A Systematic Literature Review of Test Case Prioritization Using Genetic Algorithms

Regression testing is the essential process of software maintenance and evolution phase of the software development life cycle for assuring the quality and reliability of updated software. Test case prioritization is the technique of regression testing to reduce the time and effort required for regr...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 126355 - 126375
Main Authors Bajaj, Anu, Sangwan, Om Prakash
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Regression testing is the essential process of software maintenance and evolution phase of the software development life cycle for assuring the quality and reliability of updated software. Test case prioritization is the technique of regression testing to reduce the time and effort required for regression testing. Search-based algorithms are used to enhance the efficiency and effectiveness of the method. Among these search-based optimization algorithms, genetic algorithms are becoming more popular among researchers since the last decade. In this paper, we are doing a systematic literature review, i.e., a secondary study of test case prioritization using genetic algorithms. The objective of this review is to examine and classify the current state of use of the genetic algorithm in test case prioritization. In other words, to give a base for the advancement of test case prioritization research using genetic algorithms. With the use of the systematic literature review protocol, we selected the most relevant studies (20 out of 384) from the appropriate repositories by using a set of search keywords, inclusion/exclusion criteria and the quality assessment of studies. The data extraction and synthesis process and the taxonomic classification are used to answer the research questions. We also performed a rigorous analysis of the techniques by comparing them on research methodology, the prioritization method, dataset specification, test suite size, types of genetic algorithms used, performance metrics, and the validation criteria. The whole process took four months for comprehensive analysis and classification of primary studies. We observed that the parameter settings, the type of operators, the probabilistic rate of operators, and fitness function design have a significant impact on the quality of the solutions obtained. This systematic literature review yields that genetic algorithms have great potential in solving test case prioritization problems, and the area is open for further improvements. Future researchers can fill the research gaps by following the suggestions given in the review. From this review, we found that the use of the appropriate approach can make a genetic algorithm based test case prioritization one of the effective methods in regression testing.
AbstractList Regression testing is the essential process of software maintenance and evolution phase of the software development life cycle for assuring the quality and reliability of updated software. Test case prioritization is the technique of regression testing to reduce the time and effort required for regression testing. Search-based algorithms are used to enhance the efficiency and effectiveness of the method. Among these search-based optimization algorithms, genetic algorithms are becoming more popular among researchers since the last decade. In this paper, we are doing a systematic literature review, i.e., a secondary study of test case prioritization using genetic algorithms. The objective of this review is to examine and classify the current state of use of the genetic algorithm in test case prioritization. In other words, to give a base for the advancement of test case prioritization research using genetic algorithms. With the use of the systematic literature review protocol, we selected the most relevant studies (20 out of 384) from the appropriate repositories by using a set of search keywords, inclusion/exclusion criteria and the quality assessment of studies. The data extraction and synthesis process and the taxonomic classification are used to answer the research questions. We also performed a rigorous analysis of the techniques by comparing them on research methodology, the prioritization method, dataset specification, test suite size, types of genetic algorithms used, performance metrics, and the validation criteria. The whole process took four months for comprehensive analysis and classification of primary studies. We observed that the parameter settings, the type of operators, the probabilistic rate of operators, and fitness function design have a significant impact on the quality of the solutions obtained. This systematic literature review yields that genetic algorithms have great potential in solving test case prioritization problems, and the area is open for further improvements. Future researchers can fill the research gaps by following the suggestions given in the review. From this review, we found that the use of the appropriate approach can make a genetic algorithm based test case prioritization one of the effective methods in regression testing.
Author Sangwan, Om Prakash
Bajaj, Anu
Author_xml – sequence: 1
  givenname: Anu
  orcidid: 0000-0001-8563-6611
  surname: Bajaj
  fullname: Bajaj, Anu
  email: er.anubajaj@gmail.com
  organization: Department of Computer Science and Engineering, Guru Jambheshwar University of Science and Technology, Haryana, India
– sequence: 2
  givenname: Om Prakash
  surname: Sangwan
  fullname: Sangwan, Om Prakash
  organization: Department of Computer Science and Engineering, Guru Jambheshwar University of Science and Technology, Haryana, India
BookMark eNqFUUtPAyEYJEYTtfoLvJB4boWFZeHYbHwlTTRWz4TSj0rTLgpUU3-91DXGeJELZJiZ7zHHaL8LHSB0RsmIUqIuxm17OZ2OKkLVqFJMVoLsoaOKCjVkNRP7v96H6DSlJSlHFqhujtB0jKfblGFtsrd44jNEkzcR8AO8eXjHweFHSBm3JgG-jz5En_1HIYcOPyXfLfA1dLDTjleL3efzOp2gA2dWCU6_7wF6urp8bG-Gk7vr23Y8GVpOZB4aDnNnSiuynldKArcMiFTcEsUArCkgb2ZSOcc5J9YxwRi1ylJjiCHNjA3Qbe87D2apX6Jfm7jVwXj9BYS40CaW1laghbMNmLoGKQS3TswYs6SuhWN1WVfxHqDz3uslhtdNmVgvwyZ2pX1d8UIkDaW8sFjPsjGkFMH9VKVE78LQfRh6F4b-DqOo1B-V9flrhTkav_pHe9ZrPQD8VJOSKkUJ-wS6SplZ
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_systems13010052
crossref_primary_10_1016_j_infsof_2023_107225
crossref_primary_10_1371_journal_pone_0264972
crossref_primary_10_1007_s41870_021_00628_8
crossref_primary_10_3390_info10120392
crossref_primary_10_3390_math11132983
crossref_primary_10_1016_j_microrel_2022_114826
crossref_primary_10_32604_csse_2022_022621
crossref_primary_10_1016_j_enconman_2020_112474
crossref_primary_10_1007_s11846_024_00770_0
crossref_primary_10_1016_j_knosys_2023_110580
crossref_primary_10_1016_j_cad_2025_103862
crossref_primary_10_1109_TSE_2024_3479421
crossref_primary_10_3390_app13020819
crossref_primary_10_3390_s24165393
crossref_primary_10_1016_j_infsof_2021_106620
crossref_primary_10_3390_app14188365
crossref_primary_10_1109_ACCESS_2020_3014290
crossref_primary_10_1016_j_jss_2022_111381
crossref_primary_10_1109_ACCESS_2020_3018450
crossref_primary_10_1145_3616372
crossref_primary_10_1145_3624745
crossref_primary_10_1371_journal_pone_0283838
crossref_primary_10_32604_cmc_2023_032664
crossref_primary_10_1007_s11219_023_09650_4
crossref_primary_10_1142_S021884302350017X
crossref_primary_10_1007_s00500_021_05943_7
crossref_primary_10_1109_ACCESS_2021_3057099
crossref_primary_10_1007_s11334_021_00384_9
crossref_primary_10_1109_TVT_2020_2991395
crossref_primary_10_1109_ACCESS_2022_3157400
crossref_primary_10_1109_ACCESS_2022_3156273
crossref_primary_10_32604_cmc_2023_032308
crossref_primary_10_1007_s00500_022_07174_w
crossref_primary_10_1088_1755_1315_660_1_012005
crossref_primary_10_32604_cmc_2022_019455
crossref_primary_10_1051_e3sconf_202454002019
crossref_primary_10_2478_jee_2024_0018
crossref_primary_10_1007_s42979_021_00821_3
crossref_primary_10_32604_cmc_2023_031261
crossref_primary_10_1109_ACCESS_2023_3281348
crossref_primary_10_1134_S0361768823080169
crossref_primary_10_1590_2179_10742021v20i41338
crossref_primary_10_1002_smr_2409
crossref_primary_10_1016_j_eswa_2025_126634
crossref_primary_10_1145_3579851
crossref_primary_10_1007_s42979_025_03800_0
crossref_primary_10_3390_app112412121
crossref_primary_10_1364_OE_381115
crossref_primary_10_32604_cmc_2024_053830
crossref_primary_10_1109_ACCESS_2020_2966400
crossref_primary_10_1109_ACCESS_2020_3020795
crossref_primary_10_1016_j_esd_2023_03_019
crossref_primary_10_1109_ACCESS_2021_3135508
crossref_primary_10_1016_j_cag_2024_104064
crossref_primary_10_1016_j_asoc_2021_107584
crossref_primary_10_1016_j_asoc_2022_109468
crossref_primary_10_1007_s00500_022_07121_9
crossref_primary_10_1016_j_infsof_2024_107444
Cites_doi 10.1016/j.jss.2016.09.045
10.1145/1146238.1146240
10.1145/2601248.2601268
10.1109/ICSM.1999.792604
10.1109/TII.2017.2788019
10.1002/int.20358
10.1145/2915970.2916006
10.1007/978-3-319-22183-0_15
10.1109/32.988497
10.1147/sj.411.0004
10.1109/CCAA.2018.8777692
10.1007/s11219-012-9181-z
10.1145/2372233.2372238
10.1145/2771783.2771788
10.1145/1830483.1830735
10.1145/2134243.2134250
10.1145/2889160.2889240
10.1109/4235.996017
10.1007/978-3-319-47443-4_11
10.1109/ICST.2017.40
10.1016/S0950-5849(01)00189-6
10.1109/TSE.2007.38
10.1109/2.294849
10.1145/2908812.2908871
10.1002/stv.430
10.1162/106365600568167
10.1007/978-3-642-39742-4_10
10.1007/978-3-319-22183-0_8
10.1145/2648511.2648515
10.1007/978-3-642-39742-4_7
10.1016/S0167-739X(98)00034-X
10.1109/ICSE.2017.61
10.1109/ICCTA.2012.6523563
10.1016/j.orp.2016.09.002
10.1109/TSE.2015.2510633
10.1109/ICSE.2001.919106
10.1016/j.jss.2011.09.063
10.1023/A:1025850513781
10.1016/j.jss.2006.07.009
10.1145/2568225.2568271
10.1007/s13369-017-2830-6
10.1002/smr.319
10.1038/scientificamerican0792-66
10.1016/j.infsof.2017.08.014
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2938260
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 2169-3536
EndPage 126375
ExternalDocumentID oai_doaj_org_article_6fc7ea55e8664cf6b33c0556f35260cf
10_1109_ACCESS_2019_2938260
8819910
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-a4edfa00885d298e4c3e0894c093eecad2947b89ff4440cf36331c9c1aa0a07b3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:25:29 EDT 2025
Sun Jun 29 15:55:54 EDT 2025
Tue Jul 01 02:41:53 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Wed Aug 27 02:42:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-a4edfa00885d298e4c3e0894c093eecad2947b89ff4440cf36331c9c1aa0a07b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8563-6611
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8819910
PQID 2455607114
PQPubID 4845423
PageCount 21
ParticipantIDs crossref_primary_10_1109_ACCESS_2019_2938260
proquest_journals_2455607114
doaj_primary_oai_doaj_org_article_6fc7ea55e8664cf6b33c0556f35260cf
crossref_citationtrail_10_1109_ACCESS_2019_2938260
ieee_primary_8819910
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References corne (ref27) 2001
ref13
ref14
ref11
singh (ref12) 2012; 36
ref10
ref17
ref16
ref19
ref18
holland (ref6) 1975
thede (ref9) 2004; 20
ref51
ref50
ref45
ref48
ref47
ref42
ref41
ref43
zitzler (ref24) 2001
ref49
bian (ref21) 2015
ref8
ref7
ref4
ref3
ref5
ref35
ref34
ref37
ref36
pradhan (ref40) 2016
ref31
ref30
ref32
ref2
ref1
ref39
ref38
ref23
ref26
ref25
kitchenham (ref33) 2007; 5
ref20
ref28
epitropakis (ref44) 2015
ref29
di nucci (ref15) 0
li (ref46) 2013
goldberg (ref22) 1985
References_xml – ident: ref42
  doi: 10.1016/j.jss.2016.09.045
– year: 0
  ident: ref15
  article-title: A test case prioritization genetic algorithm guided by the hypervolume indicator
  publication-title: IEEE Trans Softw Eng
– ident: ref13
  doi: 10.1145/1146238.1146240
– ident: ref35
  doi: 10.1145/2601248.2601268
– ident: ref14
  doi: 10.1109/ICSM.1999.792604
– ident: ref41
  doi: 10.1109/TII.2017.2788019
– ident: ref25
  doi: 10.1002/int.20358
– ident: ref36
  doi: 10.1145/2915970.2916006
– start-page: 154
  year: 1985
  ident: ref22
  article-title: Alleleslociand the traveling salesman problem
  publication-title: Proc Int Conf Genetic Algorithms Appl
– start-page: 221
  year: 2015
  ident: ref21
  article-title: Regression test case prioritisation for Guava
  publication-title: Proc 2nd Int Symp Search Based Software Eng
  doi: 10.1007/978-3-319-22183-0_15
– ident: ref2
  doi: 10.1109/32.988497
– ident: ref10
  doi: 10.1147/sj.411.0004
– ident: ref5
  doi: 10.1109/CCAA.2018.8777692
– start-page: 283
  year: 2001
  ident: ref27
  article-title: PESA-II: Region-based selection in evolutionary multi objective optimization
  publication-title: Proc Genetic Evol Comput Conf
– ident: ref31
  doi: 10.1007/s11219-012-9181-z
– ident: ref32
  doi: 10.1145/2372233.2372238
– start-page: 234
  year: 2015
  ident: ref44
  article-title: Empirical evaluation of Pareto efficient multi-objective regression test case prioritisation
  publication-title: Proc Int Symp Softw Test Anal
  doi: 10.1145/2771783.2771788
– ident: ref29
  doi: 10.1145/1830483.1830735
– ident: ref38
  doi: 10.1145/2134243.2134250
– year: 2001
  ident: ref24
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref7
  doi: 10.1145/2889160.2889240
– ident: ref23
  doi: 10.1109/4235.996017
– start-page: 172
  year: 2016
  ident: ref40
  article-title: STIPI: Using search to prioritize test cases based on multi-objectives derived from industrial practice
  publication-title: Proc IFIP Int Conf Testing Softw Syst
  doi: 10.1007/978-3-319-47443-4_11
– ident: ref28
  doi: 10.1109/ICST.2017.40
– ident: ref4
  doi: 10.1016/S0950-5849(01)00189-6
– ident: ref16
  doi: 10.1109/TSE.2007.38
– ident: ref17
  doi: 10.1109/2.294849
– ident: ref47
  doi: 10.1145/2908812.2908871
– ident: ref1
  doi: 10.1002/stv.430
– ident: ref26
  doi: 10.1162/106365600568167
– start-page: 111
  year: 2013
  ident: ref46
  article-title: A fine-grained parallel multi-objective test case prioritization on GPU
  publication-title: Proc 2nd Int Symp Search Based Software Eng
  doi: 10.1007/978-3-642-39742-4_10
– ident: ref3
  doi: 10.1007/978-3-319-22183-0_8
– ident: ref8
  doi: 10.1145/2648511.2648515
– ident: ref20
  doi: 10.1007/978-3-642-39742-4_7
– volume: 36
  start-page: 379
  year: 2012
  ident: ref12
  article-title: Systematic literature review on regression test prioritization techniques
  publication-title: Informatica
– ident: ref18
  doi: 10.1016/S0167-739X(98)00034-X
– ident: ref50
  doi: 10.1109/ICSE.2017.61
– ident: ref43
  doi: 10.1109/ICCTA.2012.6523563
– volume: 5
  year: 2007
  ident: ref33
  article-title: Guidelines for performing systematic literature reviews in software engineering
– ident: ref51
  doi: 10.1016/j.orp.2016.09.002
– ident: ref45
  doi: 10.1109/TSE.2015.2510633
– ident: ref48
  doi: 10.1109/ICSE.2001.919106
– ident: ref11
  doi: 10.1016/j.jss.2011.09.063
– volume: 20
  start-page: 115
  year: 2004
  ident: ref9
  article-title: An introduction to genetic algorithms
  publication-title: J Comput Sci Colleges
  doi: 10.1023/A:1025850513781
– ident: ref37
  doi: 10.1016/j.jss.2006.07.009
– year: 1975
  ident: ref6
  publication-title: Adaptation in Natural and Artificial Systems An Introductory Analysis With Applications to Biology Control and Artificial Intelligence
– ident: ref49
  doi: 10.1145/2568225.2568271
– ident: ref39
  doi: 10.1007/s13369-017-2830-6
– ident: ref34
  doi: 10.1002/smr.319
– ident: ref19
  doi: 10.1038/scientificamerican0792-66
– ident: ref30
  doi: 10.1016/j.infsof.2017.08.014
SSID ssj0000816957
Score 2.4138417
Snippet Regression testing is the essential process of software maintenance and evolution phase of the software development life cycle for assuring the quality and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126355
SubjectTerms Bibliographies
Classification
Genetic algorithm
Genetic algorithms
Literature reviews
NSGA-II
Operators
Optimization
Performance measurement
Quality assessment
Quality assurance
Regression analysis
regression testing
Research methodology
Searching
Sociology
Software
Software development
Software reliability
Statistical analysis
Statistics
Systematic review
Systematics
test case prioritization
Testing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1BT8MgFICJ8aQHo07jdBoOHq2jQFs41sZlMcaYbEt2I5SCmszNbPP_yytdM2OiF6-00PJ48B7k8T2ErhNTSVPpOGIlcxEv4yQSzCYRg7Q4tBJMB9rnUzqc8IdpMt1K9QUxYQEPHATXh7soVieJFWnKjUtLxgwAYByA3YlxsPp6m7e1marXYBGnMskazFBMZD8vCt8jiOWSt97Eea-afDNFNbG_SbHyY12ujc3gEB00XiLOw98doR07P0b7W-zADhrleNRSmPFjS0fG4bQfLxwe-5Zx4c0Ufl6-LYBeFO5c4jpOAANxGurmsxd4-Pq-OkGTwf24GEZNhoTIcCLWkea2ctr3ViQVlcJywywRkhsimbVG-0KelUI6xzn3wmIpY7GRJtaaaJKV7BTtzhdze4YwlzTWQlLhdMWtoNJPTkrKrNTE-i2H6SK6EZYyDT4csljMVL2NIFIFCSuQsGok3EU3baWPQM_4_fU7GIX2VUBf1wVeIVSjEOovheiiDoxh24gQEN3l2-5txlQ103SlKPcVvZMV8_P_-PQF2oPuhBOaHtpdLz_tpfdZ1uVVrZ5fO7DlSA
  priority: 102
  providerName: Directory of Open Access Journals
Title A Systematic Literature Review of Test Case Prioritization Using Genetic Algorithms
URI https://ieeexplore.ieee.org/document/8819910
https://www.proquest.com/docview/2455607114
https://doaj.org/article/6fc7ea55e8664cf6b33c0556f35260cf
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTnDoA4q6LUU-cCSLEztZ-7hdFSFEKyRA4mbZzritCrsV7F766-uxvVGhVdVblHiiccbOPDzzDcBh63vte1tXwolQSVe3lRLYVoLa4jS9EjajfX7uTq_l2U17swFHQy0MIqbkMxzTZTrL7xd-RaGyY6UoUSc66M-i45ZrtYZ4CjWQ0O2kAAvVXB9PZ7M4B8re0uOo1KIdzR8pn4TRX5qq_PEnTurl5AV8WjOWs0q-j1dLN_Y_n2A2_i_nL-F5sTPZNC-MV7CB8x3Y_g19cAe2yNDMOM27cDlllwOoMzsfwJZZPjxgi8CuIttsFrUeu7j_tiAwpFzCyVLaASMAa6Kd3n6hh1_vHl7D9cnHq9lpVRouVF5ytaysxD7Y-ClV2zdaofQCudLScy0QvY035cQpHYKUkvsgOiFqr31tLbd84sQebM4Xc3wDTOqmtko3Ktheomp03OsNdxNnOUYPxo-gWUvC-IJGTk0xbk3ySrg2WXyGxGeK-EZwNBD9yGAc_x7-gUQ8DCUk7XQjisaUjWmo1glt26LqOulD54TwBDAUqHFAnOMIdkmcw0uKJEewv14wpuz6B9PISBhttlq-_TvVO9giBnMIZx82l_crfB-NmqU7SMGAg7SmfwH4I_Pk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5V5UA5UGhBhLbgA8du6vVjYx9D1CpAWiE1lXqzbK9dECVBbXLh1-NZOyteQtxWu_ZqvN94Z2zPfAPwRvpW-9bWFXc8VsLVslI8yIpjWRzWKm4z2-dFM70S76_l9RYc97kwIYQu-CwM8bI7y2-Xfo1bZSdKYaBOWqA_SHZfspyt1e-oYAkJLUeFWqim-mQ8maRRYPyWHiazljxp-ov56Vj6S1mVP_7FnYE524XzjWg5ruTLcL1yQ__9N9bG_5X9CTwuniYZZ9V4ClthsQePfuIf3IMddDUzU_M-XI7JZU_rTGY93TLJxwdkGck8iU0mye6Rj3efl0iHlJM4SRd4QJDCGvuOb2_w4aev98_g6ux0PplWpeRC5QVVq8qK0EabPqWSLdMqCM8DVVp4qnkI3qabYuSUjlEIQX3kDee11762llo6cvw5bC-Wi_ACiNCstkozFW0rgmI6zXZG3chZGtIaxg-AbZAwvvCRY1mMW9OtS6g2GT6D8JkC3wCO-07fMh3Hv5u_RYj7psil3d1I0JgyNQ1mOwUrZVBNI3xsHOceKYYilg5IYxzAPsLZv6QgOYDDjcKYMu_vDUt6iYx9tXj5916v4eF0fj4zs3cXHw5gB4XNGzqHsL26W4ej5OKs3KtOs38AFlf2OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Literature+Review+of+Test+Case+Prioritization+Using+Genetic+Algorithms&rft.jtitle=IEEE+access&rft.au=Bajaj%2C+Anu&rft.au=Sangwan%2C+Om+Prakash&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=126355&rft.epage=126375&rft_id=info:doi/10.1109%2FACCESS.2019.2938260&rft.externalDocID=8819910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon