Contextual Level-Set Method for Breast Tumor Segmentation
Breast ultrasound image segmentation is the foundation of the diagnosis and treatment of breast cancer. The level set method is widely used for medical image segmentation. However, it remained a challenge for traditional level set methods because they cannot fully understand the tumor regions with c...
Saved in:
Published in | IEEE access Vol. 8; pp. 189343 - 189353 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Breast ultrasound image segmentation is the foundation of the diagnosis and treatment of breast cancer. The level set method is widely used for medical image segmentation. However, it remained a challenge for traditional level set methods because they cannot fully understand the tumor regions with complex characteristics by only low-level features. Considering that contextual features can provide complementary discriminative information to low-level features, this paper proposed a contextual level set method for breast tumor segmentation. Firstly, an encoder-decoder architecture network such as UNet is developed to learn high-level contextual features with semantic information. After that, the contextual level set method has been proposed to incorporate the novel contextual energy term. The proposed term has the ability to embed the high-level contextual knowledge into the level set framework. The learned contextual features with semantic information can provide more discriminative information, which has been directly associated with category labels, instead of the original intensity. Therefore, it is robust to serious intensity inhomogeneity, which is helpful to improve segmentation performance. The experiments had taken place with the help of three databases, which indicates that the proposed method outperformed traditional methods. |
---|---|
AbstractList | Breast ultrasound image segmentation is the foundation of the diagnosis and treatment of breast cancer. The level set method is widely used for medical image segmentation. However, it remained a challenge for traditional level set methods because they cannot fully understand the tumor regions with complex characteristics by only low-level features. Considering that contextual features can provide complementary discriminative information to low-level features, this paper proposed a contextual level set method for breast tumor segmentation. Firstly, an encoder-decoder architecture network such as UNet is developed to learn high-level contextual features with semantic information. After that, the contextual level set method has been proposed to incorporate the novel contextual energy term. The proposed term has the ability to embed the high-level contextual knowledge into the level set framework. The learned contextual features with semantic information can provide more discriminative information, which has been directly associated with category labels, instead of the original intensity. Therefore, it is robust to serious intensity inhomogeneity, which is helpful to improve segmentation performance. The experiments had taken place with the help of three databases, which indicates that the proposed method outperformed traditional methods. |
Author | Tian, Cuihuan Yin, Yilong Ren, Chunxiao Lianzheng, Zhao Hussain, Sumaira Wu, Yongjian Xi, Xiaoming Ullah, Inam |
Author_xml | – sequence: 1 givenname: Sumaira orcidid: 0000-0002-7084-9670 surname: Hussain fullname: Hussain, Sumaira organization: School of Software Engineering, Shandong University, Jinan, China – sequence: 2 givenname: Xiaoming orcidid: 0000-0002-0415-3608 surname: Xi fullname: Xi, Xiaoming email: fyzq10@126.com organization: School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China – sequence: 3 givenname: Inam surname: Ullah fullname: Ullah, Inam organization: School of Software Engineering, Shandong University, Jinan, China – sequence: 4 givenname: Yongjian orcidid: 0000-0003-2007-6929 surname: Wu fullname: Wu, Yongjian organization: School of Software Engineering, Shandong University, Jinan, China – sequence: 5 givenname: Chunxiao surname: Ren fullname: Ren, Chunxiao organization: Shandong Province Science and Technology Exchange Center, Jinan, China – sequence: 6 givenname: Zhao surname: Lianzheng fullname: Lianzheng, Zhao organization: Center for Big Data of Shandong Province, Jinan, China – sequence: 7 givenname: Cuihuan surname: Tian fullname: Tian, Cuihuan email: shandamla@163.com organization: School of Medicine, Shandong University, Jinan, China – sequence: 8 givenname: Yilong orcidid: 0000-0002-8465-1294 surname: Yin fullname: Yin, Yilong organization: School of Software Engineering, Shandong University, Jinan, China |
BookMark | eNqFkE9P3DAQxS0EEnTLJ-ASiXO2tjPxnyONtoC0qIeFs-XYY8gqG28db9V--2YbtKp6YS6eGc17z_p9IudDHJCQG0aXjFH95a5pVpvNklNOlxXlWig4I1ecCV1WdSXO_-kvyfU4bulUalrV8oroJg4Zf-WD7Ys1_sS-3GAunjC_RV-EmIqvCe2Yi-fDbho2-LrDIdvcxeEzuQi2H_H6_V2Ql2-r5-ahXH-_f2zu1qUDqnJpZasQKGXMgdLCM0mVECpoa1sZFGV1C84Lr4RsQwDwleehAqfRMawVVAvyOPv6aLdmn7qdTb9NtJ35u4jp1diUO9ejkUJxWjtPwTtwoJUIslYtegtToDt63c5e-xR_HHDMZhsPaZi-bzjUAJJyVU9X1XzlUhzHhOGUyqg5IjczcnNEbt6RTyr9n8p1M6mcbNd_oL2ZtR0intI0ZxIUq_4ARrSPRw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_diagnostics11071212 crossref_primary_10_3390_s22030807 crossref_primary_10_1016_j_engappai_2023_106753 crossref_primary_10_1007_s11760_021_02107_w crossref_primary_10_1155_2022_3905998 crossref_primary_10_1007_s41870_023_01308_5 crossref_primary_10_1016_j_neucom_2021_05_001 crossref_primary_10_1371_journal_pone_0276523 crossref_primary_10_1016_j_dsp_2024_104884 crossref_primary_10_1371_journal_pone_0251899 crossref_primary_10_1007_s10479_022_04755_8 crossref_primary_10_1016_j_compbiomed_2022_105995 crossref_primary_10_1016_j_ijmedinf_2024_105522 crossref_primary_10_3390_biomimetics8020163 crossref_primary_10_1007_s00500_023_09039_2 crossref_primary_10_1016_j_compbiomed_2022_105685 crossref_primary_10_1080_1206212X_2023_2212945 crossref_primary_10_7717_peerj_cs_805 crossref_primary_10_1016_j_compbiomed_2022_106363 crossref_primary_10_3390_bioengineering10070819 crossref_primary_10_1016_j_patcog_2023_109728 crossref_primary_10_32604_iasc_2023_033800 |
Cites_doi | 10.1109/TIP.2010.2069690 10.1109/CVPR.2017.660 10.1016/j.compbiomed.2010.10.007 10.1364/BOE.9.003244 10.1016/j.mri.2019.08.021 10.3322/caac.21492 10.1016/j.patcog.2014.07.008 10.1016/j.compmedimag.2015.11.005 10.1023/A:1014080923068 10.1016/j.dib.2019.104863 10.1109/CVPR.2015.7298965 10.1109/34.857003 10.1038/s41598-020-63242-x 10.1016/j.neucom.2016.12.002 10.1016/j.neucom.2016.09.067 10.1109/JBHI.2017.2731873 10.1186/1475-925X-12-48 10.1109/ISBI.2013.6556774 10.1109/ULTSYM.2015.0106 10.1109/TSMCB.2012.2218233 10.1016/j.patcog.2009.06.002 10.1109/TPAMI.2016.2644615 10.1016/j.imavis.2013.08.003 10.1016/j.clinimag.2012.09.024 10.1109/CVPR.2015.7298594 10.1023/A:1020874308076 10.1109/CVPR.2007.383014 10.1016/j.neucom.2014.01.079 10.2991/jcis.2008.57 10.1109/TCYB.2015.2409119 10.1109/TPAMI.2017.2699184 10.1109/TIP.2011.2146190 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2020.3029684 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 189353 |
ExternalDocumentID | oai_doaj_org_article_768205cd04dc4c4986f758beda48f9c4 10_1109_ACCESS_2020_3029684 9217481 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: ZR2018BF012 funderid: 10.13039/501100007129 – fundername: Foundation of Distinguished Associate Professor in Shandong Jianzhu University funderid: 10.13039/501100007927 – fundername: Natural Science Foundation of China grantid: 61701280; 61801263; 61703235; 61701281 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2018YFC0830100; 2018YFC0830102 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-a7b8e40011c4896d1708668f9aab7f8015b4cd6d867bff44d3d2f34c9ec1e5843 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:27:22 EDT 2025 Mon Jun 30 04:08:24 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Tue Jul 01 02:55:51 EDT 2025 Wed Aug 27 02:31:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-a7b8e40011c4896d1708668f9aab7f8015b4cd6d867bff44d3d2f34c9ec1e5843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2007-6929 0000-0002-8465-1294 0000-0002-7084-9670 0000-0002-0415-3608 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9217481 |
PQID | 2454470285 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2454470285 crossref_primary_10_1109_ACCESS_2020_3029684 ieee_primary_9217481 doaj_primary_oai_doaj_org_article_768205cd04dc4c4986f758beda48f9c4 crossref_citationtrail_10_1109_ACCESS_2020_3029684 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 li (ref3) 2011; 20 rodrigues (ref32) 2012 li (ref28) 2010; 19 ref24 ref26 ref25 ref22 ref21 zhang (ref13) 2013 ronneberger (ref20) 2015 ref27 ref29 ref8 simonyan (ref23) 2014 ref7 ref9 ref4 wang (ref6) 2013 ref5 |
References_xml | – volume: 19 start-page: 3243 year: 2010 ident: ref28 article-title: Distance regularized level set evolution and its application to image segmentation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2069690 – ident: ref36 doi: 10.1109/CVPR.2017.660 – ident: ref12 doi: 10.1016/j.compbiomed.2010.10.007 – ident: ref22 doi: 10.1364/BOE.9.003244 – year: 2014 ident: ref23 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref4 doi: 10.1016/j.mri.2019.08.021 – ident: ref1 doi: 10.3322/caac.21492 – ident: ref10 doi: 10.1016/j.patcog.2014.07.008 – ident: ref16 doi: 10.1016/j.compmedimag.2015.11.005 – ident: ref25 doi: 10.1023/A:1014080923068 – ident: ref30 doi: 10.1016/j.dib.2019.104863 – ident: ref35 doi: 10.1109/CVPR.2015.7298965 – ident: ref26 doi: 10.1109/34.857003 – ident: ref19 doi: 10.1038/s41598-020-63242-x – ident: ref21 doi: 10.1016/j.neucom.2016.12.002 – ident: ref17 doi: 10.1016/j.neucom.2016.09.067 – ident: ref29 doi: 10.1109/JBHI.2017.2731873 – ident: ref15 doi: 10.1186/1475-925X-12-48 – ident: ref5 doi: 10.1109/ISBI.2013.6556774 – ident: ref11 doi: 10.1109/ULTSYM.2015.0106 – ident: ref8 doi: 10.1109/TSMCB.2012.2218233 – ident: ref33 doi: 10.1016/j.patcog.2009.06.002 – start-page: 234 year: 2015 ident: ref20 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – year: 2013 ident: ref13 article-title: A local active contour model for image segmentation with intensity inhomogeneity publication-title: arXiv 1305 7053 – start-page: 2833 year: 2012 ident: ref32 article-title: Towards breast ultrasound image segmentation using multi-resolution pixel descriptors publication-title: Proc Int Conf Pattern Recognit (ICPR) – ident: ref18 doi: 10.1109/TPAMI.2016.2644615 – ident: ref9 doi: 10.1016/j.imavis.2013.08.003 – ident: ref2 doi: 10.1016/j.clinimag.2012.09.024 – start-page: 105 year: 2013 ident: ref6 article-title: Semantic context forests for learning-based knee cartilage segmentation in 3D MR images publication-title: Proc MICCAI Workshop on Medical Computer Vision – ident: ref24 doi: 10.1109/CVPR.2015.7298594 – ident: ref27 doi: 10.1023/A:1020874308076 – ident: ref31 doi: 10.1109/CVPR.2007.383014 – ident: ref7 doi: 10.1016/j.neucom.2014.01.079 – ident: ref34 doi: 10.2991/jcis.2008.57 – ident: ref14 doi: 10.1109/TCYB.2015.2409119 – ident: ref37 doi: 10.1109/TPAMI.2017.2699184 – volume: 20 start-page: 2007 year: 2011 ident: ref3 article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2146190 |
SSID | ssj0000816957 |
Score | 2.3126457 |
Snippet | Breast ultrasound image segmentation is the foundation of the diagnosis and treatment of breast cancer. The level set method is widely used for medical image... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 189343 |
SubjectTerms | Breast tumors Breast ultrasound images Coders contextual feature Encoders-Decoders Feature extraction Image segmentation Inhomogeneity Level set level-set method Medical imaging Nonhomogeneous media Semantics tumor segmentation Tumors Ultrasonic imaging |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwwIKIjyUgZGotrJxY-RViCEgKWt1M2KH2GBgiCV-PmcHbcqQoKFMZHj5O4S3_dF5-8IuXBOOiMKk9Pa8RxKTnOlqhpZa1ljdnbG2Fht8chvp3A3q2Zrrb5CTVgnD9w5boBwuKCVdRScBQtK8gYhrvGuBtkoG5VAMeetkam4BkvGVSWSzBCjanA1GqFFSAgL5Km0UFzCt1QUFftTi5Uf63JMNje7ZCehxOyqe7o9suHn-2R7TTuwR1TUlfoM2z-y-1D5k499mz3EhtAZItFsGMrN22yyeMGDsX96SbuM5gdkenM9Gd3mqQ9CboHKNq-FkR4CeLMgFXdMIA_haH1dG9FgiqkMWMed5MI0DYArXdGUYJW3zCPAKA_J5vx17o9Ixp2xnDXMVaYGUwrJGhfmZsxQacqiT4qlS7RNIuGhV8WzjmSBKt35UQc_6uTHPrlcXfTWaWT8PnwYfL0aGgSu4wkMu05h13-FvU96IVKrSVSgVpL1yekycjp9jB-6gApAIJCqjv_j1idkK5jT_Yc5JZvt-8KfITJpzXl8Cb8AwQ_cFg priority: 102 providerName: Directory of Open Access Journals |
Title | Contextual Level-Set Method for Breast Tumor Segmentation |
URI | https://ieeexplore.ieee.org/document/9217481 https://www.proquest.com/docview/2454470285 https://doaj.org/article/768205cd04dc4c4986f758beda48f9c4 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUoJzi0lAV1C0U5cCS7TjJx7COsulpVpRdYaW9W7HE4tCwIEqnqr2fseCM-qqq3JLIt22Nn5tkzbxg7RZRoqtykvEaRQiF4qlRZE2otatLOaIwN3hY_xGIJ31blaoudDbEwzrngfOYm_jHc5eOd7fxR2VR5-9nHWb8j4NbHag3nKT6BhCqrSCyUcTU9n81oDAQBc0KmPFdCwgvlEzj6Y1KVN3_ioF7mH9jlpmO9V8nPSdeaif3zirPxf3u-x95HOzM57xfGR7bl1vts9xn74IipwEz12weQJN-971B65drkMqSUTsiWTS68w3qbXHe39HLlbm5jnNL6gC3nX69nizRmUkgtcNmmdWWkA2_-WZBKYFYRkhGyUXVtqoaUVGnAokApKtM0AFhg3hRglbOZIxOlOGTb67u1-8QSgcaKrMmwNDWYopJZg77tLDNcmiIfs3wzxdpGmnGf7eKXDnCDK93LRXu56CiXMTsbKt33LBv_Ln7hZTcU9RTZ4QPNuY47ThOOynlpkQNasKCkaAgbGYc10MAtNTLychoaiSIas-PNStBxOz_qHEqAikyx8vPfax2xHd_B_mzmmG23D537QtZKa04Cyj8Ji_UJUHbmRg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAceBXE0lJy4Nhs7WTs2Md2RbWF3V66lXqz4kc4QLcIshLi13fseCNeQtySyLZsj535xp75BuCt98rbprIla70ssZas1Fq0ZLXWLWlnb61L3hYXcn6F76_F9Q4cjbEwIYTkfBam8THd5ftbt4lHZcc64ucYZ32P9L7gQ7TWeKISU0ho0WRqIc708clsRqMgI7Ai25RVWir8Rf0klv6cVuWPf3FSMGePYbnt2uBX8mm66e3U_fiNtfF_-_4EHmWkWZwMS-Mp7IT1M3j4E__gHujETfU9hpAUi-g9VF6GvlimpNIFodniNLqs98Vqc0Mvl-HjTY5UWj-Hq7N3q9m8zLkUSodM9WXbWBUwAkCHSkvPG7JlpOp029qmIzUlLDovvZKN7TpEX_uqq9Hp4HggkFK_gN317Tq8hEJ66yTvuBe2RVs3inc-ts25ZcrW1QSq7RQbl4nGY76LzyYZHEybQS4mysVkuUzgaKz0ZeDZ-Hfx0yi7sWgkyU4faM5N3nOGLKmKCecZeocOtZIdWUc2-BZp4I4a2YtyGhvJIprAwXYlmLyhv5kKBWJDYEy8-nutN3B_vlouzOL84sM-PIidHU5qDmC3_7oJrwm79PYwLdk7DI3omg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contextual+Level-Set+Method+for+Breast+Tumor+Segmentation&rft.jtitle=IEEE+access&rft.au=Hussain%2C+Sumaira&rft.au=Xi%2C+Xiaoming&rft.au=Ullah%2C+Inam&rft.au=Wu%2C+Yongjian&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=189343&rft.epage=189353&rft_id=info:doi/10.1109%2FACCESS.2020.3029684&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3029684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |