SwitchNet: A modular neural network for adaptive relation extraction
This paper presents a portable toolkit, SwitchNet, for extracting relations from textual input. We summarize four data protocols for relation extraction tasks, including relation classification, relation extraction, triple extraction, and distant supervision relation extraction. This neural architec...
Saved in:
Published in | Computers & electrical engineering Vol. 104; no. B; p. 108445 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0045-7906 1879-0755 1879-0755 |
DOI | 10.1016/j.compeleceng.2022.108445 |
Cover
Abstract | This paper presents a portable toolkit, SwitchNet, for extracting relations from textual input. We summarize four data protocols for relation extraction tasks, including relation classification, relation extraction, triple extraction, and distant supervision relation extraction. This neural architecture is modular, so it can take as input data at different stages of the information extraction process (simple text, text and entities or entity pairs as relation candidates) and compute the rest of the process (named entity recognition and relation classification). We systematically design four information flows to integrate the above protocols by sharing network building blocks and switching different information flows. This framework can extract multiple triples (subject, predicate, object) in one pass. This framework enhances the use of relation classification models in end-to-end triple extraction by inferring pairs of entities of interest and using the shared representation mechanism.
[Display omitted]
•Dividing the information extraction process into modular neural networks.•4 information flows for integrating 4 relation extraction data protocols.•Integrating NER and RE subtasks through the POEOI inference.•Performance improvements for 4 relation extraction tasks. |
---|---|
AbstractList | This paper presents a portable toolkit, SwitchNet, for extracting relations from textual input. We summarize four data protocols for relation extraction tasks, including relation classification, relation extraction, triple extraction, and distant supervision relation extraction. This neural architecture is modular, so it can take as input data at different stages of the information extraction process (simple text, text and entities or entity pairs as relation candidates) and compute the rest of the process (named entity recognition and relation classification). We systematically design four information flows to integrate the above protocols by sharing network building blocks and switching different information flows. This framework can extract multiple triples (subject, predicate, object) in one pass. This framework enhances the use of relation classification models in end-to-end triple extraction by inferring pairs of entities of interest and using the shared representation mechanism. © 2022 The Author(s) This paper presents a portable toolkit, SwitchNet, for extracting relations from textual input. We summarize four data protocols for relation extraction tasks, including relation classification, relation extraction, triple extraction, and distant supervision relation extraction. This neural architecture is modular, so it can take as input data at different stages of the information extraction process (simple text, text and entities or entity pairs as relation candidates) and compute the rest of the process (named entity recognition and relation classification). We systematically design four information flows to integrate the above protocols by sharing network building blocks and switching different information flows. This framework can extract multiple triples (subject, predicate, object) in one pass. This framework enhances the use of relation classification models in end-to-end triple extraction by inferring pairs of entities of interest and using the shared representation mechanism. [Display omitted] •Dividing the information extraction process into modular neural networks.•4 information flows for integrating 4 relation extraction data protocols.•Integrating NER and RE subtasks through the POEOI inference.•Performance improvements for 4 relation extraction tasks. |
ArticleNumber | 108445 |
Author | Tiwari, Prayag Gupta, Deepak Zhang, Yazhou Dehdashti, Shahram Zhu, Hongyin Alharbi, Meshal Nguyen, Tri Gia |
Author_xml | – sequence: 1 givenname: Hongyin orcidid: 0000-0002-4223-5209 surname: Zhu fullname: Zhu, Hongyin email: zhuhongyin@inspur.com organization: Inspur Electronic Information Industry Co., Ltd., Jinan 250101, China – sequence: 2 givenname: Prayag surname: Tiwari fullname: Tiwari, Prayag email: prayag.tiwari@ieee.org organization: School of Information Technology, Halmstad University, Sweden – sequence: 3 givenname: Yazhou surname: Zhang fullname: Zhang, Yazhou email: yzzhang@zzuli.edu.cn organization: Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450002, China – sequence: 4 givenname: Deepak surname: Gupta fullname: Gupta, Deepak email: deepakgupta@mait.ac.in organization: Maharaja Agrasen Institute of Technology, Delhi, India – sequence: 5 givenname: Meshal surname: Alharbi fullname: Alharbi, Meshal email: Mg.alharbi@psau.edu.sa organization: Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, P.O. Box 151, Alkharj 11942, Saudi Arabia – sequence: 6 givenname: Tri Gia surname: Nguyen fullname: Nguyen, Tri Gia email: tri@ieee.org organization: FPT University, Danang 50509, Viet Nam – sequence: 7 givenname: Shahram surname: Dehdashti fullname: Dehdashti, Shahram email: shahram.dehdashti@gmail.com organization: School of Information Systems, Queensland University of Technology, Brisbane 4000, Australia |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-48910$$DView record from Swedish Publication Index |
BookMark | eNqNkMtOwzAQRS1UJNrCP4Q1SrGdxHbYoKrlJVWw4LG1XHvSuqRx5Lgt_D0pAQmx6urOjObeGZ0B6lWuAoTOCR4RTNjlaqTduoYSNFSLEcWUtnORptkR6hPB8xjzLOuhPsZpFvMcsxM0aJoVbntGRB9Nn3c26OUjhKtoHK2d2ZTKRxVsvCpbCTvn36PC-UgZVQe7hchDqYJ1VQQfwSu9L0_RcaHKBs5-dIheb29eJvfx7OnuYTKexTrFIsQq5VyTudAFS2lBWJ5xmmFsRDLXNM2YIZpQEIoyRsDkrEiSTFOTQ8GF4VwkQ3TR5TY7qDdzWXu7Vv5TOmXl1L6NpfMLuVzKVOQEt9vX3bb2rmk8FFLb8P16-7ctJcFyj1Cu5B-Eco9QdgjbhPxfwu_FQ7yTzgstkK0FLxttodJgrAcdpHH2gJQvDz2V5w |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125976 crossref_primary_10_1016_j_eswa_2023_122723 crossref_primary_10_1007_s10489_024_05842_y crossref_primary_10_1016_j_asoc_2023_110075 crossref_primary_10_1016_j_compeleceng_2025_110237 |
Cites_doi | 10.1109/CVPR.2014.81 10.18653/v1/P17-1036 10.1162/106454699568728 10.1016/j.neuron.2016.10.050 10.1016/j.eswa.2018.07.032 10.18653/v1/P16-1200 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION AAXBQ ADTPV AOWAS D8T D8Z ZZAVC |
DOI | 10.1016/j.compeleceng.2022.108445 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SWEPUB Högskolan i Halmstad full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Högskolan i Halmstad SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0755 |
ExternalDocumentID | oai_DiVA_org_hh_48910 10_1016_j_compeleceng_2022_108445 S0045790622006607 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AAXBQ ADTPV AOWAS D8T D8Z EFKBS ZZAVC |
ID | FETCH-LOGICAL-c408t-a477c1b8cf642f169572500d83bc2456d1c12e8a2661ed96f335c2d9ef78d7783 |
IEDL.DBID | AIKHN |
ISSN | 0045-7906 1879-0755 |
IngestDate | Tue Sep 09 23:34:38 EDT 2025 Tue Jul 01 01:45:55 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Fri Feb 23 02:37:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | B |
Keywords | Relation extraction Entity pair Joint optimization Information flow Modular neural network |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-a477c1b8cf642f169572500d83bc2456d1c12e8a2661ed96f335c2d9ef78d7783 |
ORCID | 0000-0002-4223-5209 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0045790622006607 |
ParticipantIDs | swepub_primary_oai_DiVA_org_hh_48910 crossref_citationtrail_10_1016_j_compeleceng_2022_108445 crossref_primary_10_1016_j_compeleceng_2022_108445 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2022_108445 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Computers & electrical engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zeng D, Liu K, Lai S, Zhou G, Zhao J. Relation classification via convolutional deep neural network. In: Proceedings of COLING 2014. 2014, p. 2335–44. Dorigo, Caro, Gambardella (b25) 1999; 5 Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014, p. 580–7. Rotsztejn, Hollenstein, Zhang (b21) 2018 Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for text classification. In: Proceedings of NIPS, vol. 28. 2015, p. 649–57. Sun, Gong, Wu, Gong, Jiang, Lan (b9) 2019 Zheng, Wang, Bao, Hao, Zhou, Xu (b4) 2017 Banko M, Cafarella MJ, Soderland S, Broadhead M, Etzioni O. Open information extraction from the web. In: Proceedings of IJCAI 2007. p. 2670–6. Mikolov T, Chen K, Corrado G, Dean J. Efficient Estimation of Word Representations in Vector Space. In: Proceedings of ICLR workshop track. 2013. Ma, Hovy (b20) 2016 Zhang, Qi, Manning (b8) 2018 Yang, Yang, Dyer, He, Smola, Hovy (b23) 2016 Vafaie H, Imam IF. Feature selection methods: Genetic algorithms vs. greedy-like search. In: Proceedings of the international conference on fuzzy and intelligent control systems, vol. 51. 1994, p. 28. Bekoulis, Deleu, Demeester, Develder (b11) 2018; 114 Xu, Mou, Li, Chen, Peng, Jin (b6) 2015 He R, Lee WS, Ng HT, Dahlmeier D. An unsupervised neural attention model for aspect extraction. In: Proceedings of the ACL. 2017, p. 388–97. Mintz, Bills, Snow, Jurafsky (b13) 2009 Wang, Tan, Yu, Chang, Wang, Xu (b10) 2019 Lin Y, Shen S, Liu Z, Luan H, Sun M. Neural relation extraction with selective attention over instances. In: Proceedings of ACL. 2016, p. 2124–33. Miwa, Bansal (b7) 2016 Devlin, Chang, Lee, Toutanova (b17) 2019 Poo, Du, Ip, Xiong, Xu, Tan (b2) 2016; 92 Han, Gao, Yao, Ye, Liu, Sun (b12) 2019 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Proceedings of NIPS. 2017, p. 5998–6008. Riedel, Yao, McCallum (b14) 2010 10.1016/j.compeleceng.2022.108445_b5 10.1016/j.compeleceng.2022.108445_b3 Mintz (10.1016/j.compeleceng.2022.108445_b13) 2009 10.1016/j.compeleceng.2022.108445_b24 Dorigo (10.1016/j.compeleceng.2022.108445_b25) 1999; 5 10.1016/j.compeleceng.2022.108445_b1 10.1016/j.compeleceng.2022.108445_b22 Rotsztejn (10.1016/j.compeleceng.2022.108445_b21) 2018 Riedel (10.1016/j.compeleceng.2022.108445_b14) 2010 Devlin (10.1016/j.compeleceng.2022.108445_b17) 2019 10.1016/j.compeleceng.2022.108445_b15 Ma (10.1016/j.compeleceng.2022.108445_b20) 2016 Bekoulis (10.1016/j.compeleceng.2022.108445_b11) 2018; 114 Miwa (10.1016/j.compeleceng.2022.108445_b7) 2016 Sun (10.1016/j.compeleceng.2022.108445_b9) 2019 Poo (10.1016/j.compeleceng.2022.108445_b2) 2016; 92 Zheng (10.1016/j.compeleceng.2022.108445_b4) 2017 Xu (10.1016/j.compeleceng.2022.108445_b6) 2015 10.1016/j.compeleceng.2022.108445_b16 10.1016/j.compeleceng.2022.108445_b19 10.1016/j.compeleceng.2022.108445_b18 Yang (10.1016/j.compeleceng.2022.108445_b23) 2016 Wang (10.1016/j.compeleceng.2022.108445_b10) 2019 Han (10.1016/j.compeleceng.2022.108445_b12) 2019 Zhang (10.1016/j.compeleceng.2022.108445_b8) 2018 |
References_xml | – start-page: 1105 year: 2016 end-page: 1116 ident: b7 article-title: End-to-end relation extraction using LSTMs on sequences and tree structures publication-title: Proceedings of ACL – start-page: 1003 year: 2009 end-page: 1011 ident: b13 article-title: Distant supervision for relation extraction without labeled data publication-title: Proceedings of ACL – reference: Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for text classification. In: Proceedings of NIPS, vol. 28. 2015, p. 649–57. – start-page: 1480 year: 2016 end-page: 1489 ident: b23 article-title: Hierarchical attention networks for document classification publication-title: Proceedings of NAACL – start-page: 2205 year: 2018 end-page: 2215 ident: b8 article-title: Graph convolution over pruned dependency trees improves relation extraction publication-title: Proceedings of EMNLP – reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Proceedings of NIPS. 2017, p. 5998–6008. – reference: Banko M, Cafarella MJ, Soderland S, Broadhead M, Etzioni O. Open information extraction from the web. In: Proceedings of IJCAI 2007. p. 2670–6. – volume: 5 start-page: 137 year: 1999 end-page: 172 ident: b25 article-title: Ant algorithms for discrete optimization publication-title: Artif Life – volume: 114 start-page: 34 year: 2018 end-page: 45 ident: b11 article-title: Joint entity recognition and relation extraction as a multi-head selection problem publication-title: Expert Syst Appl – reference: Lin Y, Shen S, Liu Z, Luan H, Sun M. Neural relation extraction with selective attention over instances. In: Proceedings of ACL. 2016, p. 2124–33. – start-page: 169 year: 2019 end-page: 174 ident: b12 article-title: OpenNRE: An open and extensible toolkit for neural relation extraction publication-title: Proceedings of EMNLP-IJCNLP - system demonstrations – reference: Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014, p. 580–7. – start-page: 1064 year: 2016 end-page: 1074 ident: b20 article-title: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF publication-title: Proceedings of ACL – start-page: 1785 year: 2015 end-page: 1794 ident: b6 article-title: Classifying relations via long short term memory networks along shortest dependency paths publication-title: Proceedings of EMNLP – start-page: 148 year: 2010 end-page: 163 ident: b14 article-title: Modeling relations and their mentions without labeled text publication-title: Joint European conference on machine learning and knowledge discovery in databases, vol. 6323 – reference: Mikolov T, Chen K, Corrado G, Dean J. Efficient Estimation of Word Representations in Vector Space. In: Proceedings of ICLR workshop track. 2013. – reference: He R, Lee WS, Ng HT, Dahlmeier D. An unsupervised neural attention model for aspect extraction. In: Proceedings of the ACL. 2017, p. 388–97. – volume: 92 start-page: 591 year: 2016 end-page: 596 ident: b2 article-title: China brain project: Basic neuroscience, brain diseases, and brain-inspired computing publication-title: Neuron – reference: Zeng D, Liu K, Lai S, Zhou G, Zhao J. Relation classification via convolutional deep neural network. In: Proceedings of COLING 2014. 2014, p. 2335–44. – year: 2018 ident: b21 article-title: ETH-DS3lab at SemEval-2018 task 7: Effectively combining recurrent and convolutional neural networks for relation classification and extraction publication-title: Proceedings of the international workshop on semantic evaluation – reference: Vafaie H, Imam IF. Feature selection methods: Genetic algorithms vs. greedy-like search. In: Proceedings of the international conference on fuzzy and intelligent control systems, vol. 51. 1994, p. 28. – start-page: 1227 year: 2017 end-page: 1236 ident: b4 article-title: Joint extraction of entities and relations based on a novel tagging scheme publication-title: Proceedings of ACL – start-page: 4171 year: 2019 end-page: 4186 ident: b17 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: Proceedings of NAACL-HLT – start-page: 1361 year: 2019 end-page: 1370 ident: b9 article-title: Joint type inference on entities and relations via graph convolutional networks publication-title: Proceedings of ACL – start-page: 1371 year: 2019 end-page: 1377 ident: b10 article-title: Extracting multiple-relations in one-pass with pre-trained transformers publication-title: Proceedings of ACL – ident: 10.1016/j.compeleceng.2022.108445_b19 – start-page: 1064 year: 2016 ident: 10.1016/j.compeleceng.2022.108445_b20 article-title: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF – ident: 10.1016/j.compeleceng.2022.108445_b1 doi: 10.1109/CVPR.2014.81 – start-page: 1371 year: 2019 ident: 10.1016/j.compeleceng.2022.108445_b10 article-title: Extracting multiple-relations in one-pass with pre-trained transformers – ident: 10.1016/j.compeleceng.2022.108445_b22 doi: 10.18653/v1/P17-1036 – start-page: 1480 year: 2016 ident: 10.1016/j.compeleceng.2022.108445_b23 article-title: Hierarchical attention networks for document classification – volume: 5 start-page: 137 issue: 2 year: 1999 ident: 10.1016/j.compeleceng.2022.108445_b25 article-title: Ant algorithms for discrete optimization publication-title: Artif Life doi: 10.1162/106454699568728 – year: 2018 ident: 10.1016/j.compeleceng.2022.108445_b21 article-title: ETH-DS3lab at SemEval-2018 task 7: Effectively combining recurrent and convolutional neural networks for relation classification and extraction – volume: 92 start-page: 591 issue: 3 year: 2016 ident: 10.1016/j.compeleceng.2022.108445_b2 article-title: China brain project: Basic neuroscience, brain diseases, and brain-inspired computing publication-title: Neuron doi: 10.1016/j.neuron.2016.10.050 – ident: 10.1016/j.compeleceng.2022.108445_b18 – volume: 114 start-page: 34 year: 2018 ident: 10.1016/j.compeleceng.2022.108445_b11 article-title: Joint entity recognition and relation extraction as a multi-head selection problem publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.07.032 – start-page: 4171 year: 2019 ident: 10.1016/j.compeleceng.2022.108445_b17 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding – ident: 10.1016/j.compeleceng.2022.108445_b16 – ident: 10.1016/j.compeleceng.2022.108445_b24 – start-page: 1785 year: 2015 ident: 10.1016/j.compeleceng.2022.108445_b6 article-title: Classifying relations via long short term memory networks along shortest dependency paths – start-page: 1105 year: 2016 ident: 10.1016/j.compeleceng.2022.108445_b7 article-title: End-to-end relation extraction using LSTMs on sequences and tree structures – ident: 10.1016/j.compeleceng.2022.108445_b3 – start-page: 169 year: 2019 ident: 10.1016/j.compeleceng.2022.108445_b12 article-title: OpenNRE: An open and extensible toolkit for neural relation extraction – ident: 10.1016/j.compeleceng.2022.108445_b15 doi: 10.18653/v1/P16-1200 – start-page: 1227 year: 2017 ident: 10.1016/j.compeleceng.2022.108445_b4 article-title: Joint extraction of entities and relations based on a novel tagging scheme – ident: 10.1016/j.compeleceng.2022.108445_b5 – start-page: 2205 year: 2018 ident: 10.1016/j.compeleceng.2022.108445_b8 article-title: Graph convolution over pruned dependency trees improves relation extraction – start-page: 1361 year: 2019 ident: 10.1016/j.compeleceng.2022.108445_b9 article-title: Joint type inference on entities and relations via graph convolutional networks – start-page: 148 year: 2010 ident: 10.1016/j.compeleceng.2022.108445_b14 article-title: Modeling relations and their mentions without labeled text – start-page: 1003 year: 2009 ident: 10.1016/j.compeleceng.2022.108445_b13 article-title: Distant supervision for relation extraction without labeled data |
SSID | ssj0004618 |
Score | 2.3589776 |
Snippet | This paper presents a portable toolkit, SwitchNet, for extracting relations from textual input. We summarize four data protocols for relation extraction tasks,... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 108445 |
SubjectTerms | Entity pair Information flow Joint optimization Modular neural network Relation extraction |
Title | SwitchNet: A modular neural network for adaptive relation extraction |
URI | https://dx.doi.org/10.1016/j.compeleceng.2022.108445 https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-48910 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MCaIP4hXvRPC1bm3TJBVfhhem4l68sLfQJuk20W6MiW_-dnOadtYHQfCxhdOUk_CdE_J9XwBORKyZbjPt8TDNPBpw5cVGGS_TLE0z5TNVyMXue6z7RG_7Ub8BF5UWBmmVJfY7TC_QunzTKrPZmoxGqPGlEUeb3eL8ABXli0EYs6gJi52bu26vJo_0HSBTdGdssyU4_qZ5IXMbb5wx-cDuFoMASXcUxU2_lKm6n2hRg67XYLVsHknH_d86NEy-ASs1S8FNuHz4GNmJ6JnZGemQt7FGmilB10obmDvON7GNKkl0MkGoI9OSDkcsTE-dzGELnq6vHi-6XnlTgqdoW8y8hHKu_FSozG4nMp_FEbetTVuLMFV4sql95QdGJFiNjY5ZFoaRCnRsMi405yLchmY-zs0OkDBh9ktBGqnUNnO2nCdUa2oSVljj8GwXRJUYqUobcbzN4lVWfLEXWcupxJxKl9NdCOahE-el8Zeg8yr78sfCkBbz_xJ-4mZsPiL6aV-OnjtyPB3I4VBSYTumvf-Nsg_L-ORoLgfQnE3fzaFtVmbpESycfvpH5ZL8AiVL6x0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT8IwFG0IJn48GD8jftaE1wnburYzvhCQoAIvguGt2doOMDoIwfjmb7d3HYgPJiS-brnrctuce5uec4pQmYeKqipVDvPjxCEek06opXYSReM4kS6VmVys06WtPnkcBIMCqi-0MECrzLHfYnqG1vmTSp7NynQ8Bo0vCRjY7GbnB6Ao3yCBz4DXd_PlrogjXQvHBLwZq3QTXf-QvIC3DffN6HRo9oqeB5Q7AtKmP4rUqptoVoGae2g3bx1xzf7dPiro9ADtrBgKHqLG8-fYTENXz29xDb9PFJBMMXhWmsDUMr6xaVNxpKIpAB2e5WQ4bEB6ZkUOR6jfvO_VW05-T4IjSZXPnYgwJt2Yy8RsJhKXhgEzjU1VcT-WcK6pXOl6mkdQi7UKaeL7gfRUqBPGFWPcP0bFdJLqE4T9iJoveXEgY9PKmWIeEaWIjmhmjMOSEuKLxAiZm4jDXRZvYsEWexUrORWQU2FzWkLeMnRqnTTWCbpbZF_8WhbCIP464WU7Y8sRwU27MX6piclsKEYjQbjpl07_N8oV2mr1Om3Rfug-naFteGMJL-eoOJ996AvTtszjy2xZfgMjaevo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SwitchNet&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Zhu%2C+Hongyin&rft.au=Tiwari%2C+Prayag&rft.au=Zhang%2C+Yazhou&rft.au=Gupta%2C+Deepak&rft.date=2022-12-01&rft.issn=0045-7906&rft.volume=104&rft.issue=B&rft_id=info:doi/10.1016%2Fj.compeleceng.2022.108445&rft.externalDocID=oai_DiVA_org_hh_48910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |