh6NDq2GNttV1RCXkzTQMqwtLJjr4ZotzSpVLOHKpPXOwuRhwMC8S8qwPlskk7JASACIT8nGMnmsD_m_vi_32viT3shi5eO_ykBx0m61_BdioM6_jAvgL7aANMQ priority: 102 providerName: ProQuest |
Title | The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis |
URI | https://link.springer.com/article/10.1007/s00299-020-02519-x https://www.ncbi.nlm.nih.gov/pubmed/32107612 https://www.proquest.com/docview/2391145850 https://www.proquest.com/docview/2369387479 https://www.proquest.com/docview/2439419345 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELag5cAF8SalrIzEAQSRNokT28dstUsFYoUQWy2nyK-URd2k2mSl7q_pX-1MXlVVqMTJBzvWKGN7vtE8PkLexc7mTmLUPwmVz4Q1vhDM-InJo9ByJaTF4uRv8-R4wb4s42VXFFb12e59SLJ5qYdiNwwgSR_dHcTF0gfkuB-D746JXIswHWIHLGoo5bDxF2DHgHWlMn_f46Y5uoUxb8VHG7Mze0wedXiRpq2Cn5B7rnhKHkxKwHS7Z-QStExrNDf95actgQ49UfP0KOAUy0codqUGA1g4-v4EexhRtd5uMHO9-kBd8RsVX1HbEPbUtC7PHLJtOKp3dF3aht-rOKV_VLXGPrpUmZWlelVWuwLQI2xCV0UrBBxGmE83Sq9seQ4zz8liNv15dOx3lAu-YWNR-0oj7bSKZS60CVxutQ01mC9nARjlOXKlmyh2Yiyd4yo02gJGU1wzKy1gRRW9IHtFWbhXhFrBJbfMuMAhnweXwqjI2MSIXCYqCT0S9H8-M10_cqTFOMuGTsqNtjLQVtZoK7vwyMfhm_O2G8edqw97hWbdzayyMILnnYGTNPbI22Ea7hQGSlThyi2uSWQkwNGSd6zBkmJAvyz2yMv2sAwiYV0UB-jokU_96bkW4N_yHvzf8tfkYdicZMy-PCR79Wbr3gBCqvWI3OdLPiL76WwymeP4-dfXKYyT6fz7j1FzXa4APAIQNQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VggQXxBtDgUUCCQQW8Xv3gFAoVCltc2qr3My-3AY1dogd0fwa_gG_kRm_KlSRW8-7tkae1zfenfkAXkXWZFbQqX_sSzfkRruch9qNdRb4JpFcGGpOPhjHo6Pw2ySabMCfrheGrlV2MbEO1KbQ9I_8gx-gW4YIbgef5j9dYo2i09WOQqMxiz27-oUlW_lx9wvq97Xv73w93B65LauAq8MBr1ypiFlZRiLjSns2M8r4CiO0NZj7s4zowHUQWT4Q1ibS18ogDJGJCo0wCIdkgO-9Btcx8Q6o2EsmfYGHj9ZkdjRyDFGrF7ZNOnWrHh1_CZeKNUL1wj3_NxFeQreXTmbrhLdzB263SJUNG9O6Cxs2vwc3PheIJlf34TfaF6so0XVhhzXUPexYjofbXsKocYXRPGxMvbllb45pehKTs-WC7syXb5nNT8nkSmZqqqCKVcWZJZ4Py9SKzQpTM4vlJ-yHLGc0wZdJPTVMTYtylSNuxZewad4IgW6A68OFVFNTzHHlARxdiVoewmZe5PYxMMMTkZhQW88Sk0giuJaBNrHmmYhl7DvgdV8-1e0kdCLkOEv7Gc61tlLUVlprKz134F3_zLyZA7J291an0LSNCWV6YcEOvOyX0ZvpiEbmtljSnlgEHEs8sWYPNTMj7g4jBx41xtKLRB1ZCYJWB9531nMhwP_lfbJe3hdwc3R4sJ_u7473nsItv7ZiuvO5BZvVYmmfIS6r1PPaGRh8v2rv-wu3Y0uU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VFCFeEDeBAosEEohaje_dB4TSI2opRBWiVd_MXoagxg6xI5pfw__g1zHjq0IVeevzrq2R59hvPccH8DK0JrWCsv6RJ52AG-1wHmgn0qnvmVhyYag5-dM42j8OPpyGp2vwp-2FobLKNiZWgdrkmv6Rb3k-umWA4HawlTZlEUe7o_eznw4xSFGmtaXTqE3k0C5_4fWteHewi7p-5XmjvS87-07DMODoYMBLRypiWZahSLnSrk2NMp7CaG0N4oA0JWpw7YeWD4S1sfS0MghJZKwCIwxCI-nje6_Beky3oh6sb--Njz53OYzAr6jtaAAZYlg3aFp2qsY9SoYJh65uhPGFc_7vsXgJ617K01bH3-g23GpwKxvWhnYH1mx2F65v54gtl_fgN1obK-nYa4MQq4l82IkcD3fcmFEbC6Pp2HgQZ5a9PqFZSkxOF3OqoC_eMJt9JwMsmKmIg0pW5meWWD8sU0s2zU3FM5Z9Yz9kMaV5vkzqiWFqkhfLDFEsvoRNsloIdApcH86lmph8hiv34fhKFPMAelme2UfADI9FbAJtXUu8IrHgWvraRJqnIpKR1we3_fKJbuaiEz3HWdJNdK60laC2kkpbyXkf3nbPzOqpICt3b7QKTZoIUSQX9tyHF90y-jYlbGRm8wXtiYTP8cInVuyh1mZE4UHYh4e1sXQiUX9WjBC2D5ut9VwI8H95H6-W9zncQM9LPh6MD5_ATa8yYioA3YBeOV_YpwjSSvWs8QYGX6_aAf8CwnRRLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+transcription+factor+VaNAC17+from+grapevine+%28Vitis+amurensis%29+enhances+drought+tolerance+by+modulating+jasmonic+acid+biosynthesis+in+transgenic+Arabidopsis&rft.jtitle=Plant+cell+reports&rft.au=Su%2C+Lingye&rft.au=Fang%2C+Linchuan&rft.au=Zhu%2C+Zhenfei&rft.au=Zhang%2C+Langlang&rft.date=2020-05-01&rft.issn=1432-203X&rft.eissn=1432-203X&rft.volume=39&rft.issue=5&rft.spage=621&rft_id=info:doi/10.1007%2Fs00299-020-02519-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0721-7714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0721-7714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0721-7714&client=summon |