Improvement of the Prediction-Based Energy Efficient Ethernet Strategy

Ethernet consumes maximum energy even when there is no data transmission. To reduce the power consumption, IEEE 802.3az standardizes the Energy Efficient Ethernet that enhances Ethernet with the low power idle state without data transmission. However, this standard does not describe the specific str...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 156420 - 156429
Main Authors Segolene, Numukobwa, Liao, Kaiqin, Jiang, Wanchun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ethernet consumes maximum energy even when there is no data transmission. To reduce the power consumption, IEEE 802.3az standardizes the Energy Efficient Ethernet that enhances Ethernet with the low power idle state without data transmission. However, this standard does not describe the specific strategy about when the Ethernet link will enter or exit the low power idle state. Recently, they proposed the EEEP strategy for the 1-10Gbps EEE to reduce power consumption. Specifically, EEEP predicts the future traffic in a time window by the Autoregressive Integrated Moving Average (ARIMA) model and determines when to enter or exit the low power idle state according to the prediction results. However, the EEEP strategy relies on the prediction accuracy of the ARIMA model for good energy saving. This paper proposes to use the Long Short Term Memory (LSTM) model for EEEP to improve the prediction accuracy. Owning to the historic traffic information, the LSTM model can achieve about 11% improvement on the accuracy compared to ARIMA, and thus helps EEEP to achieve better energy saving, according to our trace-driven simulation results.
AbstractList Ethernet consumes maximum energy even when there is no data transmission. To reduce the power consumption, IEEE 802.3az standardizes the Energy Efficient Ethernet that enhances Ethernet with the low power idle state without data transmission. However, this standard does not describe the specific strategy about when the Ethernet link will enter or exit the low power idle state. Recently, they proposed the EEEP strategy for the 1-10Gbps EEE to reduce power consumption. Specifically, EEEP predicts the future traffic in a time window by the Autoregressive Integrated Moving Average (ARIMA) model and determines when to enter or exit the low power idle state according to the prediction results. However, the EEEP strategy relies on the prediction accuracy of the ARIMA model for good energy saving. This paper proposes to use the Long Short Term Memory (LSTM) model for EEEP to improve the prediction accuracy. Owning to the historic traffic information, the LSTM model can achieve about 11% improvement on the accuracy compared to ARIMA, and thus helps EEEP to achieve better energy saving, according to our trace-driven simulation results.
Author Segolene, Numukobwa
Jiang, Wanchun
Liao, Kaiqin
Author_xml – sequence: 1
  givenname: Numukobwa
  orcidid: 0000-0002-6581-617X
  surname: Segolene
  fullname: Segolene, Numukobwa
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 2
  givenname: Kaiqin
  surname: Liao
  fullname: Liao, Kaiqin
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 3
  givenname: Wanchun
  surname: Jiang
  fullname: Jiang, Wanchun
  email: jiangwc@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
BookMark eNp9kUtLAzEUhYMo-PwFbgZcT81zJllqGbUgKFTXIZPcqSntRDNR6L83daqIC7NJOJzvcHPPMdrvQw8InRM8IQSry6vptJnPJxQTNaGKS8nxHjqipFIlE6za__U-RGfDsMT5yCyJ-gjdzNavMXzAGvpUhK5IL1A8RnDeJh_68toM4Iqmh7jYFE3Xeeu3xibbYg-pmKdoEiw2p-igM6sBznb3CXq-aZ6md-X9w-1senVfWo5lKk1FlaFEslp0LSc1MOk6DIoDE8CAElpllRKmgFZtq7g1tTSsc1jZilnMTtBszHXBLPVr9GsTNzoYr7-EEBfaxOTtCrSrmLGtVK2yLVfOqJxohANHayxqx3PWxZiVF_D2DkPSy_Ae-zy-plyIilDMRXap0WVjGIYInbY-me1y8tf9ShOsty3osQW9bUHvWsgs-8N-T_w_dT5SHgB-CClrJQRjn0nmlEQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_comnet_2021_108529
Cites_doi 10.1109/LCOMM.2009.090880
10.1162/neco.1997.9.8.1735
10.1109/INFCOM.2010.5462246
10.1109/TCOMM.2016.2623702
10.1109/GLOCOM.2009.5425710
10.1109/90.650143
10.1109/JSAC.2014.140103
10.1109/ISKE.2017.8258815
10.1109/ICDT.2006.15
10.1109/MCOM.2010.5621967
10.1109/MIC.2010.52
10.1109/ICIEA.2018.8398183
10.1016/S0895-7177(98)00065-X
10.1109/TII.2015.2426953
10.1109/TASE.2014.2313735
10.1109/TCOMM.2004.833136
10.1109/YAC.2016.7804912
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2948840
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 156429
ExternalDocumentID oai_doaj_org_article_d63acb89b9cb49da926ba5ded27057d4
10_1109_ACCESS_2019_2948840
8879553
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61972421
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Project of China
  grantid: 2018YFB1702502
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-a629a218375fb417e38df0e94e35e3e21264172139e26bb94ca78a3fd09c63c03
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:25:08 EDT 2025
Mon Jun 30 04:31:11 EDT 2025
Tue Jul 01 02:42:04 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Wed Aug 27 02:44:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-a629a218375fb417e38df0e94e35e3e21264172139e26bb94ca78a3fd09c63c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6581-617X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8879553
PQID 2455612045
PQPubID 4845423
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2019_2948840
ieee_primary_8879553
crossref_primary_10_1109_ACCESS_2019_2948840
proquest_journals_2455612045
doaj_primary_oai_doaj_org_article_d63acb89b9cb49da926ba5ded27057d4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
(ref24) 2015
ref15
ref11
ref2
ref17
ref16
ref19
ref18
leland (ref10) 1994; 25
(ref1) 0
kerner (ref3) 2017
bianco (ref13) 2014
(ref28) 0
(ref26) 0
ref20
ref22
bing (ref14) 2010
ref21
ostring (ref23) 2011
ref8
ref7
ref9
ref4
ref6
ref5
(ref27) 0
(ref25) 0
References_xml – year: 2015
  ident: ref24
  publication-title: The CAIDA Anonymized Internet Traces Dataset-Passive Monitor Equinix Chicago (IL)
– ident: ref5
  doi: 10.1109/LCOMM.2009.090880
– year: 0
  ident: ref27
  publication-title: 10GBASE-T Ecosystem Is Ready for Broad Adoption
– ident: ref18
  doi: 10.1162/neco.1997.9.8.1735
– year: 2017
  ident: ref3
  article-title: Energy Efficient Ethernet hits standards milestone-Internetnews: The blog-sean michael kerner
– ident: ref15
  doi: 10.1109/INFCOM.2010.5462246
– ident: ref17
  doi: 10.1109/TCOMM.2016.2623702
– ident: ref6
  doi: 10.1109/GLOCOM.2009.5425710
– volume: 25
  start-page: 202
  year: 1994
  ident: ref10
  article-title: On the self-similar nature of Ethernet traffic
  publication-title: IEEE/ACM Trans Netw
– ident: ref11
  doi: 10.1109/90.650143
– ident: ref2
  doi: 10.1109/JSAC.2014.140103
– ident: ref20
  doi: 10.1109/ISKE.2017.8258815
– ident: ref16
  doi: 10.1109/ICDT.2006.15
– year: 0
  ident: ref28
  publication-title: Intel 82579 Gigabit Ethernet PHY Datasheet v2 1
– ident: ref7
  doi: 10.1109/MCOM.2010.5621967
– ident: ref4
  doi: 10.1109/MIC.2010.52
– start-page: 1000
  year: 2011
  ident: ref23
  article-title: The influence of long-range dependence on traffic prediction
  publication-title: Proc IEEE ICC
– ident: ref22
  doi: 10.1109/ICIEA.2018.8398183
– year: 0
  ident: ref26
– year: 2010
  ident: ref14
  publication-title: 3D and HD Broadband Video Networking
– ident: ref19
  doi: 10.1016/S0895-7177(98)00065-X
– ident: ref8
  doi: 10.1109/TII.2015.2426953
– start-page: 3001
  year: 2014
  ident: ref13
  article-title: Open flow driven Ethernet traffic analysis
  publication-title: Proc IEEE Int Conf Commun (ICC)
– ident: ref9
  doi: 10.1109/TASE.2014.2313735
– year: 0
  ident: ref25
  publication-title: Waikato Internet Traffic Storage
– ident: ref12
  doi: 10.1109/TCOMM.2004.833136
– ident: ref21
  doi: 10.1109/YAC.2016.7804912
– year: 0
  ident: ref1
  publication-title: IEEE P802 3az Energy Efficient Ethernet Task Force
SSID ssj0000816957
Score 2.123703
Snippet Ethernet consumes maximum energy even when there is no data transmission. To reduce the power consumption, IEEE 802.3az standardizes the Energy Efficient...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 156420
SubjectTerms Accuracy
Autoregressive models
Computational modeling
Data communication
Data models
Data transmission
Energy consumption
Energy efficient ethernet
Ethernet
LSTM
Microsoft Windows
Model accuracy
Power consumption
Power demand
prediction
Predictive models
Strategy
Traffic information
Traffic models
Windows (intervals)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQUBCFgjIwEprEduIb26pVhQRioFI3y1-ZUIpKGfj3-By3ioQEC2t0-fDzxfd8tt8RcqcoHo8MGXfQKaoRpsCUSlWthYCaGh5OvT89l4sle1zxVafUF-4Ja-WBW-BGtqTKaAEajGZgFRSlVtw6W1SeatigBOpjXmcyFcZgkZfAqygzlGcwGk-nvkW4lwseCvBui-mOTigKiv2xxMqPcTkEm_kJOY4sMRm3X3dKDlxzRo462oF9Mm_TASG7l6zrxBO55GWDyy4IdTrx0ckms3CyL5kFnQg0nCHfa9w2iaq0X-dkOZ-9ThdpLIqQGpaJbarKAhTymorXmuWVo8LWmQPmKHfU-UhUMpzWUXAeKQ3MqEooWtsMTElNRi9Ir1k37pIkBkxuXa64EjlztdYV0zozuFJZceXcgBQ7fKSJiuFYuOJNhplDBrIFVSKoMoI6IPf7m95bwYzfzScI_N4U1a7DBe8DMvqA_MsHBqSP3bZ_iMAK6pwOyHDXjTL-mR-yYKEgqGeyV__x6mtyiM1pkzJD0ttuPt2NpylbfRs88hsNy-IP
  priority: 102
  providerName: Directory of Open Access Journals
Title Improvement of the Prediction-Based Energy Efficient Ethernet Strategy
URI https://ieeexplore.ieee.org/document/8879553
https://www.proquest.com/docview/2455612045
https://doaj.org/article/d63acb89b9cb49da926ba5ded27057d4
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ooFKi6QFEOPZIlie0kc4TVrlAlqh5A4mb5Mbm02q1o9lB-PR7HGyGoELcosiPb3zjzsOcbgG9GcHpkjLijzZmNMEdpTG4627bYCadi1vvNj_r6Tn6_V_dbcD7mwhBRvHxGU36MZ_l-5dYcKrtouTK2EtuwHRy3IVdrjKdwAQlUTSIWKgu8uJzNwhz49hZOKwyCygGOZ8oncvSnoiqv_sRRvSz24GYzsOFWya_purdT9_iCs_G9I9-Hj8nOzC4HwfgEW7Q8gA_P2AcPYTEEFGJ8MFt1WTAFs58PfHDDYOVXQb_5bB5zA7N5ZJrghnO2GJfUZ4nX9t8R3C3mt7PrPJVVyJ0s2j43dYWGLaNGdVaWDYnWdwWhJKFIUNBltWTHUCBVtbUonWlaIzpfoKuFK8Rn2FmulvQFMoeu9FQaZdpSUmdtI60tHJ91NsoQTaDarLd2iXOcS1_81tH3KFAPIGkGSSeQJnA-dvozUG683fyKgRybMl92fBEA0Gn7aV8L42yLFp2V6A2GmRnlyVdNMFi9nMAhgzZ-JOE1gdONWOi0t__qSsaSosEWPv5_rxPY5QEOgZpT2Okf1vQ1mC69PYsu_1mU3CeyM-tk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvErFQoEc4Ea2iR9JfODQLrva0oc4tFJvxo_JBbSL2qxQ-S38Ff4bHscbVYC4VeIWRbaV2J_H47Hn-wBeG07pkTHirmxObIS5EsbkprVNo1ruZMx6Pz6p5mfiw7k834AfQy4MIsbLZzimx3iW75duRaGy3YaUseVaqvoQr76FDdrlu4P3YTTfMDabnk7medIQyJ0omi43FVOG3IBatlaUNfLGtwUqgVwix2C4K0G7IK6QVdYq4UzdGN76QrmKu4KHdm_B7eBnSNZnhw0RHJKsULJOVEZloXb3JpPQa3RfTI2ZClODQirXlruoCpBkXP6w_XFBmz2An-uu6O-xfB6vOjt2339jifxf--oh3E-edLbXQ_8RbODiMdy7xq-4BbM-ZBIjoNmyzYKzm328oKMpgmO-H1Zwn01j9mM2jVwaVHBKPvECuywx9149gbMb-ZFt2FwsF_gUMqdc6bE00jSlwNbaWlhbODrNraVBHAFbj692iVWdxD2-6Li7KpTuQaEJFDqBYgRvh0pfe1KRfxffJ-AMRYkRPL4IA66TgdG-4sbZRlnlrFDeqPBnRnr0rA4uuRcj2CKQDI0kfIxgZw1DnazXpWYiiqYGb__Z32u9gjvz0-MjfXRwcvgc7tLH9mGpHdjsLlb4IjhqnX0Z50sGn24adL8AO4VF9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+the+Prediction-Based+Energy+Efficient+Ethernet+Strategy&rft.jtitle=IEEE+access&rft.au=Segolene%2C+Numukobwa&rft.au=Liao%2C+Kaiqin&rft.au=Jiang%2C+Wanchun&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=156420&rft.epage=156429&rft_id=info:doi/10.1109%2FACCESS.2019.2948840&rft.externalDocID=8879553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon