LTMG: a novel statistical modeling of transcriptional expression states in single-cell RNA-Seq data

Abstract A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncat...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 47; no. 18; p. e111
Main Authors Wan, Changlin, Chang, Wennan, Zhang, Yu, Shah, Fenil, Lu, Xiaoyu, Zang, Yong, Zhang, Anru, Cao, Sha, Fishel, Melissa L, Ma, Qin, Zhang, Chi
Format Journal Article
LanguageEnglish
Published England Oxford University Press 10.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model, from the kinetic relationships of the transcriptional regulatory inputs, mRNA metabolism and abundance in single cells. LTMG infers the expression multi-modalities across single cells, meanwhile, the dropouts and low expressions are treated as left truncated. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of scRNA-seq data, comparing to three other state-of-the-art models. Our biological assumption of the low non-zero expressions, rationality of the multimodality setting, and the capability of LTMG in extracting expression states specific to cell types or functions, are validated on independent experimental data sets. A differential gene expression test and a co-regulation module identification method are further developed. We experimentally validated that our differential expression test has higher sensitivity and specificity, compared with other five popular methods. The co-regulation analysis is capable of retrieving gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA.
AbstractList A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model, from the kinetic relationships of the transcriptional regulatory inputs, mRNA metabolism and abundance in single cells. LTMG infers the expression multi-modalities across single cells, meanwhile, the dropouts and low expressions are treated as left truncated. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of scRNA-seq data, comparing to three other state-of-the-art models. Our biological assumption of the low non-zero expressions, rationality of the multimodality setting, and the capability of LTMG in extracting expression states specific to cell types or functions, are validated on independent experimental data sets. A differential gene expression test and a co-regulation module identification method are further developed. We experimentally validated that our differential expression test has higher sensitivity and specificity, compared with other five popular methods. The co-regulation analysis is capable of retrieving gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA .
A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model, from the kinetic relationships of the transcriptional regulatory inputs, mRNA metabolism and abundance in single cells. LTMG infers the expression multi-modalities across single cells, meanwhile, the dropouts and low expressions are treated as left truncated. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of scRNA-seq data, comparing to three other state-of-the-art models. Our biological assumption of the low non-zero expressions, rationality of the multimodality setting, and the capability of LTMG in extracting expression states specific to cell types or functions, are validated on independent experimental data sets. A differential gene expression test and a co-regulation module identification method are further developed. We experimentally validated that our differential expression test has higher sensitivity and specificity, compared with other five popular methods. The co-regulation analysis is capable of retrieving gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA.
Abstract A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model, from the kinetic relationships of the transcriptional regulatory inputs, mRNA metabolism and abundance in single cells. LTMG infers the expression multi-modalities across single cells, meanwhile, the dropouts and low expressions are treated as left truncated. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of scRNA-seq data, comparing to three other state-of-the-art models. Our biological assumption of the low non-zero expressions, rationality of the multimodality setting, and the capability of LTMG in extracting expression states specific to cell types or functions, are validated on independent experimental data sets. A differential gene expression test and a co-regulation module identification method are further developed. We experimentally validated that our differential expression test has higher sensitivity and specificity, compared with other five popular methods. The co-regulation analysis is capable of retrieving gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA.
A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model, from the kinetic relationships of the transcriptional regulatory inputs, mRNA metabolism and abundance in single cells. LTMG infers the expression multi-modalities across single cells, meanwhile, the dropouts and low expressions are treated as left truncated. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of scRNA-seq data, comparing to three other state-of-the-art models. Our biological assumption of the low non-zero expressions, rationality of the multimodality setting, and the capability of LTMG in extracting expression states specific to cell types or functions, are validated on independent experimental data sets. A differential gene expression test and a co-regulation module identification method are further developed. We experimentally validated that our differential expression test has higher sensitivity and specificity, compared with other five popular methods. The co-regulation analysis is capable of retrieving gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA.A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model, from the kinetic relationships of the transcriptional regulatory inputs, mRNA metabolism and abundance in single cells. LTMG infers the expression multi-modalities across single cells, meanwhile, the dropouts and low expressions are treated as left truncated. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of scRNA-seq data, comparing to three other state-of-the-art models. Our biological assumption of the low non-zero expressions, rationality of the multimodality setting, and the capability of LTMG in extracting expression states specific to cell types or functions, are validated on independent experimental data sets. A differential gene expression test and a co-regulation module identification method are further developed. We experimentally validated that our differential expression test has higher sensitivity and specificity, compared with other five popular methods. The co-regulation analysis is capable of retrieving gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA.
Author Wan, Changlin
Fishel, Melissa L
Zhang, Anru
Zhang, Yu
Zang, Yong
Lu, Xiaoyu
Cao, Sha
Shah, Fenil
Zhang, Chi
Chang, Wennan
Ma, Qin
AuthorAffiliation 2 Department of Electrical and Computer Engineering, Purdue University , West Lafayette, IN 47907, USA
4 Colleges of Computer Science and Technology, Jilin University , Changchun 130012, China
3 Department of Electrical and Computer Engineering, Purdue University , Indianapolis, IN 46202, USA
8 Department of Pharmacology and Toxicology, Indiana University, School of Medicine , Indianapolis, IN,46202, USA
5 Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine , Indianapolis, IN 46202, USA
7 Department of Statistics, University of Wisconsin–Madison , Madison, WI 53706, USA
9 Department of Biomedical Informatics, the Ohio State University , Columbus, OH 43210, USA
1 Department of Medical and Molecular Genetics, Indiana University, School of Medicine , Indianapolis, IN 46202, USA
6 Department of Biostatistics, Indiana University, School of Medicine , Indianapolis, IN 46202, USA
AuthorAffiliation_xml – name: 2 Department of Electrical and Computer Engineering, Purdue University , West Lafayette, IN 47907, USA
– name: 9 Department of Biomedical Informatics, the Ohio State University , Columbus, OH 43210, USA
– name: 3 Department of Electrical and Computer Engineering, Purdue University , Indianapolis, IN 46202, USA
– name: 4 Colleges of Computer Science and Technology, Jilin University , Changchun 130012, China
– name: 7 Department of Statistics, University of Wisconsin–Madison , Madison, WI 53706, USA
– name: 6 Department of Biostatistics, Indiana University, School of Medicine , Indianapolis, IN 46202, USA
– name: 1 Department of Medical and Molecular Genetics, Indiana University, School of Medicine , Indianapolis, IN 46202, USA
– name: 5 Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine , Indianapolis, IN 46202, USA
– name: 8 Department of Pharmacology and Toxicology, Indiana University, School of Medicine , Indianapolis, IN,46202, USA
Author_xml – sequence: 1
  givenname: Changlin
  orcidid: 0000-0002-6106-7175
  surname: Wan
  fullname: Wan, Changlin
  organization: Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
– sequence: 2
  givenname: Wennan
  surname: Chang
  fullname: Chang, Wennan
  organization: Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
– sequence: 3
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  email: czhang87@iu.edu
  organization: Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
– sequence: 4
  givenname: Fenil
  surname: Shah
  fullname: Shah, Fenil
  organization: Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
– sequence: 5
  givenname: Xiaoyu
  surname: Lu
  fullname: Lu, Xiaoyu
  organization: Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
– sequence: 6
  givenname: Yong
  surname: Zang
  fullname: Zang, Yong
  organization: Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
– sequence: 7
  givenname: Anru
  surname: Zhang
  fullname: Zhang, Anru
  email: czhang87@iu.edu
  organization: Department of Statistics, University of Wisconsin–Madison, Madison, WI 53706, USA
– sequence: 8
  givenname: Sha
  surname: Cao
  fullname: Cao, Sha
  organization: Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
– sequence: 9
  givenname: Melissa L
  surname: Fishel
  fullname: Fishel, Melissa L
  email: mfishel@iu.edu
  organization: Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
– sequence: 10
  givenname: Qin
  surname: Ma
  fullname: Ma, Qin
  email: qin.ma@osumc.edu
  organization: Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
– sequence: 11
  givenname: Chi
  surname: Zhang
  fullname: Zhang, Chi
  email: czhang87@iu.edu
  organization: Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31372654$$D View this record in MEDLINE/PubMed
BookMark eNp9kVFrFDEUhUNpabfVF3-A5EWQwrS5mUk240OhlFqFbQWtzyGTubNGs8k0mS3qrzfr1qIiPiXhfufce3MOyW6IAQl5BuwEWFufBpNOl1--SyF2yAxqyaumlXyXzFjNRAWsUQfkMOfPjEEDotknBzXUcy5FMyN2cXt99YoaGuI9eponM7k8OWs8XcUevQtLGgc6JROyTW6cXAylhl_HhDmXx08JZurKrcAeK4ve0_c359UHvKO9mcwTsjcYn_Hpw3lEPr6-vL14Uy3eXb29OF9UtmFqqkyLIJnlDWfQd6rruQIAia0aoG9gaIeWm1YwC0IqwxA5KMvmnehkz4US9RE52_qO626FvcVQxvZ6TG5l0jcdjdN_VoL7pJfxXsu5FMChGLx8MEjxbo150iuXN-uYgHGdNedS1QBM8oI-_73XY5NfP1uA4y1gU8w54fCIANOb2HSJTW9jKzD7C7Zuk0TczOn8vyUvtpK4Hv9n_QN8H6nW
CitedBy_id crossref_primary_10_1101_gr_271205_120
crossref_primary_10_1093_bioinformatics_btaa832
crossref_primary_10_1093_bioinformatics_btab108
crossref_primary_10_1093_bib_bbae369
crossref_primary_10_1186_s12859_019_3243_1
crossref_primary_10_1371_journal_pbio_3002369
crossref_primary_10_1038_s41416_021_01270_8
crossref_primary_10_1038_s41467_023_36559_0
crossref_primary_10_1093_bib_bbaa314
crossref_primary_10_3389_fendo_2023_1162786
crossref_primary_10_1172_jci_insight_162016
crossref_primary_10_1038_s41467_021_22197_x
crossref_primary_10_1016_j_stemcr_2024_02_004
crossref_primary_10_3389_fimmu_2023_1278184
crossref_primary_10_1093_bib_bbaa291
crossref_primary_10_1158_0008_5472_CAN_20_3585
crossref_primary_10_3233_JIFS_189659
crossref_primary_10_3390_ijms24021101
crossref_primary_10_1016_j_ymeth_2023_02_008
crossref_primary_10_1093_bioinformatics_btac684
crossref_primary_10_1016_j_csbj_2020_05_005
crossref_primary_10_1016_j_phrs_2024_107092
crossref_primary_10_1038_s43018_021_00282_w
crossref_primary_10_3389_fmed_2023_1146115
crossref_primary_10_1016_j_isci_2020_101769
crossref_primary_10_1016_j_gpb_2020_09_002
crossref_primary_10_3389_fonc_2023_1117810
crossref_primary_10_1093_bib_bbaa307
crossref_primary_10_1007_s12539_021_00427_6
crossref_primary_10_1111_jcmm_16132
crossref_primary_10_1016_j_gpb_2022_06_003
crossref_primary_10_3389_fgene_2022_1003711
crossref_primary_10_1186_s13046_021_02046_x
crossref_primary_10_1038_s41540_024_00386_w
crossref_primary_10_1093_nar_gkab1236
crossref_primary_10_1016_j_drudis_2020_10_015
Cites_doi 10.1093/bioinformatics/btr260
10.1186/s13059-015-0844-5
10.1146/annurev.genom.7.080505.115623
10.1016/j.molimm.2007.11.020
10.1186/s13059-014-0550-8
10.1038/ni.2035
10.1038/nri819
10.1186/gb-2010-11-10-r106
10.3109/10409238.2011.556597
10.1016/j.cell.2018.05.060
10.1038/ncomms14049
10.1093/nar/gks042
10.1038/nmeth.4463
10.1093/bioinformatics/btw202
10.1101/409961
10.1038/nature10098
10.1038/nature25739
10.1002/1878-0261.12138
10.1073/pnas.1704553114
10.1093/bioinformatics/btw635
10.1016/j.cell.2017.10.044
10.1038/nmeth.2967
10.1126/science.aaa6090
10.1186/s12859-019-2599-6
10.1111/j.1541-0420.2007.00757.x
10.1128/MMBR.00037-08
10.1038/nmeth.4236
10.1038/nbt.4314
10.1016/j.molcel.2018.10.020
10.1016/j.cels.2018.01.014
10.2174/1874467211205010036
10.1016/j.neuron.2016.10.001
10.1093/bioinformatics/bty329
10.1038/s41467-018-03405-7
10.1158/1535-7163.MCT-16-0253
10.1016/j.cels.2015.12.002
10.7554/eLife.26476
10.1093/nar/gkp491
10.1016/j.cell.2017.05.035
10.1016/j.cell.2013.02.014
10.1038/s41591-018-0045-3
10.1074/jbc.M114.621995
10.1038/nbt.4096
10.1038/s41586-018-0836-1
10.1038/nmeth.4207
10.1038/s41586-018-0694-x
10.1038/sdata.2018.160
10.1073/pnas.1213530109
10.1126/science.1164368
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019
The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkz655
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford University Press Journals Open Access
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage e111
ExternalDocumentID PMC6765121
31372654
10_1093_nar_gkz655
10.1093/nar/gkz655
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of General Medical Sciences
  grantid: R01 award 1R01GM131399-01
  funderid: 10.13039/100000057
– fundername: National Institutes of Health
  grantid: 2R01CA167291-06
  funderid: 10.13039/100000002
– fundername: NCI NIH HHS
  grantid: R01 CA167291
– fundername: NIGMS NIH HHS
  grantid: R01 GM131399
– fundername: ; ;
  grantid: R01 award 1R01GM131399-01
– fundername: ; ;
  grantid: 2R01CA167291-06
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M49
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
CITATION
OVT
AAPPN
ADIXU
AFULF
BTTYL
CGR
CUY
CVF
ECM
EIF
M~E
NPM
ROX
7X8
5PM
ID FETCH-LOGICAL-c408t-a9e160c24201db8bd281116e98f1d41f9f92a950c1568a0ee218c07b5b6d25853
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:04:41 EDT 2025
Fri Jul 11 08:22:23 EDT 2025
Wed Feb 19 02:13:18 EST 2025
Tue Jul 01 02:07:22 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Wed Apr 02 07:01:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-a9e160c24201db8bd281116e98f1d41f9f92a950c1568a0ee218c07b5b6d25853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6106-7175
OpenAccessLink https://dx.doi.org/10.1093/nar/gkz655
PMID 31372654
PQID 2268311062
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6765121
proquest_miscellaneous_2268311062
pubmed_primary_31372654
crossref_primary_10_1093_nar_gkz655
crossref_citationtrail_10_1093_nar_gkz655
oup_primary_10_1093_nar_gkz655
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-10
PublicationDateYYYYMMDD 2019-10-10
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-10
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Love (2019092802514919000_B12) 2014; 15
Becht (2019092802514919000_B15) 2019; 37
Xie (2019092802514919000_B18) 2018
Duren (2019092802514919000_B26) 2017; 114
Vu (2019092802514919000_B5) 2016; 32
Anders (2019092802514919000_B7) 2010; 11
Wang (2019092802514919000_B40) 2003; 8
Kharchenko (2019092802514919000_B9) 2014; 11
Schwanhäusser (2019092802514919000_B31) 2011; 473
Liberzon (2019092802514919000_B39) 2011; 27
Kelley (2019092802514919000_B47) 2012; 5
Larsson (2019092802514919000_B51) 2019; 565
Finak (2019092802514919000_B4) 2015; 16
Vanlandewijck (2019092802514919000_B32) 2018; 554
Zheng (2019092802514919000_B3) 2017; 8
Dar (2019092802514919000_B29) 2012; 109
Maston (2019092802514919000_B22) 2006; 7
Zhang (2019092802514919000_B17) 2016; 33
Wang (2019092802514919000_B8) 2019; 20
McCarthy (2019092802514919000_B11) 2012; 40
Fishel (2019092802514919000_B37) 2015; 290
Chen (2019092802514919000_B19) 2015; 348
Guo (2019092802514919000_B43) 2018; 24
Zheng (2019092802514919000_B41) 2017; 169
Wu (2019092802514919000_B50) 2018; 1
Aibar (2019092802514919000_B14) 2017; 14
Zhang (2019092802514919000_B30) 2019; 73
van Hijum (2019092802514919000_B27) 2009; 73
Shah (2019092802514919000_B48) 2017; 11
Lee (2019092802514919000_B23) 2013; 152
Guo (2019092802514919000_B45) 2008; 45
Wherry (2019092802514919000_B46) 2011; 12
Ay (2019092802514919000_B24) 2011; 46
Li (2019092802514919000_B6) 2018; 9
Zhang (2019092802514919000_B42) 2018; 564
Barry (2019092802514919000_B44) 2002; 2
Puram (2019092802514919000_B1) 2017; 171
He (2019092802514919000_B33) 2018; 5
Li (2019092802514919000_B38) 2009; 37
Khanin (2019092802514919000_B25) 2007; 63
Samee (2019092802514919000_B28) 2015; 1
Butler (2019092802514919000_B34) 2018; 36
Racle (2019092802514919000_B35) 2017; 6
Shah (2019092802514919000_B21) 2016; 92
Kiselev (2019092802514919000_B13) 2017; 14
Logsdon (2019092802514919000_B49) 2016; 15
Wang (2019092802514919000_B16) 2017; 14
Torre (2019092802514919000_B20) 2018; 6
Jones (2019092802514919000_B36) 2008; 321
Azizi (2019092802514919000_B2) 2018; 174
Wu (2019092802514919000_B10) 2018; 34
References_xml – volume: 27
  start-page: 1739
  year: 2011
  ident: 2019092802514919000_B39
  article-title: Molecular signatures database (MSigDB) 3.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– volume: 16
  start-page: 278
  year: 2015
  ident: 2019092802514919000_B4
  article-title: MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0844-5
– volume: 7
  start-page: 29
  year: 2006
  ident: 2019092802514919000_B22
  article-title: Transcriptional regulatory elements in the human genome
  publication-title: Annu. Rev. Genomics Hum. Genet.
  doi: 10.1146/annurev.genom.7.080505.115623
– volume: 45
  start-page: 2225
  year: 2008
  ident: 2019092802514919000_B45
  article-title: Granzyme K degrades the redox/DNA repair enzyme Ape1 to trigger oxidative stress of target cells leading to cytotoxicity
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2007.11.020
– volume: 15
  start-page: 550
  year: 2014
  ident: 2019092802514919000_B12
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 12
  start-page: 492
  year: 2011
  ident: 2019092802514919000_B46
  article-title: T cell exhaustion
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2035
– volume: 2
  start-page: 401
  year: 2002
  ident: 2019092802514919000_B44
  article-title: Cytotoxic T lymphocytes: all roads lead to death
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri819
– volume: 11
  start-page: R106
  year: 2010
  ident: 2019092802514919000_B7
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-10-r106
– volume: 46
  start-page: 137
  year: 2011
  ident: 2019092802514919000_B24
  article-title: Mathematical modeling of gene expression: a guide for the perplexed biologist
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2011.556597
– volume: 174
  start-page: 1293
  year: 2018
  ident: 2019092802514919000_B2
  article-title: Single-cell map of diverse immune phenotypes in the breast tumor microenvironment
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.060
– volume: 8
  start-page: 14049
  year: 2017
  ident: 2019092802514919000_B3
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– volume: 40
  start-page: 4288
  year: 2012
  ident: 2019092802514919000_B11
  article-title: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks042
– volume: 14
  start-page: 1083
  year: 2017
  ident: 2019092802514919000_B14
  article-title: SCENIC: single-cell regulatory network inference and clustering
  publication-title: Nat. Methods.
  doi: 10.1038/nmeth.4463
– volume: 32
  start-page: 2128
  year: 2016
  ident: 2019092802514919000_B5
  article-title: Beta-Poisson model for single-cell RNA-seq data analyses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw202
– year: 2018
  ident: 2019092802514919000_B18
  article-title: QUBIC2: a novel biclustering algorithm for large-scale bulk RNA-sequencing and single-cell RNA-sequencing data analysis
  doi: 10.1101/409961
– volume: 473
  start-page: 337
  year: 2011
  ident: 2019092802514919000_B31
  article-title: Global quantification of mammalian gene expression control
  publication-title: Nature
  doi: 10.1038/nature10098
– volume: 554
  start-page: 475
  year: 2018
  ident: 2019092802514919000_B32
  article-title: A molecular atlas of cell types and zonation in the brain vasculature
  publication-title: Nature.
  doi: 10.1038/nature25739
– volume: 11
  start-page: 1711
  year: 2017
  ident: 2019092802514919000_B48
  article-title: APE1/Ref‐1 knockdown in pancreatic ductal adenocarcinoma–characterizing gene expression changes and identifying novel pathways using single-cell RNA sequencing
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.12138
– volume: 114
  start-page: E4914
  year: 2017
  ident: 2019092802514919000_B26
  article-title: Modeling gene regulation from paired expression and chromatin accessibility data
  publication-title: Proc. Natl Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1704553114
– volume: 33
  start-page: 450
  year: 2016
  ident: 2019092802514919000_B17
  article-title: QUBIC: a bioconductor package for qualitative biclustering analysis of gene co-expression data
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btw635
– volume: 171
  start-page: 1611
  year: 2017
  ident: 2019092802514919000_B1
  article-title: Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.044
– volume: 11
  start-page: 740
  year: 2014
  ident: 2019092802514919000_B9
  article-title: Bayesian approach to single-cell differential expression analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2967
– volume: 348
  start-page: aaa6090
  year: 2015
  ident: 2019092802514919000_B19
  article-title: Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
  doi: 10.1126/science.aaa6090
– volume: 20
  start-page: 40
  year: 2019
  ident: 2019092802514919000_B8
  article-title: Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2599-6
– volume: 63
  start-page: 816
  year: 2007
  ident: 2019092802514919000_B25
  article-title: Statistical reconstruction of transcription factor activity using Michaelis–Menten kinetics
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00757.x
– volume: 73
  start-page: 481
  year: 2009
  ident: 2019092802514919000_B27
  article-title: Mechanisms and evolution of control logic in prokaryotic transcriptional regulation
  publication-title: Microbiol Mol. Biol. Rev.
  doi: 10.1128/MMBR.00037-08
– volume: 14
  start-page: 483
  year: 2017
  ident: 2019092802514919000_B13
  article-title: SC3: consensus clustering of single-cell RNA-seq data
  publication-title: Nat. Methods.
  doi: 10.1038/nmeth.4236
– volume: 37
  start-page: 38
  year: 2019
  ident: 2019092802514919000_B15
  article-title: Dimensionality reduction for visualizing single-cell data using UMAP
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4314
– volume: 73
  start-page: 130
  year: 2019
  ident: 2019092802514919000_B30
  article-title: Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.10.020
– volume: 6
  start-page: 171
  year: 2018
  ident: 2019092802514919000_B20
  article-title: Rare cell detection by single-cell RNA sequencing as guided by single-molecule RNA FISH
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.01.014
– volume: 5
  start-page: 36
  year: 2012
  ident: 2019092802514919000_B47
  article-title: APE1/Ref-1 role in redox signaling: translational applications of targeting the redox function of the DNA repair/redox protein APE1/Ref-1
  publication-title: Curr. Mol. Pharmacol.
  doi: 10.2174/1874467211205010036
– volume: 92
  start-page: 342
  year: 2016
  ident: 2019092802514919000_B21
  article-title: In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.001
– volume: 34
  start-page: 3340
  year: 2018
  ident: 2019092802514919000_B10
  article-title: Two-phase differential expression analysis for single cell RNA-seq
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bty329
– volume: 9
  start-page: 997
  year: 2018
  ident: 2019092802514919000_B6
  article-title: An accurate and robust imputation method scImpute for single-cell RNA-seq data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03405-7
– volume: 15
  start-page: 2722
  year: 2016
  ident: 2019092802514919000_B49
  article-title: Regulation of HIF1α under hypoxia by APE1/Ref-1 impacts CA9 expression: dual-targeting in patient-derived 3D pancreatic cancer models
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-16-0253
– volume: 8
  year: 2003
  ident: 2019092802514919000_B40
  article-title: Evaluating Kolmogorov's distribution
  publication-title: J. Stat. Softw.
– volume: 1
  start-page: 396
  year: 2015
  ident: 2019092802514919000_B28
  article-title: A systematic ensemble approach to thermodynamic modeling of gene expression from sequence data
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2015.12.002
– volume: 6
  start-page: e26476
  year: 2017
  ident: 2019092802514919000_B35
  article-title: Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data
  publication-title: Elife
  doi: 10.7554/eLife.26476
– volume: 37
  start-page: e101
  year: 2009
  ident: 2019092802514919000_B38
  article-title: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp491
– volume: 169
  start-page: 1342
  year: 2017
  ident: 2019092802514919000_B41
  article-title: Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.035
– volume: 152
  start-page: 1237
  year: 2013
  ident: 2019092802514919000_B23
  article-title: Transcriptional regulation and its misregulation in disease
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.014
– volume: 24
  start-page: 978
  year: 2018
  ident: 2019092802514919000_B43
  article-title: Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0045-3
– volume: 290
  start-page: 3057
  year: 2015
  ident: 2019092802514919000_B37
  article-title: Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) redox function negatively regulates NRF2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.621995
– volume: 36
  start-page: 411
  year: 2018
  ident: 2019092802514919000_B34
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 565
  start-page: 251
  year: 2019
  ident: 2019092802514919000_B51
  article-title: Genomic encoding of transcriptional burst kinetics
  publication-title: Nature
  doi: 10.1038/s41586-018-0836-1
– volume: 14
  start-page: 414
  year: 2017
  ident: 2019092802514919000_B16
  article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
  publication-title: Nat. Methods.
  doi: 10.1038/nmeth.4207
– volume: 564
  start-page: 268
  year: 2018
  ident: 2019092802514919000_B42
  article-title: Lineage tracking reveals dynamic relationships of T cells in colorectal cancer
  publication-title: Nature
  doi: 10.1038/s41586-018-0694-x
– volume: 1
  start-page: 9
  year: 2018
  ident: 2019092802514919000_B50
  article-title: Two-phase differential expression analysis for single cell RNA-seq
  publication-title: Bioinformatics
– volume: 5
  start-page: 180160
  year: 2018
  ident: 2019092802514919000_B33
  article-title: Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types
  publication-title: Scientific Data
  doi: 10.1038/sdata.2018.160
– volume: 109
  start-page: 17454
  year: 2012
  ident: 2019092802514919000_B29
  article-title: Transcriptional burst frequency and burst size are equally modulated across the human genome
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1213530109
– volume: 321
  start-page: 1801
  year: 2008
  ident: 2019092802514919000_B36
  article-title: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses
  publication-title: Science
  doi: 10.1126/science.1164368
SSID ssj0014154
Score 2.4900024
Snippet Abstract A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional...
A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e111
SubjectTerms Algorithms
Gene Expression Profiling
Gene Expression Regulation - genetics
High-Throughput Nucleotide Sequencing - methods
Methods Online
Models, Statistical
RNA - genetics
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Software
Title LTMG: a novel statistical modeling of transcriptional expression states in single-cell RNA-Seq data
URI https://www.ncbi.nlm.nih.gov/pubmed/31372654
https://www.proquest.com/docview/2268311062
https://pubmed.ncbi.nlm.nih.gov/PMC6765121
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEB50L3oRXV_rY4kogodin2nibREfiA_QFfZW2jTRxTWr7irqr3eStosV0Vshk1Bm2nzfJJMvADvSkFCOP1LMVOSEwg8cJkLlpDxXGecCObpZh7y4pKe34Vkv6pVFNKNftvB5sK_Tl_27h08amaPkiL5GIb971ZvsFSAEFSJRVlMzZJUIaa1rDXZqR9m-McqfhZHfkOZ4HuZKikg6RUwXYErqJix2NKbHjx9kl9iiTbsa3oSZw-rCtkUQ592LkwOSEj18kwNijgpZFWYcy953gyBFhoqMDTpVcwW2yfeyFlbbLnJE-viExgPpmGV9cn3ZcW7kMzHFpEtwe3zUPTx1yjsUHBG6bIw-lx51BQKx6-UZy3Kf4exGJWfKy0NPccX9lEeuwDyOpa6UCPnCjbMoo7mPqUSwDA091HIVSCSooLkUisdRqPwUw4hsK84ZMgYpAq8Fe5WLE1EKjJt7LgZJsdEdJBiOpAhHC7Yntk-FrMavVm2M1J8GW1UQE3S2cUqq5fB1lCCrZAFSG-q3YKUI6mScwAtin0ZhC-JauCcGRnK73qL791Z6m8YUGZK39t-LrcMsOpwbkPPcDWiMX17lJrKXcdaG6dg9atvcv20_5C_PSvDr
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LTMG%3A+a+novel+statistical+modeling+of+transcriptional+expression+states+in+single-cell+RNA-Seq+data&rft.jtitle=Nucleic+acids+research&rft.au=Wan%2C+Changlin&rft.au=Chang%2C+Wennan&rft.au=Zhang%2C+Yu&rft.au=Shah%2C+Fenil&rft.date=2019-10-10&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=47&rft.issue=18&rft.spage=e111&rft.epage=e111&rft_id=info:doi/10.1093%2Fnar%2Fgkz655&rft_id=info%3Apmid%2F31372654&rft.externalDocID=PMC6765121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon