A Feature-Based On-Line Detector to Remove Adversarial-Backdoors by Iterative Demarcation
This paper proposes a novel feature-based on-line detection strategy, Removing Adversarial-Backdoors by Iterative Demarcation (RAID), for backdoor attacks. The proposed method is comprised of two parts: off-line training and on-line retraining. In the off-line training, a novelty detector and a shal...
Saved in:
Published in | IEEE access Vol. 10; pp. 5545 - 5558 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a novel feature-based on-line detection strategy, Removing Adversarial-Backdoors by Iterative Demarcation (RAID), for backdoor attacks. The proposed method is comprised of two parts: off-line training and on-line retraining. In the off-line training, a novelty detector and a shallow neural network are trained with clean validation data. During the on-line implementation, both models attempt to detect samples from the streaming data that differ from the validation data (i.e., flag likely-poisoned samples and possibly a few clean samples as false positives). An anomaly detector is used to purify the anomalous data by removing the clean samples. A binary support vector machine (SVM) is trained with the purified anomalous data and the clean validation data. RAID uses the SVM to detect poisoned inputs. To increase the accuracy as new anomalous data is being detected, the SVM is updated as well in real-time. It is shown that with updating, RAID can efficiently reduce the attack success rate while maintaining the classification accuracy against various types of backdoor attacks. The efficacy of RAID is compared against several state-of-the-art techniques. Additionally, it is shown that RAID only requires a small clean validation dataset to achieve such performance, and therefore provides a practical and efficient approach. |
---|---|
AbstractList | This paper proposes a novel feature-based on-line detection strategy, Removing Adversarial-Backdoors by Iterative Demarcation (RAID), for backdoor attacks. The proposed method is comprised of two parts: off-line training and on-line retraining. In the off-line training, a novelty detector and a shallow neural network are trained with clean validation data. During the on-line implementation, both models attempt to detect samples from the streaming data that differ from the validation data (i.e., flag likely-poisoned samples and possibly a few clean samples as false positives). An anomaly detector is used to purify the anomalous data by removing the clean samples. A binary support vector machine (SVM) is trained with the purified anomalous data and the clean validation data. RAID uses the SVM to detect poisoned inputs. To increase the accuracy as new anomalous data is being detected, the SVM is updated as well in real-time. It is shown that with updating, RAID can efficiently reduce the attack success rate while maintaining the classification accuracy against various types of backdoor attacks. The efficacy of RAID is compared against several state-of-the-art techniques. Additionally, it is shown that RAID only requires a small clean validation dataset to achieve such performance, and therefore provides a practical and efficient approach. |
Author | Veldanda, Akshaj Kumar Khorrami, Farshad Fu, Hao Krishnamurthy, Prashanth Garg, Siddharth |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0002-8282-6580 surname: Fu fullname: Fu, Hao email: hf881@nyu.edu organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA – sequence: 2 givenname: Akshaj Kumar surname: Veldanda fullname: Veldanda, Akshaj Kumar organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA – sequence: 3 givenname: Prashanth orcidid: 0000-0001-8264-7972 surname: Krishnamurthy fullname: Krishnamurthy, Prashanth organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA – sequence: 4 givenname: Siddharth orcidid: 0000-0002-6158-9512 surname: Garg fullname: Garg, Siddharth organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA – sequence: 5 givenname: Farshad orcidid: 0000-0002-8418-004X surname: Khorrami fullname: Khorrami, Farshad organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA |
BookMark | eNqFkU1rGzEQhkVJIWmaX5DLQs_r6mul1dFxk9ZgCOTjkJMYa0dFrrNKJNmQf185G0LpJbpoNLzPO4PeL-RojCMScs7ojDFqvs8Xi8vb2xmnnM8Ek4xq_YmccKZMKzqhjv6pj8lZzhtaT19bnT4hD_PmCqHsErYXkHForsd2FUZsfmBBV2JqSmxu8DHusZkPe0wZUoBtFbs_Q4wpN-uXZlkwQQn7A_UIydU6jl_JZw_bjGdv9ym5v7q8W_xqV9c_l4v5qnWS9qUFDn2P3nMlgDkcujVVfac77o3oQVPh5KC8M8wJQ5Hz-vS6p0p7WaVrL07JcvIdImzsUwp1gxcbIdjXRky_LaQS3BatYg7MmjLmeSe1MoYL4x03wPwgpTTV69vk9ZTi8w5zsZu4S2Nd33LFGVVS0L6qxKRyKeac0L9PZdQeIrFTJPYQiX2LpFLmP8qF8vpTJUHYfsCeT2xAxPdpRmmhpRR_Adq3mes |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_TIFS_2023_3297056 crossref_primary_10_1016_j_bspc_2024_106573 crossref_primary_10_1109_ACCESS_2024_3355816 crossref_primary_10_1109_ACCESS_2024_3382584 crossref_primary_10_1007_s00521_024_09506_3 crossref_primary_10_1109_ACCESS_2025_3543333 crossref_primary_10_1145_3704725 |
Cites_doi | 10.1109/CCTA41146.2020.9206312 10.1609/aaai.v34i07.6871 10.1109/ICDCS51616.2021.00086 10.1109/CVPR.2019.00301 10.1109/CVPR.2011.5995566 10.1145/3359789.3359790 10.1109/TPAMI.2003.1217609 10.1109/CVPR.2014.244 10.1109/ACCESS.2019.2909068 10.1109/MIS.2009.36 10.1109/ACCESS.2019.2941376 10.1111/1467-9868.00196 10.1145/3319535.3354209 10.1109/CVPR46437.2021.00614 10.1109/MC.2018.2381113 10.1145/3394171.3413546 10.1007/978-3-030-00470-5_13 10.1109/TKDE.2019.2947676 10.1145/3450569.3463560 10.1109/CVPR42600.2020.00038 10.1109/SP.2017.49 10.1016/j.neunet.2012.02.016 10.1109/ACCESS.2020.3032411 10.1137/1.9781611976700.12 10.24963/ijcai.2019/647 10.1109/CVPR.2018.00356 10.1109/IROS40897.2019.8968267 10.1109/TPAMI.2016.2577031 10.1016/j.patrec.2021.05.022 10.14722/ndss.2018.23291 10.1109/IROS.2018.8593375 10.1109/TPAMI.2017.2707495 10.1109/CVPR.2016.90 10.23919/DATE48585.2020.9116489 10.1109/CVPR.2018.00175 10.1007/978-3-030-58607-2_11 10.1109/SP.2019.00031 10.1109/CVPR.2014.220 10.1145/3437880.3460401 10.1145/3319535.3363216 10.1109/CVPR.2009.5206848 10.1016/j.robot.2019.03.001 10.1109/ICCV.2015.312 10.1109/JSAC.2021.3087237 10.1109/CVPR.2018.00114 10.1038/nature21056 10.1007/978-3-030-58571-6_26 10.1109/CVPR.2017.17 10.1109/TKDE.2019.2946162 10.1109/CVPR.2017.243 10.1109/CVPR.2019.00057 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3141077 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 5558 |
ExternalDocumentID | oai_doaj_org_article_61ca9b011f2547699239fc29a1fd4449 10_1109_ACCESS_2022_3141077 9673744 |
Genre | orig-research |
GrantInformation_xml | – fundername: New York University (NYU) Abu Dhabi Center in Artificial Intelligence (AI) and Robotics (CAIR) funderid: 10.13039/100012025 – fundername: Army Research Office grantid: W911NF-21-1-0155 funderid: 10.13039/100000183 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-a2a88eff263a1ced5b0685752f938a703c4d6fc91c390e22c4df78067f45b0bf3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:22:49 EDT 2025 Mon Jun 30 06:59:17 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Tue Jul 01 04:20:54 EDT 2025 Wed Aug 27 03:02:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-a2a88eff263a1ced5b0685752f938a703c4d6fc91c390e22c4df78067f45b0bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8418-004X 0000-0002-6158-9512 0000-0002-8282-6580 0000-0001-8264-7972 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9673744 |
PQID | 2621064308 |
PQPubID | 4845423 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2022_3141077 ieee_primary_9673744 crossref_primary_10_1109_ACCESS_2022_3141077 doaj_primary_oai_doaj_org_article_61ca9b011f2547699239fc29a1fd4449 proquest_journals_2621064308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref59 ref15 ref58 ref53 ref52 ref55 ref11 guo (ref29) 2019 ref54 ref10 sarkar (ref76) 2020 chen (ref63) 2001; 1 ref18 pedregosa (ref67) 2017; 12 collobert (ref4) 2011; 12 ref51 ref50 ref46 ref45 ref48 carlini (ref14) 2016 ref47 ref41 ref44 dong (ref64) 2019 paszke (ref68) 2017 lin (ref74) 2014 li (ref38) 2021 ref49 ref8 szegedy (ref19) 2013 ref7 qiao (ref30) 2019 ref9 tran (ref25) 2018 ref3 ref6 ref35 krizhevsky (ref71) 2009 ref34 ref37 ref36 ref75 ref31 ref77 ref33 chen (ref20) 2017 bagdasaryan (ref43) 2020 ref2 ref1 goodfellow (ref16) 2015 ref39 chen (ref26) 2018 ref70 ref73 ref72 athalye (ref12) 2018 li (ref40) 2021; 18 ref24 ref23 platt (ref60) 1999; 10 ref66 ref22 ref65 lecun (ref69) 2010 ref21 ref28 lee (ref32) 2018 ref27 bahdanau (ref5) 2014 xie (ref42) 2019 he (ref17) 2017 ref62 ref61 |
References_xml | – ident: ref7 doi: 10.1109/CCTA41146.2020.9206312 – start-page: 16463 year: 2021 ident: ref38 article-title: Invisible backdoor attack with sample-specific triggers publication-title: Proc IEEE/CVF Int Conf Comput Vis – year: 2013 ident: ref19 article-title: Intriguing properties of neural networks publication-title: arXiv 1312 6199 – ident: ref39 doi: 10.1609/aaai.v34i07.6871 – ident: ref44 doi: 10.1109/ICDCS51616.2021.00086 – ident: ref53 doi: 10.1109/CVPR.2019.00301 – ident: ref72 doi: 10.1109/CVPR.2011.5995566 – ident: ref31 doi: 10.1145/3359789.3359790 – ident: ref61 doi: 10.1109/TPAMI.2003.1217609 – ident: ref2 doi: 10.1109/CVPR.2014.244 – start-page: 274 year: 2018 ident: ref12 article-title: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples publication-title: Proc Int Conf Mach Learn – ident: ref21 doi: 10.1109/ACCESS.2019.2909068 – ident: ref24 doi: 10.1109/MIS.2009.36 – ident: ref47 doi: 10.1109/ACCESS.2019.2941376 – start-page: 2938 year: 2020 ident: ref43 article-title: How to backdoor federated learning publication-title: Proc Int Conf Artif Intell Statist – ident: ref59 doi: 10.1111/1467-9868.00196 – ident: ref45 doi: 10.1145/3319535.3354209 – volume: 18 start-page: 2088 year: 2021 ident: ref40 article-title: Invisible backdoor attacks on deep neural networks via steganography and regularization publication-title: IEEE Trans Dependable Secure Comput – volume: 12 start-page: 2493 year: 2011 ident: ref4 article-title: Natural language processing (almost) from scratch publication-title: J Mach Learn Res – ident: ref37 doi: 10.1109/CVPR46437.2021.00614 – ident: ref8 doi: 10.1109/MC.2018.2381113 – ident: ref56 doi: 10.1145/3394171.3413546 – start-page: 6067 year: 2019 ident: ref64 article-title: Quantum entropy scoring for fast robust mean estimation and improved outlier detection publication-title: Proc Adv Neural Inf Process Syst – volume: 1 start-page: 34 year: 2001 ident: ref63 article-title: One-class SVM for learning in image retrieval publication-title: Proc Int Conf Image Process – year: 2014 ident: ref5 article-title: Neural machine translation by jointly learning to align and translate publication-title: arXiv 1409 0473 – ident: ref35 doi: 10.1007/978-3-030-00470-5_13 – year: 2009 ident: ref71 article-title: Learning multiple layers of features from tiny images – ident: ref65 doi: 10.1109/TKDE.2019.2947676 – start-page: 1 year: 2019 ident: ref42 article-title: DBA: Distributed backdoor attacks against federated learning publication-title: Proc Int Conf Learn Represent – ident: ref46 doi: 10.1145/3450569.3463560 – year: 2019 ident: ref29 article-title: TABOR: A highly accurate approach to inspecting and restoring trojan backdoors in AI systems publication-title: arXiv 1908 01763 – ident: ref58 doi: 10.1109/CVPR42600.2020.00038 – ident: ref13 doi: 10.1109/SP.2017.49 – year: 2018 ident: ref26 article-title: Detecting backdoor attacks on deep neural networks by activation clustering publication-title: arXiv 1811 03728 – ident: ref70 doi: 10.1016/j.neunet.2012.02.016 – start-page: 1 year: 2014 ident: ref74 article-title: Network in network publication-title: Proc Int Conf Learn Represent – ident: ref33 doi: 10.1109/ACCESS.2020.3032411 – start-page: 7167 year: 2018 ident: ref32 article-title: A simple unified framework for detecting out-of-distribution samples and adversarial attacks publication-title: Proc Conf Neural Inf Process Syst – start-page: 8000 year: 2018 ident: ref25 article-title: Spectral signatures in backdoor attacks publication-title: Proc Adv Neural Inf Process Syst – year: 2020 ident: ref76 article-title: FaceHack: Triggering backdoored facial recognition systems using facial characteristics publication-title: arXiv 2006 11623 – ident: ref57 doi: 10.1137/1.9781611976700.12 – start-page: 15 year: 2017 ident: ref17 article-title: Adversarial example defenses: Ensembles of weak defenses are not strong publication-title: Proc USENIX Conf Offensive Technol – start-page: 1 year: 2015 ident: ref16 article-title: Explaining and harnessing adversarial examples publication-title: Proc Int Conf Learn Represent – start-page: 1 year: 2017 ident: ref68 article-title: Automatic differentiation in PyTorch publication-title: Proc 31st Conf Neural Inf Process Syst – ident: ref55 doi: 10.24963/ijcai.2019/647 – ident: ref54 doi: 10.1109/CVPR.2018.00356 – ident: ref10 doi: 10.1109/IROS40897.2019.8968267 – volume: 10 start-page: 61 year: 1999 ident: ref60 article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods publication-title: Adv Large Margin Classifiers – ident: ref1 doi: 10.1109/TPAMI.2016.2577031 – ident: ref66 doi: 10.1016/j.patrec.2021.05.022 – start-page: 14004 year: 2019 ident: ref30 article-title: Defending neural backdoors via generative distribution modeling publication-title: Proc Adv Neural Inf Process Syst – ident: ref34 doi: 10.14722/ndss.2018.23291 – ident: ref9 doi: 10.1109/IROS.2018.8593375 – ident: ref62 doi: 10.1109/TPAMI.2017.2707495 – ident: ref77 doi: 10.1109/CVPR.2016.90 – ident: ref36 doi: 10.23919/DATE48585.2020.9116489 – ident: ref15 doi: 10.1109/CVPR.2018.00175 – ident: ref41 doi: 10.1007/978-3-030-58607-2_11 – ident: ref27 doi: 10.1109/SP.2019.00031 – ident: ref3 doi: 10.1109/CVPR.2014.220 – ident: ref49 doi: 10.1145/3437880.3460401 – ident: ref28 doi: 10.1145/3319535.3363216 – volume: 12 start-page: 2825 year: 2017 ident: ref67 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – year: 2017 ident: ref20 article-title: Targeted backdoor attacks on deep learning systems using data poisoning publication-title: arXiv 1712 05526 – ident: ref73 doi: 10.1109/CVPR.2009.5206848 – year: 2010 ident: ref69 publication-title: MNIST Handwritten Digit Database – ident: ref11 doi: 10.1016/j.robot.2019.03.001 – ident: ref6 doi: 10.1109/ICCV.2015.312 – ident: ref48 doi: 10.1109/JSAC.2021.3087237 – ident: ref52 doi: 10.1109/CVPR.2018.00114 – year: 2016 ident: ref14 article-title: Defensive distillation is not robust to adversarial examples publication-title: arXiv 1607 04311 – ident: ref22 doi: 10.1038/nature21056 – ident: ref51 doi: 10.1007/978-3-030-58571-6_26 – ident: ref18 doi: 10.1109/CVPR.2017.17 – ident: ref23 doi: 10.1109/TKDE.2019.2946162 – ident: ref75 doi: 10.1109/CVPR.2017.243 – ident: ref50 doi: 10.1109/CVPR.2019.00057 |
SSID | ssj0000816957 |
Score | 2.3104587 |
Snippet | This paper proposes a novel feature-based on-line detection strategy, Removing Adversarial-Backdoors by Iterative Demarcation (RAID), for backdoor attacks. The... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5545 |
SubjectTerms | Detectors Entropy Feature extraction Iterative methods Machine learning Neural networks pattern analysis Sensors Support vector machines Task analysis Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS8MwFA6ykx5EnWJ1Sg4eLWvTLE2O23RMQQVxME8hSZOLusrWCf57X9JuTAS9eGx5aZuXl7z3heb7ELrQQuUFK2ysbO5i6iiHOef34BMF4SKoyYMky909G0_o7bQ33ZD68v-E1fTAteO6LDVKaIhCB1AmZwIKEuEMESp1BaU0HN2DnLcBpsIazFMmenlDM5QmotsfDqFHAAgJAZxKAfXk31JRYOxvJFZ-rMsh2Yz20G5TJeJ-_XX7aMvODtDOBndgGz33sS_flnMbDyATFfhhFgOwtPjKVmEnHlclfrRv5YfFQXV5oXysgbF5KcpyvsD6E98ETmVY8KCVJ7UIw3SIJqPrp-E4bnQSYkMTXsWKKM6tc4RlKjW26OmEeeFN4kTGFUxpQwvmjEhNJhJLCFy6nEOachRMtcuOUGtWzuwxwtqfjGfgZUdzKphSmpOsJ6gmYFgoHiGycpk0DYm417J4lQFMJELWfpbez7Lxc4Qu143eaw6N380HfizWpp4AO9yAsJBNWMi_wiJCbT-S64cIr8dDaYQ6q5GVzWRdSMIA90JllvCT_3j1Kdr23an3aTqoVc2X9gwql0qfhyD9ArY_5N4 priority: 102 providerName: Directory of Open Access Journals |
Title | A Feature-Based On-Line Detector to Remove Adversarial-Backdoors by Iterative Demarcation |
URI | https://ieeexplore.ieee.org/document/9673744 https://www.proquest.com/docview/2621064308 https://doaj.org/article/61ca9b011f2547699239fc29a1fd4449 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3qgBVqxhSIfOJIlcbyOfVy2RbQSIFVFoifLzwtlU-1mK7W_nrHjjehDFbckGkeOvvG8Yn8DcGKkbhx3vtC-CQULTOCaizX4UqO6SGab1JLl6ppf3rJPd5O7DTgdzsJ479PmMz-Ol-lfvmvtKpbKzmRsqsLYJmxi4taf1RrqKbGBhJw0mVioKuXZdDbDb8AUkFLMTBnmOc1vzidx9OemKn9Z4uReLl7C1Xpi_a6S-_GqM2P76w_OxufO_BXs5DiTTHvF2IUNP9-DF0_YB_fh65TEAHC18MU5-jJHbuYFpqaevPddquWTriWf_UP7w5PUt3mpo7aisL13bbtYEvOTfEyszGgycVSkxUhAv4bbiw9fZpdF7rRQWFaKrtBUC-FDoLzWlfVuYkoeW3fSIGuh0ShY5niwsrK1LD2leBsagY4uMBQ1oX4DW_N27g-AmHi2nnMpA2uY5FobQeuJZIaioNNiBHQNgbKZhjx2w_imUjpSStXjpiJuKuM2gtNh0PeeheP_4ucR20E0UminB4iJyitS8cpqadC8BcyRG5wwrWWwVOoqOMaYHMF-xHF4SYZwBEdrTVF5uS8V5Zg5Y2xXirf_HnUI23GCfe3mCLa6xcq_w2imM8epCnCclPkRvYHwYA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeyqMgthTwgWOzTRzHiY_bhWoL3SKhViony89LYVPtZpHor-_Y8Ua8hLgl0Thy9I3nFfsbgLdaqNpy6zLlap8xzxpcc6EGnytUF8FMHVuyzM_57JJ9uKqutuBwOAvjnIubz9w4XMZ_-bY161AqOxKhqQpj9-A--v2q6E9rDRWV0EJCVHWiFipycTSZTvErMAmkFHNThplO_Yv7iSz9qa3KH7Y4OpiTRzDfTK3fV3I9Xnd6bG5_Y23837k_ht0UaZJJrxpPYMstnsLOT_yDe_BlQkIIuF667Bi9mSWfFhkmp468c12s5pOuJZ_dt_a7I7Fz80oFfUVhc23bdrki-gc5jbzMaDRxVCDGiFA_g8uT9xfTWZZ6LWSG5U2XKaqaxnlPeakK42ylcx6ad1IvykahWTDMcm9EYUqRO0rx1tcNujrPUFT78jlsL9qFewFEh9P1nAvhWc0EV0o3tKwE0xQFrWpGQDcQSJOIyEM_jK8yJiS5kD1uMuAmE24jOBwG3fQ8HP8WPw7YDqKBRDs-QExkWpOSF0YJjQbOY5Zc44RpKbyhQhXeMsbECPYCjsNLEoQjONhoikwLfiUpx9wZo7u82f_7qDfwYHYxP5Nnp-cfX8LDMNm-knMA291y7V5hbNPp11Gl7wDBsPK0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Feature-Based+On-Line+Detector+to+Remove+Adversarial-Backdoors+by+Iterative+Demarcation&rft.jtitle=IEEE+access&rft.au=Fu%2C+Hao&rft.au=Veldanda%2C+Akshaj+Kumar&rft.au=Krishnamurthy%2C+Prashanth&rft.au=Garg%2C+Siddharth&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=5545&rft.epage=5558&rft_id=info:doi/10.1109%2FACCESS.2022.3141077&rft.externalDocID=9673744 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |