Contextual Level-Set Method for Breast Tumor Segmentation

Breast ultrasound image segmentation is the foundation of the diagnosis and treatment of breast cancer. The level set method is widely used for medical image segmentation. However, it remained a challenge for traditional level set methods because they cannot fully understand the tumor regions with c...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 189343 - 189353
Main Authors Hussain, Sumaira, Xi, Xiaoming, Ullah, Inam, Wu, Yongjian, Ren, Chunxiao, Lianzheng, Zhao, Tian, Cuihuan, Yin, Yilong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Breast ultrasound image segmentation is the foundation of the diagnosis and treatment of breast cancer. The level set method is widely used for medical image segmentation. However, it remained a challenge for traditional level set methods because they cannot fully understand the tumor regions with complex characteristics by only low-level features. Considering that contextual features can provide complementary discriminative information to low-level features, this paper proposed a contextual level set method for breast tumor segmentation. Firstly, an encoder-decoder architecture network such as UNet is developed to learn high-level contextual features with semantic information. After that, the contextual level set method has been proposed to incorporate the novel contextual energy term. The proposed term has the ability to embed the high-level contextual knowledge into the level set framework. The learned contextual features with semantic information can provide more discriminative information, which has been directly associated with category labels, instead of the original intensity. Therefore, it is robust to serious intensity inhomogeneity, which is helpful to improve segmentation performance. The experiments had taken place with the help of three databases, which indicates that the proposed method outperformed traditional methods.
AbstractList Breast ultrasound image segmentation is the foundation of the diagnosis and treatment of breast cancer. The level set method is widely used for medical image segmentation. However, it remained a challenge for traditional level set methods because they cannot fully understand the tumor regions with complex characteristics by only low-level features. Considering that contextual features can provide complementary discriminative information to low-level features, this paper proposed a contextual level set method for breast tumor segmentation. Firstly, an encoder-decoder architecture network such as UNet is developed to learn high-level contextual features with semantic information. After that, the contextual level set method has been proposed to incorporate the novel contextual energy term. The proposed term has the ability to embed the high-level contextual knowledge into the level set framework. The learned contextual features with semantic information can provide more discriminative information, which has been directly associated with category labels, instead of the original intensity. Therefore, it is robust to serious intensity inhomogeneity, which is helpful to improve segmentation performance. The experiments had taken place with the help of three databases, which indicates that the proposed method outperformed traditional methods.
Author Tian, Cuihuan
Yin, Yilong
Ren, Chunxiao
Lianzheng, Zhao
Hussain, Sumaira
Wu, Yongjian
Xi, Xiaoming
Ullah, Inam
Author_xml – sequence: 1
  givenname: Sumaira
  orcidid: 0000-0002-7084-9670
  surname: Hussain
  fullname: Hussain, Sumaira
  organization: School of Software Engineering, Shandong University, Jinan, China
– sequence: 2
  givenname: Xiaoming
  orcidid: 0000-0002-0415-3608
  surname: Xi
  fullname: Xi, Xiaoming
  email: fyzq10@126.com
  organization: School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
– sequence: 3
  givenname: Inam
  surname: Ullah
  fullname: Ullah, Inam
  organization: School of Software Engineering, Shandong University, Jinan, China
– sequence: 4
  givenname: Yongjian
  orcidid: 0000-0003-2007-6929
  surname: Wu
  fullname: Wu, Yongjian
  organization: School of Software Engineering, Shandong University, Jinan, China
– sequence: 5
  givenname: Chunxiao
  surname: Ren
  fullname: Ren, Chunxiao
  organization: Shandong Province Science and Technology Exchange Center, Jinan, China
– sequence: 6
  givenname: Zhao
  surname: Lianzheng
  fullname: Lianzheng, Zhao
  organization: Center for Big Data of Shandong Province, Jinan, China
– sequence: 7
  givenname: Cuihuan
  surname: Tian
  fullname: Tian, Cuihuan
  email: shandamla@163.com
  organization: School of Medicine, Shandong University, Jinan, China
– sequence: 8
  givenname: Yilong
  orcidid: 0000-0002-8465-1294
  surname: Yin
  fullname: Yin, Yilong
  organization: School of Software Engineering, Shandong University, Jinan, China
BookMark eNqFkE9P3DAQxS0EEnTLJ-ASiXO2tjPxnyONtoC0qIeFs-XYY8gqG28db9V--2YbtKp6YS6eGc17z_p9IudDHJCQG0aXjFH95a5pVpvNklNOlxXlWig4I1ecCV1WdSXO_-kvyfU4bulUalrV8oroJg4Zf-WD7Ys1_sS-3GAunjC_RV-EmIqvCe2Yi-fDbho2-LrDIdvcxeEzuQi2H_H6_V2Ql2-r5-ahXH-_f2zu1qUDqnJpZasQKGXMgdLCM0mVECpoa1sZFGV1C84Lr4RsQwDwleehAqfRMawVVAvyOPv6aLdmn7qdTb9NtJ35u4jp1diUO9ejkUJxWjtPwTtwoJUIslYtegtToDt63c5e-xR_HHDMZhsPaZi-bzjUAJJyVU9X1XzlUhzHhOGUyqg5IjczcnNEbt6RTyr9n8p1M6mcbNd_oL2ZtR0intI0ZxIUq_4ARrSPRw
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_diagnostics11071212
crossref_primary_10_3390_s22030807
crossref_primary_10_1016_j_engappai_2023_106753
crossref_primary_10_1007_s11760_021_02107_w
crossref_primary_10_1155_2022_3905998
crossref_primary_10_1007_s41870_023_01308_5
crossref_primary_10_1016_j_neucom_2021_05_001
crossref_primary_10_1371_journal_pone_0276523
crossref_primary_10_1016_j_dsp_2024_104884
crossref_primary_10_1371_journal_pone_0251899
crossref_primary_10_1007_s10479_022_04755_8
crossref_primary_10_1016_j_compbiomed_2022_105995
crossref_primary_10_1016_j_ijmedinf_2024_105522
crossref_primary_10_3390_biomimetics8020163
crossref_primary_10_1007_s00500_023_09039_2
crossref_primary_10_1016_j_compbiomed_2022_105685
crossref_primary_10_1080_1206212X_2023_2212945
crossref_primary_10_7717_peerj_cs_805
crossref_primary_10_1016_j_compbiomed_2022_106363
crossref_primary_10_3390_bioengineering10070819
crossref_primary_10_1016_j_patcog_2023_109728
crossref_primary_10_32604_iasc_2023_033800
Cites_doi 10.1109/TIP.2010.2069690
10.1109/CVPR.2017.660
10.1016/j.compbiomed.2010.10.007
10.1364/BOE.9.003244
10.1016/j.mri.2019.08.021
10.3322/caac.21492
10.1016/j.patcog.2014.07.008
10.1016/j.compmedimag.2015.11.005
10.1023/A:1014080923068
10.1016/j.dib.2019.104863
10.1109/CVPR.2015.7298965
10.1109/34.857003
10.1038/s41598-020-63242-x
10.1016/j.neucom.2016.12.002
10.1016/j.neucom.2016.09.067
10.1109/JBHI.2017.2731873
10.1186/1475-925X-12-48
10.1109/ISBI.2013.6556774
10.1109/ULTSYM.2015.0106
10.1109/TSMCB.2012.2218233
10.1016/j.patcog.2009.06.002
10.1109/TPAMI.2016.2644615
10.1016/j.imavis.2013.08.003
10.1016/j.clinimag.2012.09.024
10.1109/CVPR.2015.7298594
10.1023/A:1020874308076
10.1109/CVPR.2007.383014
10.1016/j.neucom.2014.01.079
10.2991/jcis.2008.57
10.1109/TCYB.2015.2409119
10.1109/TPAMI.2017.2699184
10.1109/TIP.2011.2146190
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3029684
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 189353
ExternalDocumentID oai_doaj_org_article_768205cd04dc4c4986f758beda48f9c4
10_1109_ACCESS_2020_3029684
9217481
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2018BF012
  funderid: 10.13039/501100007129
– fundername: Foundation of Distinguished Associate Professor in Shandong Jianzhu University
  funderid: 10.13039/501100007927
– fundername: Natural Science Foundation of China
  grantid: 61701280; 61801263; 61703235; 61701281
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YFC0830100; 2018YFC0830102
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-a7b8e40011c4896d1708668f9aab7f8015b4cd6d867bff44d3d2f34c9ec1e5843
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:27:22 EDT 2025
Mon Jun 30 04:08:24 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Tue Jul 01 02:55:51 EDT 2025
Wed Aug 27 02:31:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-a7b8e40011c4896d1708668f9aab7f8015b4cd6d867bff44d3d2f34c9ec1e5843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2007-6929
0000-0002-8465-1294
0000-0002-7084-9670
0000-0002-0415-3608
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9217481
PQID 2454470285
PQPubID 4845423
PageCount 11
ParticipantIDs proquest_journals_2454470285
crossref_primary_10_1109_ACCESS_2020_3029684
ieee_primary_9217481
doaj_primary_oai_doaj_org_article_768205cd04dc4c4986f758beda48f9c4
crossref_citationtrail_10_1109_ACCESS_2020_3029684
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
li (ref3) 2011; 20
rodrigues (ref32) 2012
li (ref28) 2010; 19
ref24
ref26
ref25
ref22
ref21
zhang (ref13) 2013
ronneberger (ref20) 2015
ref27
ref29
ref8
simonyan (ref23) 2014
ref7
ref9
ref4
wang (ref6) 2013
ref5
References_xml – volume: 19
  start-page: 3243
  year: 2010
  ident: ref28
  article-title: Distance regularized level set evolution and its application to image segmentation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2069690
– ident: ref36
  doi: 10.1109/CVPR.2017.660
– ident: ref12
  doi: 10.1016/j.compbiomed.2010.10.007
– ident: ref22
  doi: 10.1364/BOE.9.003244
– year: 2014
  ident: ref23
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref4
  doi: 10.1016/j.mri.2019.08.021
– ident: ref1
  doi: 10.3322/caac.21492
– ident: ref10
  doi: 10.1016/j.patcog.2014.07.008
– ident: ref16
  doi: 10.1016/j.compmedimag.2015.11.005
– ident: ref25
  doi: 10.1023/A:1014080923068
– ident: ref30
  doi: 10.1016/j.dib.2019.104863
– ident: ref35
  doi: 10.1109/CVPR.2015.7298965
– ident: ref26
  doi: 10.1109/34.857003
– ident: ref19
  doi: 10.1038/s41598-020-63242-x
– ident: ref21
  doi: 10.1016/j.neucom.2016.12.002
– ident: ref17
  doi: 10.1016/j.neucom.2016.09.067
– ident: ref29
  doi: 10.1109/JBHI.2017.2731873
– ident: ref15
  doi: 10.1186/1475-925X-12-48
– ident: ref5
  doi: 10.1109/ISBI.2013.6556774
– ident: ref11
  doi: 10.1109/ULTSYM.2015.0106
– ident: ref8
  doi: 10.1109/TSMCB.2012.2218233
– ident: ref33
  doi: 10.1016/j.patcog.2009.06.002
– start-page: 234
  year: 2015
  ident: ref20
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– year: 2013
  ident: ref13
  article-title: A local active contour model for image segmentation with intensity inhomogeneity
  publication-title: arXiv 1305 7053
– start-page: 2833
  year: 2012
  ident: ref32
  article-title: Towards breast ultrasound image segmentation using multi-resolution pixel descriptors
  publication-title: Proc Int Conf Pattern Recognit (ICPR)
– ident: ref18
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref9
  doi: 10.1016/j.imavis.2013.08.003
– ident: ref2
  doi: 10.1016/j.clinimag.2012.09.024
– start-page: 105
  year: 2013
  ident: ref6
  article-title: Semantic context forests for learning-based knee cartilage segmentation in 3D MR images
  publication-title: Proc MICCAI Workshop on Medical Computer Vision
– ident: ref24
  doi: 10.1109/CVPR.2015.7298594
– ident: ref27
  doi: 10.1023/A:1020874308076
– ident: ref31
  doi: 10.1109/CVPR.2007.383014
– ident: ref7
  doi: 10.1016/j.neucom.2014.01.079
– ident: ref34
  doi: 10.2991/jcis.2008.57
– ident: ref14
  doi: 10.1109/TCYB.2015.2409119
– ident: ref37
  doi: 10.1109/TPAMI.2017.2699184
– volume: 20
  start-page: 2007
  year: 2011
  ident: ref3
  article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2146190
SSID ssj0000816957
Score 2.3126457
Snippet Breast ultrasound image segmentation is the foundation of the diagnosis and treatment of breast cancer. The level set method is widely used for medical image...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 189343
SubjectTerms Breast tumors
Breast ultrasound images
Coders
contextual feature
Encoders-Decoders
Feature extraction
Image segmentation
Inhomogeneity
Level set
level-set method
Medical imaging
Nonhomogeneous media
Semantics
tumor segmentation
Tumors
Ultrasonic imaging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwwIKIjyUgZGotrJxY-RViCEgKWt1M2KH2GBgiCV-PmcHbcqQoKFMZHj5O4S3_dF5-8IuXBOOiMKk9Pa8RxKTnOlqhpZa1ljdnbG2Fht8chvp3A3q2Zrrb5CTVgnD9w5boBwuKCVdRScBQtK8gYhrvGuBtkoG5VAMeetkam4BkvGVSWSzBCjanA1GqFFSAgL5Km0UFzCt1QUFftTi5Uf63JMNje7ZCehxOyqe7o9suHn-2R7TTuwR1TUlfoM2z-y-1D5k499mz3EhtAZItFsGMrN22yyeMGDsX96SbuM5gdkenM9Gd3mqQ9CboHKNq-FkR4CeLMgFXdMIA_haH1dG9FgiqkMWMed5MI0DYArXdGUYJW3zCPAKA_J5vx17o9Ixp2xnDXMVaYGUwrJGhfmZsxQacqiT4qlS7RNIuGhV8WzjmSBKt35UQc_6uTHPrlcXfTWaWT8PnwYfL0aGgSu4wkMu05h13-FvU96IVKrSVSgVpL1yekycjp9jB-6gApAIJCqjv_j1idkK5jT_Yc5JZvt-8KfITJpzXl8Cb8AwQ_cFg
  priority: 102
  providerName: Directory of Open Access Journals
Title Contextual Level-Set Method for Breast Tumor Segmentation
URI https://ieeexplore.ieee.org/document/9217481
https://www.proquest.com/docview/2454470285
https://doaj.org/article/768205cd04dc4c4986f758beda48f9c4
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUoJzi0lAV1C0U5cCS7TjJx7COsulpVpRdYaW9W7HE4tCwIEqnqr2fseCM-qqq3JLIt22Nn5tkzbxg7RZRoqtykvEaRQiF4qlRZE2otatLOaIwN3hY_xGIJ31blaoudDbEwzrngfOYm_jHc5eOd7fxR2VR5-9nHWb8j4NbHag3nKT6BhCqrSCyUcTU9n81oDAQBc0KmPFdCwgvlEzj6Y1KVN3_ioF7mH9jlpmO9V8nPSdeaif3zirPxf3u-x95HOzM57xfGR7bl1vts9xn74IipwEz12weQJN-971B65drkMqSUTsiWTS68w3qbXHe39HLlbm5jnNL6gC3nX69nizRmUkgtcNmmdWWkA2_-WZBKYFYRkhGyUXVtqoaUVGnAokApKtM0AFhg3hRglbOZIxOlOGTb67u1-8QSgcaKrMmwNDWYopJZg77tLDNcmiIfs3wzxdpGmnGf7eKXDnCDK93LRXu56CiXMTsbKt33LBv_Ln7hZTcU9RTZ4QPNuY47ThOOynlpkQNasKCkaAgbGYc10MAtNTLychoaiSIas-PNStBxOz_qHEqAikyx8vPfax2xHd_B_mzmmG23D537QtZKa04Cyj8Ji_UJUHbmRg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAceBXE0lJy4Nhs7WTs2Md2RbWF3V66lXqz4kc4QLcIshLi13fseCNeQtySyLZsj535xp75BuCt98rbprIla70ssZas1Fq0ZLXWLWlnb61L3hYXcn6F76_F9Q4cjbEwIYTkfBam8THd5ftbt4lHZcc64ucYZ32P9L7gQ7TWeKISU0ho0WRqIc708clsRqMgI7Ai25RVWir8Rf0klv6cVuWPf3FSMGePYbnt2uBX8mm66e3U_fiNtfF_-_4EHmWkWZwMS-Mp7IT1M3j4E__gHujETfU9hpAUi-g9VF6GvlimpNIFodniNLqs98Vqc0Mvl-HjTY5UWj-Hq7N3q9m8zLkUSodM9WXbWBUwAkCHSkvPG7JlpOp029qmIzUlLDovvZKN7TpEX_uqq9Hp4HggkFK_gN317Tq8hEJ66yTvuBe2RVs3inc-ts25ZcrW1QSq7RQbl4nGY76LzyYZHEybQS4mysVkuUzgaKz0ZeDZ-Hfx0yi7sWgkyU4faM5N3nOGLKmKCecZeocOtZIdWUc2-BZp4I4a2YtyGhvJIprAwXYlmLyhv5kKBWJDYEy8-nutN3B_vlouzOL84sM-PIidHU5qDmC3_7oJrwm79PYwLdk7DI3omg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contextual+Level-Set+Method+for+Breast+Tumor+Segmentation&rft.jtitle=IEEE+access&rft.au=Hussain%2C+Sumaira&rft.au=Xi%2C+Xiaoming&rft.au=Ullah%2C+Inam&rft.au=Wu%2C+Yongjian&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=189343&rft.epage=189353&rft_id=info:doi/10.1109%2FACCESS.2020.3029684&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3029684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon