A Feature-Based On-Line Detector to Remove Adversarial-Backdoors by Iterative Demarcation

This paper proposes a novel feature-based on-line detection strategy, Removing Adversarial-Backdoors by Iterative Demarcation (RAID), for backdoor attacks. The proposed method is comprised of two parts: off-line training and on-line retraining. In the off-line training, a novelty detector and a shal...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 5545 - 5558
Main Authors Fu, Hao, Veldanda, Akshaj Kumar, Krishnamurthy, Prashanth, Garg, Siddharth, Khorrami, Farshad
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a novel feature-based on-line detection strategy, Removing Adversarial-Backdoors by Iterative Demarcation (RAID), for backdoor attacks. The proposed method is comprised of two parts: off-line training and on-line retraining. In the off-line training, a novelty detector and a shallow neural network are trained with clean validation data. During the on-line implementation, both models attempt to detect samples from the streaming data that differ from the validation data (i.e., flag likely-poisoned samples and possibly a few clean samples as false positives). An anomaly detector is used to purify the anomalous data by removing the clean samples. A binary support vector machine (SVM) is trained with the purified anomalous data and the clean validation data. RAID uses the SVM to detect poisoned inputs. To increase the accuracy as new anomalous data is being detected, the SVM is updated as well in real-time. It is shown that with updating, RAID can efficiently reduce the attack success rate while maintaining the classification accuracy against various types of backdoor attacks. The efficacy of RAID is compared against several state-of-the-art techniques. Additionally, it is shown that RAID only requires a small clean validation dataset to achieve such performance, and therefore provides a practical and efficient approach.
AbstractList This paper proposes a novel feature-based on-line detection strategy, Removing Adversarial-Backdoors by Iterative Demarcation (RAID), for backdoor attacks. The proposed method is comprised of two parts: off-line training and on-line retraining. In the off-line training, a novelty detector and a shallow neural network are trained with clean validation data. During the on-line implementation, both models attempt to detect samples from the streaming data that differ from the validation data (i.e., flag likely-poisoned samples and possibly a few clean samples as false positives). An anomaly detector is used to purify the anomalous data by removing the clean samples. A binary support vector machine (SVM) is trained with the purified anomalous data and the clean validation data. RAID uses the SVM to detect poisoned inputs. To increase the accuracy as new anomalous data is being detected, the SVM is updated as well in real-time. It is shown that with updating, RAID can efficiently reduce the attack success rate while maintaining the classification accuracy against various types of backdoor attacks. The efficacy of RAID is compared against several state-of-the-art techniques. Additionally, it is shown that RAID only requires a small clean validation dataset to achieve such performance, and therefore provides a practical and efficient approach.
Author Veldanda, Akshaj Kumar
Khorrami, Farshad
Fu, Hao
Krishnamurthy, Prashanth
Garg, Siddharth
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0002-8282-6580
  surname: Fu
  fullname: Fu, Hao
  email: hf881@nyu.edu
  organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA
– sequence: 2
  givenname: Akshaj Kumar
  surname: Veldanda
  fullname: Veldanda, Akshaj Kumar
  organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA
– sequence: 3
  givenname: Prashanth
  orcidid: 0000-0001-8264-7972
  surname: Krishnamurthy
  fullname: Krishnamurthy, Prashanth
  organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA
– sequence: 4
  givenname: Siddharth
  orcidid: 0000-0002-6158-9512
  surname: Garg
  fullname: Garg, Siddharth
  organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA
– sequence: 5
  givenname: Farshad
  orcidid: 0000-0002-8418-004X
  surname: Khorrami
  fullname: Khorrami, Farshad
  organization: Department of Electrical and Computer Engineering, New York University, Brooklyn, NY, USA
BookMark eNqFkU1rGzEQhkVJIWmaX5DLQs_r6mul1dFxk9ZgCOTjkJMYa0dFrrNKJNmQf185G0LpJbpoNLzPO4PeL-RojCMScs7ojDFqvs8Xi8vb2xmnnM8Ek4xq_YmccKZMKzqhjv6pj8lZzhtaT19bnT4hD_PmCqHsErYXkHForsd2FUZsfmBBV2JqSmxu8DHusZkPe0wZUoBtFbs_Q4wpN-uXZlkwQQn7A_UIydU6jl_JZw_bjGdv9ym5v7q8W_xqV9c_l4v5qnWS9qUFDn2P3nMlgDkcujVVfac77o3oQVPh5KC8M8wJQ5Hz-vS6p0p7WaVrL07JcvIdImzsUwp1gxcbIdjXRky_LaQS3BatYg7MmjLmeSe1MoYL4x03wPwgpTTV69vk9ZTi8w5zsZu4S2Nd33LFGVVS0L6qxKRyKeac0L9PZdQeIrFTJPYQiX2LpFLmP8qF8vpTJUHYfsCeT2xAxPdpRmmhpRR_Adq3mes
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TIFS_2023_3297056
crossref_primary_10_1016_j_bspc_2024_106573
crossref_primary_10_1109_ACCESS_2024_3355816
crossref_primary_10_1109_ACCESS_2024_3382584
crossref_primary_10_1007_s00521_024_09506_3
crossref_primary_10_1109_ACCESS_2025_3543333
crossref_primary_10_1145_3704725
Cites_doi 10.1109/CCTA41146.2020.9206312
10.1609/aaai.v34i07.6871
10.1109/ICDCS51616.2021.00086
10.1109/CVPR.2019.00301
10.1109/CVPR.2011.5995566
10.1145/3359789.3359790
10.1109/TPAMI.2003.1217609
10.1109/CVPR.2014.244
10.1109/ACCESS.2019.2909068
10.1109/MIS.2009.36
10.1109/ACCESS.2019.2941376
10.1111/1467-9868.00196
10.1145/3319535.3354209
10.1109/CVPR46437.2021.00614
10.1109/MC.2018.2381113
10.1145/3394171.3413546
10.1007/978-3-030-00470-5_13
10.1109/TKDE.2019.2947676
10.1145/3450569.3463560
10.1109/CVPR42600.2020.00038
10.1109/SP.2017.49
10.1016/j.neunet.2012.02.016
10.1109/ACCESS.2020.3032411
10.1137/1.9781611976700.12
10.24963/ijcai.2019/647
10.1109/CVPR.2018.00356
10.1109/IROS40897.2019.8968267
10.1109/TPAMI.2016.2577031
10.1016/j.patrec.2021.05.022
10.14722/ndss.2018.23291
10.1109/IROS.2018.8593375
10.1109/TPAMI.2017.2707495
10.1109/CVPR.2016.90
10.23919/DATE48585.2020.9116489
10.1109/CVPR.2018.00175
10.1007/978-3-030-58607-2_11
10.1109/SP.2019.00031
10.1109/CVPR.2014.220
10.1145/3437880.3460401
10.1145/3319535.3363216
10.1109/CVPR.2009.5206848
10.1016/j.robot.2019.03.001
10.1109/ICCV.2015.312
10.1109/JSAC.2021.3087237
10.1109/CVPR.2018.00114
10.1038/nature21056
10.1007/978-3-030-58571-6_26
10.1109/CVPR.2017.17
10.1109/TKDE.2019.2946162
10.1109/CVPR.2017.243
10.1109/CVPR.2019.00057
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3141077
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 5558
ExternalDocumentID oai_doaj_org_article_61ca9b011f2547699239fc29a1fd4449
10_1109_ACCESS_2022_3141077
9673744
Genre orig-research
GrantInformation_xml – fundername: New York University (NYU) Abu Dhabi Center in Artificial Intelligence (AI) and Robotics (CAIR)
  funderid: 10.13039/100012025
– fundername: Army Research Office
  grantid: W911NF-21-1-0155
  funderid: 10.13039/100000183
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-a2a88eff263a1ced5b0685752f938a703c4d6fc91c390e22c4df78067f45b0bf3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:22:49 EDT 2025
Mon Jun 30 06:59:17 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Tue Jul 01 04:20:54 EDT 2025
Wed Aug 27 03:02:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-a2a88eff263a1ced5b0685752f938a703c4d6fc91c390e22c4df78067f45b0bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8418-004X
0000-0002-6158-9512
0000-0002-8282-6580
0000-0001-8264-7972
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9673744
PQID 2621064308
PQPubID 4845423
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2022_3141077
ieee_primary_9673744
crossref_primary_10_1109_ACCESS_2022_3141077
doaj_primary_oai_doaj_org_article_61ca9b011f2547699239fc29a1fd4449
proquest_journals_2621064308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref59
ref15
ref58
ref53
ref52
ref55
ref11
guo (ref29) 2019
ref54
ref10
sarkar (ref76) 2020
chen (ref63) 2001; 1
ref18
pedregosa (ref67) 2017; 12
collobert (ref4) 2011; 12
ref51
ref50
ref46
ref45
ref48
carlini (ref14) 2016
ref47
ref41
ref44
dong (ref64) 2019
paszke (ref68) 2017
lin (ref74) 2014
li (ref38) 2021
ref49
ref8
szegedy (ref19) 2013
ref7
qiao (ref30) 2019
ref9
tran (ref25) 2018
ref3
ref6
ref35
krizhevsky (ref71) 2009
ref34
ref37
ref36
ref75
ref31
ref77
ref33
chen (ref20) 2017
bagdasaryan (ref43) 2020
ref2
ref1
goodfellow (ref16) 2015
ref39
chen (ref26) 2018
ref70
ref73
ref72
athalye (ref12) 2018
li (ref40) 2021; 18
ref24
ref23
platt (ref60) 1999; 10
ref66
ref22
ref65
lecun (ref69) 2010
ref21
ref28
lee (ref32) 2018
ref27
bahdanau (ref5) 2014
xie (ref42) 2019
he (ref17) 2017
ref62
ref61
References_xml – ident: ref7
  doi: 10.1109/CCTA41146.2020.9206312
– start-page: 16463
  year: 2021
  ident: ref38
  article-title: Invisible backdoor attack with sample-specific triggers
  publication-title: Proc IEEE/CVF Int Conf Comput Vis
– year: 2013
  ident: ref19
  article-title: Intriguing properties of neural networks
  publication-title: arXiv 1312 6199
– ident: ref39
  doi: 10.1609/aaai.v34i07.6871
– ident: ref44
  doi: 10.1109/ICDCS51616.2021.00086
– ident: ref53
  doi: 10.1109/CVPR.2019.00301
– ident: ref72
  doi: 10.1109/CVPR.2011.5995566
– ident: ref31
  doi: 10.1145/3359789.3359790
– ident: ref61
  doi: 10.1109/TPAMI.2003.1217609
– ident: ref2
  doi: 10.1109/CVPR.2014.244
– start-page: 274
  year: 2018
  ident: ref12
  article-title: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples
  publication-title: Proc Int Conf Mach Learn
– ident: ref21
  doi: 10.1109/ACCESS.2019.2909068
– ident: ref24
  doi: 10.1109/MIS.2009.36
– ident: ref47
  doi: 10.1109/ACCESS.2019.2941376
– start-page: 2938
  year: 2020
  ident: ref43
  article-title: How to backdoor federated learning
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref59
  doi: 10.1111/1467-9868.00196
– ident: ref45
  doi: 10.1145/3319535.3354209
– volume: 18
  start-page: 2088
  year: 2021
  ident: ref40
  article-title: Invisible backdoor attacks on deep neural networks via steganography and regularization
  publication-title: IEEE Trans Dependable Secure Comput
– volume: 12
  start-page: 2493
  year: 2011
  ident: ref4
  article-title: Natural language processing (almost) from scratch
  publication-title: J Mach Learn Res
– ident: ref37
  doi: 10.1109/CVPR46437.2021.00614
– ident: ref8
  doi: 10.1109/MC.2018.2381113
– ident: ref56
  doi: 10.1145/3394171.3413546
– start-page: 6067
  year: 2019
  ident: ref64
  article-title: Quantum entropy scoring for fast robust mean estimation and improved outlier detection
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 1
  start-page: 34
  year: 2001
  ident: ref63
  article-title: One-class SVM for learning in image retrieval
  publication-title: Proc Int Conf Image Process
– year: 2014
  ident: ref5
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: arXiv 1409 0473
– ident: ref35
  doi: 10.1007/978-3-030-00470-5_13
– year: 2009
  ident: ref71
  article-title: Learning multiple layers of features from tiny images
– ident: ref65
  doi: 10.1109/TKDE.2019.2947676
– start-page: 1
  year: 2019
  ident: ref42
  article-title: DBA: Distributed backdoor attacks against federated learning
  publication-title: Proc Int Conf Learn Represent
– ident: ref46
  doi: 10.1145/3450569.3463560
– year: 2019
  ident: ref29
  article-title: TABOR: A highly accurate approach to inspecting and restoring trojan backdoors in AI systems
  publication-title: arXiv 1908 01763
– ident: ref58
  doi: 10.1109/CVPR42600.2020.00038
– ident: ref13
  doi: 10.1109/SP.2017.49
– year: 2018
  ident: ref26
  article-title: Detecting backdoor attacks on deep neural networks by activation clustering
  publication-title: arXiv 1811 03728
– ident: ref70
  doi: 10.1016/j.neunet.2012.02.016
– start-page: 1
  year: 2014
  ident: ref74
  article-title: Network in network
  publication-title: Proc Int Conf Learn Represent
– ident: ref33
  doi: 10.1109/ACCESS.2020.3032411
– start-page: 7167
  year: 2018
  ident: ref32
  article-title: A simple unified framework for detecting out-of-distribution samples and adversarial attacks
  publication-title: Proc Conf Neural Inf Process Syst
– start-page: 8000
  year: 2018
  ident: ref25
  article-title: Spectral signatures in backdoor attacks
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2020
  ident: ref76
  article-title: FaceHack: Triggering backdoored facial recognition systems using facial characteristics
  publication-title: arXiv 2006 11623
– ident: ref57
  doi: 10.1137/1.9781611976700.12
– start-page: 15
  year: 2017
  ident: ref17
  article-title: Adversarial example defenses: Ensembles of weak defenses are not strong
  publication-title: Proc USENIX Conf Offensive Technol
– start-page: 1
  year: 2015
  ident: ref16
  article-title: Explaining and harnessing adversarial examples
  publication-title: Proc Int Conf Learn Represent
– start-page: 1
  year: 2017
  ident: ref68
  article-title: Automatic differentiation in PyTorch
  publication-title: Proc 31st Conf Neural Inf Process Syst
– ident: ref55
  doi: 10.24963/ijcai.2019/647
– ident: ref54
  doi: 10.1109/CVPR.2018.00356
– ident: ref10
  doi: 10.1109/IROS40897.2019.8968267
– volume: 10
  start-page: 61
  year: 1999
  ident: ref60
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
  publication-title: Adv Large Margin Classifiers
– ident: ref1
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref66
  doi: 10.1016/j.patrec.2021.05.022
– start-page: 14004
  year: 2019
  ident: ref30
  article-title: Defending neural backdoors via generative distribution modeling
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref34
  doi: 10.14722/ndss.2018.23291
– ident: ref9
  doi: 10.1109/IROS.2018.8593375
– ident: ref62
  doi: 10.1109/TPAMI.2017.2707495
– ident: ref77
  doi: 10.1109/CVPR.2016.90
– ident: ref36
  doi: 10.23919/DATE48585.2020.9116489
– ident: ref15
  doi: 10.1109/CVPR.2018.00175
– ident: ref41
  doi: 10.1007/978-3-030-58607-2_11
– ident: ref27
  doi: 10.1109/SP.2019.00031
– ident: ref3
  doi: 10.1109/CVPR.2014.220
– ident: ref49
  doi: 10.1145/3437880.3460401
– ident: ref28
  doi: 10.1145/3319535.3363216
– volume: 12
  start-page: 2825
  year: 2017
  ident: ref67
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– year: 2017
  ident: ref20
  article-title: Targeted backdoor attacks on deep learning systems using data poisoning
  publication-title: arXiv 1712 05526
– ident: ref73
  doi: 10.1109/CVPR.2009.5206848
– year: 2010
  ident: ref69
  publication-title: MNIST Handwritten Digit Database
– ident: ref11
  doi: 10.1016/j.robot.2019.03.001
– ident: ref6
  doi: 10.1109/ICCV.2015.312
– ident: ref48
  doi: 10.1109/JSAC.2021.3087237
– ident: ref52
  doi: 10.1109/CVPR.2018.00114
– year: 2016
  ident: ref14
  article-title: Defensive distillation is not robust to adversarial examples
  publication-title: arXiv 1607 04311
– ident: ref22
  doi: 10.1038/nature21056
– ident: ref51
  doi: 10.1007/978-3-030-58571-6_26
– ident: ref18
  doi: 10.1109/CVPR.2017.17
– ident: ref23
  doi: 10.1109/TKDE.2019.2946162
– ident: ref75
  doi: 10.1109/CVPR.2017.243
– ident: ref50
  doi: 10.1109/CVPR.2019.00057
SSID ssj0000816957
Score 2.3104587
Snippet This paper proposes a novel feature-based on-line detection strategy, Removing Adversarial-Backdoors by Iterative Demarcation (RAID), for backdoor attacks. The...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5545
SubjectTerms Detectors
Entropy
Feature extraction
Iterative methods
Machine learning
Neural networks
pattern analysis
Sensors
Support vector machines
Task analysis
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS8MwFA6ykx5EnWJ1Sg4eLWvTLE2O23RMQQVxME8hSZOLusrWCf57X9JuTAS9eGx5aZuXl7z3heb7ELrQQuUFK2ysbO5i6iiHOef34BMF4SKoyYMky909G0_o7bQ33ZD68v-E1fTAteO6LDVKaIhCB1AmZwIKEuEMESp1BaU0HN2DnLcBpsIazFMmenlDM5QmotsfDqFHAAgJAZxKAfXk31JRYOxvJFZ-rMsh2Yz20G5TJeJ-_XX7aMvODtDOBndgGz33sS_flnMbDyATFfhhFgOwtPjKVmEnHlclfrRv5YfFQXV5oXysgbF5KcpyvsD6E98ETmVY8KCVJ7UIw3SIJqPrp-E4bnQSYkMTXsWKKM6tc4RlKjW26OmEeeFN4kTGFUxpQwvmjEhNJhJLCFy6nEOachRMtcuOUGtWzuwxwtqfjGfgZUdzKphSmpOsJ6gmYFgoHiGycpk0DYm417J4lQFMJELWfpbez7Lxc4Qu143eaw6N380HfizWpp4AO9yAsJBNWMi_wiJCbT-S64cIr8dDaYQ6q5GVzWRdSMIA90JllvCT_3j1Kdr23an3aTqoVc2X9gwql0qfhyD9ArY_5N4
  priority: 102
  providerName: Directory of Open Access Journals
Title A Feature-Based On-Line Detector to Remove Adversarial-Backdoors by Iterative Demarcation
URI https://ieeexplore.ieee.org/document/9673744
https://www.proquest.com/docview/2621064308
https://doaj.org/article/61ca9b011f2547699239fc29a1fd4449
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3qgBVqxhSIfOJIlcbyOfVy2RbQSIFVFoifLzwtlU-1mK7W_nrHjjehDFbckGkeOvvG8Yn8DcGKkbhx3vtC-CQULTOCaizX4UqO6SGab1JLl6ppf3rJPd5O7DTgdzsJ479PmMz-Ol-lfvmvtKpbKzmRsqsLYJmxi4taf1RrqKbGBhJw0mVioKuXZdDbDb8AUkFLMTBnmOc1vzidx9OemKn9Z4uReLl7C1Xpi_a6S-_GqM2P76w_OxufO_BXs5DiTTHvF2IUNP9-DF0_YB_fh65TEAHC18MU5-jJHbuYFpqaevPddquWTriWf_UP7w5PUt3mpo7aisL13bbtYEvOTfEyszGgycVSkxUhAv4bbiw9fZpdF7rRQWFaKrtBUC-FDoLzWlfVuYkoeW3fSIGuh0ShY5niwsrK1LD2leBsagY4uMBQ1oX4DW_N27g-AmHi2nnMpA2uY5FobQeuJZIaioNNiBHQNgbKZhjx2w_imUjpSStXjpiJuKuM2gtNh0PeeheP_4ucR20E0UminB4iJyitS8cpqadC8BcyRG5wwrWWwVOoqOMaYHMF-xHF4SYZwBEdrTVF5uS8V5Zg5Y2xXirf_HnUI23GCfe3mCLa6xcq_w2imM8epCnCclPkRvYHwYA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeyqMgthTwgWOzTRzHiY_bhWoL3SKhViony89LYVPtZpHor-_Y8Ua8hLgl0Thy9I3nFfsbgLdaqNpy6zLlap8xzxpcc6EGnytUF8FMHVuyzM_57JJ9uKqutuBwOAvjnIubz9w4XMZ_-bY161AqOxKhqQpj9-A--v2q6E9rDRWV0EJCVHWiFipycTSZTvErMAmkFHNThplO_Yv7iSz9qa3KH7Y4OpiTRzDfTK3fV3I9Xnd6bG5_Y23837k_ht0UaZJJrxpPYMstnsLOT_yDe_BlQkIIuF667Bi9mSWfFhkmp468c12s5pOuJZ_dt_a7I7Fz80oFfUVhc23bdrki-gc5jbzMaDRxVCDGiFA_g8uT9xfTWZZ6LWSG5U2XKaqaxnlPeakK42ylcx6ad1IvykahWTDMcm9EYUqRO0rx1tcNujrPUFT78jlsL9qFewFEh9P1nAvhWc0EV0o3tKwE0xQFrWpGQDcQSJOIyEM_jK8yJiS5kD1uMuAmE24jOBwG3fQ8HP8WPw7YDqKBRDs-QExkWpOSF0YJjQbOY5Zc44RpKbyhQhXeMsbECPYCjsNLEoQjONhoikwLfiUpx9wZo7u82f_7qDfwYHYxP5Nnp-cfX8LDMNm-knMA291y7V5hbNPp11Gl7wDBsPK0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Feature-Based+On-Line+Detector+to+Remove+Adversarial-Backdoors+by+Iterative+Demarcation&rft.jtitle=IEEE+access&rft.au=Fu%2C+Hao&rft.au=Veldanda%2C+Akshaj+Kumar&rft.au=Krishnamurthy%2C+Prashanth&rft.au=Garg%2C+Siddharth&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=5545&rft.epage=5558&rft_id=info:doi/10.1109%2FACCESS.2022.3141077&rft.externalDocID=9673744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon