Improvement of the Prediction-Based Energy Efficient Ethernet Strategy
Ethernet consumes maximum energy even when there is no data transmission. To reduce the power consumption, IEEE 802.3az standardizes the Energy Efficient Ethernet that enhances Ethernet with the low power idle state without data transmission. However, this standard does not describe the specific str...
Saved in:
Published in | IEEE access Vol. 7; pp. 156420 - 156429 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ethernet consumes maximum energy even when there is no data transmission. To reduce the power consumption, IEEE 802.3az standardizes the Energy Efficient Ethernet that enhances Ethernet with the low power idle state without data transmission. However, this standard does not describe the specific strategy about when the Ethernet link will enter or exit the low power idle state. Recently, they proposed the EEEP strategy for the 1-10Gbps EEE to reduce power consumption. Specifically, EEEP predicts the future traffic in a time window by the Autoregressive Integrated Moving Average (ARIMA) model and determines when to enter or exit the low power idle state according to the prediction results. However, the EEEP strategy relies on the prediction accuracy of the ARIMA model for good energy saving. This paper proposes to use the Long Short Term Memory (LSTM) model for EEEP to improve the prediction accuracy. Owning to the historic traffic information, the LSTM model can achieve about 11% improvement on the accuracy compared to ARIMA, and thus helps EEEP to achieve better energy saving, according to our trace-driven simulation results. |
---|---|
AbstractList | Ethernet consumes maximum energy even when there is no data transmission. To reduce the power consumption, IEEE 802.3az standardizes the Energy Efficient Ethernet that enhances Ethernet with the low power idle state without data transmission. However, this standard does not describe the specific strategy about when the Ethernet link will enter or exit the low power idle state. Recently, they proposed the EEEP strategy for the 1-10Gbps EEE to reduce power consumption. Specifically, EEEP predicts the future traffic in a time window by the Autoregressive Integrated Moving Average (ARIMA) model and determines when to enter or exit the low power idle state according to the prediction results. However, the EEEP strategy relies on the prediction accuracy of the ARIMA model for good energy saving. This paper proposes to use the Long Short Term Memory (LSTM) model for EEEP to improve the prediction accuracy. Owning to the historic traffic information, the LSTM model can achieve about 11% improvement on the accuracy compared to ARIMA, and thus helps EEEP to achieve better energy saving, according to our trace-driven simulation results. |
Author | Segolene, Numukobwa Jiang, Wanchun Liao, Kaiqin |
Author_xml | – sequence: 1 givenname: Numukobwa orcidid: 0000-0002-6581-617X surname: Segolene fullname: Segolene, Numukobwa organization: School of Computer Science and Engineering, Central South University, Changsha, China – sequence: 2 givenname: Kaiqin surname: Liao fullname: Liao, Kaiqin organization: School of Computer Science and Engineering, Central South University, Changsha, China – sequence: 3 givenname: Wanchun surname: Jiang fullname: Jiang, Wanchun email: jiangwc@csu.edu.cn organization: School of Computer Science and Engineering, Central South University, Changsha, China |
BookMark | eNp9kUtLAzEUhYMo-PwFbgZcT81zJllqGbUgKFTXIZPcqSntRDNR6L83daqIC7NJOJzvcHPPMdrvQw8InRM8IQSry6vptJnPJxQTNaGKS8nxHjqipFIlE6za__U-RGfDsMT5yCyJ-gjdzNavMXzAGvpUhK5IL1A8RnDeJh_68toM4Iqmh7jYFE3Xeeu3xibbYg-pmKdoEiw2p-igM6sBznb3CXq-aZ6md-X9w-1senVfWo5lKk1FlaFEslp0LSc1MOk6DIoDE8CAElpllRKmgFZtq7g1tTSsc1jZilnMTtBszHXBLPVr9GsTNzoYr7-EEBfaxOTtCrSrmLGtVK2yLVfOqJxohANHayxqx3PWxZiVF_D2DkPSy_Ae-zy-plyIilDMRXap0WVjGIYInbY-me1y8tf9ShOsty3osQW9bUHvWsgs-8N-T_w_dT5SHgB-CClrJQRjn0nmlEQ |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_comnet_2021_108529 |
Cites_doi | 10.1109/LCOMM.2009.090880 10.1162/neco.1997.9.8.1735 10.1109/INFCOM.2010.5462246 10.1109/TCOMM.2016.2623702 10.1109/GLOCOM.2009.5425710 10.1109/90.650143 10.1109/JSAC.2014.140103 10.1109/ISKE.2017.8258815 10.1109/ICDT.2006.15 10.1109/MCOM.2010.5621967 10.1109/MIC.2010.52 10.1109/ICIEA.2018.8398183 10.1016/S0895-7177(98)00065-X 10.1109/TII.2015.2426953 10.1109/TASE.2014.2313735 10.1109/TCOMM.2004.833136 10.1109/YAC.2016.7804912 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2948840 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 156429 |
ExternalDocumentID | oai_doaj_org_article_d63acb89b9cb49da926ba5ded27057d4 10_1109_ACCESS_2019_2948840 8879553 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61972421 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Project of China grantid: 2018YFB1702502 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-a629a218375fb417e38df0e94e35e3e21264172139e26bb94ca78a3fd09c63c03 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:25:08 EDT 2025 Mon Jun 30 04:31:11 EDT 2025 Tue Jul 01 02:42:04 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 Wed Aug 27 02:44:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-a629a218375fb417e38df0e94e35e3e21264172139e26bb94ca78a3fd09c63c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6581-617X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8879553 |
PQID | 2455612045 |
PQPubID | 4845423 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2019_2948840 ieee_primary_8879553 crossref_primary_10_1109_ACCESS_2019_2948840 proquest_journals_2455612045 doaj_primary_oai_doaj_org_article_d63acb89b9cb49da926ba5ded27057d4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 (ref24) 2015 ref15 ref11 ref2 ref17 ref16 ref19 ref18 leland (ref10) 1994; 25 (ref1) 0 kerner (ref3) 2017 bianco (ref13) 2014 (ref28) 0 (ref26) 0 ref20 ref22 bing (ref14) 2010 ref21 ostring (ref23) 2011 ref8 ref7 ref9 ref4 ref6 ref5 (ref27) 0 (ref25) 0 |
References_xml | – year: 2015 ident: ref24 publication-title: The CAIDA Anonymized Internet Traces Dataset-Passive Monitor Equinix Chicago (IL) – ident: ref5 doi: 10.1109/LCOMM.2009.090880 – year: 0 ident: ref27 publication-title: 10GBASE-T Ecosystem Is Ready for Broad Adoption – ident: ref18 doi: 10.1162/neco.1997.9.8.1735 – year: 2017 ident: ref3 article-title: Energy Efficient Ethernet hits standards milestone-Internetnews: The blog-sean michael kerner – ident: ref15 doi: 10.1109/INFCOM.2010.5462246 – ident: ref17 doi: 10.1109/TCOMM.2016.2623702 – ident: ref6 doi: 10.1109/GLOCOM.2009.5425710 – volume: 25 start-page: 202 year: 1994 ident: ref10 article-title: On the self-similar nature of Ethernet traffic publication-title: IEEE/ACM Trans Netw – ident: ref11 doi: 10.1109/90.650143 – ident: ref2 doi: 10.1109/JSAC.2014.140103 – ident: ref20 doi: 10.1109/ISKE.2017.8258815 – ident: ref16 doi: 10.1109/ICDT.2006.15 – year: 0 ident: ref28 publication-title: Intel 82579 Gigabit Ethernet PHY Datasheet v2 1 – ident: ref7 doi: 10.1109/MCOM.2010.5621967 – ident: ref4 doi: 10.1109/MIC.2010.52 – start-page: 1000 year: 2011 ident: ref23 article-title: The influence of long-range dependence on traffic prediction publication-title: Proc IEEE ICC – ident: ref22 doi: 10.1109/ICIEA.2018.8398183 – year: 0 ident: ref26 – year: 2010 ident: ref14 publication-title: 3D and HD Broadband Video Networking – ident: ref19 doi: 10.1016/S0895-7177(98)00065-X – ident: ref8 doi: 10.1109/TII.2015.2426953 – start-page: 3001 year: 2014 ident: ref13 article-title: Open flow driven Ethernet traffic analysis publication-title: Proc IEEE Int Conf Commun (ICC) – ident: ref9 doi: 10.1109/TASE.2014.2313735 – year: 0 ident: ref25 publication-title: Waikato Internet Traffic Storage – ident: ref12 doi: 10.1109/TCOMM.2004.833136 – ident: ref21 doi: 10.1109/YAC.2016.7804912 – year: 0 ident: ref1 publication-title: IEEE P802 3az Energy Efficient Ethernet Task Force |
SSID | ssj0000816957 |
Score | 2.123703 |
Snippet | Ethernet consumes maximum energy even when there is no data transmission. To reduce the power consumption, IEEE 802.3az standardizes the Energy Efficient... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 156420 |
SubjectTerms | Accuracy Autoregressive models Computational modeling Data communication Data models Data transmission Energy consumption Energy efficient ethernet Ethernet LSTM Microsoft Windows Model accuracy Power consumption Power demand prediction Predictive models Strategy Traffic information Traffic models Windows (intervals) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQUBCFgjIwEprEduIb26pVhQRioFI3y1-ZUIpKGfj3-By3ioQEC2t0-fDzxfd8tt8RcqcoHo8MGXfQKaoRpsCUSlWthYCaGh5OvT89l4sle1zxVafUF-4Ja-WBW-BGtqTKaAEajGZgFRSlVtw6W1SeatigBOpjXmcyFcZgkZfAqygzlGcwGk-nvkW4lwseCvBui-mOTigKiv2xxMqPcTkEm_kJOY4sMRm3X3dKDlxzRo462oF9Mm_TASG7l6zrxBO55GWDyy4IdTrx0ckms3CyL5kFnQg0nCHfa9w2iaq0X-dkOZ-9ThdpLIqQGpaJbarKAhTymorXmuWVo8LWmQPmKHfU-UhUMpzWUXAeKQ3MqEooWtsMTElNRi9Ir1k37pIkBkxuXa64EjlztdYV0zozuFJZceXcgBQ7fKSJiuFYuOJNhplDBrIFVSKoMoI6IPf7m95bwYzfzScI_N4U1a7DBe8DMvqA_MsHBqSP3bZ_iMAK6pwOyHDXjTL-mR-yYKEgqGeyV__x6mtyiM1pkzJD0ttuPt2NpylbfRs88hsNy-IP priority: 102 providerName: Directory of Open Access Journals |
Title | Improvement of the Prediction-Based Energy Efficient Ethernet Strategy |
URI | https://ieeexplore.ieee.org/document/8879553 https://www.proquest.com/docview/2455612045 https://doaj.org/article/d63acb89b9cb49da926ba5ded27057d4 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ooFKi6QFEOPZIlie0kc4TVrlAlqh5A4mb5Mbm02q1o9lB-PR7HGyGoELcosiPb3zjzsOcbgG9GcHpkjLijzZmNMEdpTG4627bYCadi1vvNj_r6Tn6_V_dbcD7mwhBRvHxGU36MZ_l-5dYcKrtouTK2EtuwHRy3IVdrjKdwAQlUTSIWKgu8uJzNwhz49hZOKwyCygGOZ8oncvSnoiqv_sRRvSz24GYzsOFWya_purdT9_iCs_G9I9-Hj8nOzC4HwfgEW7Q8gA_P2AcPYTEEFGJ8MFt1WTAFs58PfHDDYOVXQb_5bB5zA7N5ZJrghnO2GJfUZ4nX9t8R3C3mt7PrPJVVyJ0s2j43dYWGLaNGdVaWDYnWdwWhJKFIUNBltWTHUCBVtbUonWlaIzpfoKuFK8Rn2FmulvQFMoeu9FQaZdpSUmdtI60tHJ91NsoQTaDarLd2iXOcS1_81tH3KFAPIGkGSSeQJnA-dvozUG683fyKgRybMl92fBEA0Gn7aV8L42yLFp2V6A2GmRnlyVdNMFi9nMAhgzZ-JOE1gdONWOi0t__qSsaSosEWPv5_rxPY5QEOgZpT2Okf1vQ1mC69PYsu_1mU3CeyM-tk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvErFQoEc4Ea2iR9JfODQLrva0oc4tFJvxo_JBbSL2qxQ-S38Ff4bHscbVYC4VeIWRbaV2J_H47Hn-wBeG07pkTHirmxObIS5EsbkprVNo1ruZMx6Pz6p5mfiw7k834AfQy4MIsbLZzimx3iW75duRaGy3YaUseVaqvoQr76FDdrlu4P3YTTfMDabnk7medIQyJ0omi43FVOG3IBatlaUNfLGtwUqgVwix2C4K0G7IK6QVdYq4UzdGN76QrmKu4KHdm_B7eBnSNZnhw0RHJKsULJOVEZloXb3JpPQa3RfTI2ZClODQirXlruoCpBkXP6w_XFBmz2An-uu6O-xfB6vOjt2339jifxf--oh3E-edLbXQ_8RbODiMdy7xq-4BbM-ZBIjoNmyzYKzm328oKMpgmO-H1Zwn01j9mM2jVwaVHBKPvECuywx9149gbMb-ZFt2FwsF_gUMqdc6bE00jSlwNbaWlhbODrNraVBHAFbj692iVWdxD2-6Li7KpTuQaEJFDqBYgRvh0pfe1KRfxffJ-AMRYkRPL4IA66TgdG-4sbZRlnlrFDeqPBnRnr0rA4uuRcj2CKQDI0kfIxgZw1DnazXpWYiiqYGb__Z32u9gjvz0-MjfXRwcvgc7tLH9mGpHdjsLlb4IjhqnX0Z50sGn24adL8AO4VF9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+the+Prediction-Based+Energy+Efficient+Ethernet+Strategy&rft.jtitle=IEEE+access&rft.au=Segolene%2C+Numukobwa&rft.au=Liao%2C+Kaiqin&rft.au=Jiang%2C+Wanchun&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=156420&rft.epage=156429&rft_id=info:doi/10.1109%2FACCESS.2019.2948840&rft.externalDocID=8879553 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |