Effects of microalgae-bacteria inoculation ratio on biogas slurry treatment and microorganism interactions in the symbiosis system
The improper disposal of biogas slurry will result in significant pollution of the environment. Microalgae-bacteria symbiosis systems can effectively treat biogas slurry while also producing useful biomass. In this study, Chlorella vulgaris (C.V) and indigenous Shinella sp. YHB03 (S.S) were co-cultu...
Saved in:
Published in | Journal of cleaner production Vol. 362; p. 132271 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The improper disposal of biogas slurry will result in significant pollution of the environment. Microalgae-bacteria symbiosis systems can effectively treat biogas slurry while also producing useful biomass. In this study, Chlorella vulgaris (C.V) and indigenous Shinella sp. YHB03 (S.S) were co-cultured and mono-cultured to purify biogas slurry. The inoculation ratio of C.V and S.S in the co-culture was optimized. The enhancement rate was creatively introduced to quantitatively analyze the changes between co-cultures and mono-cultures. The introduction of S.S into the C.V culture increased the carbon emission reduction capacity of the system, improved the microbe's tolerance to biogas slurry, and raised algal cell viability. Biomass production, pollutants removal and value-added products output were significantly enhanced when co-cultured C.V with S.S. And as the inoculation ratio of C.V and S.S increased from 2:1 to 50:1, this synergistic effect increased at first, then dropped, with 20:1 being the optimal. When co-cultured C.V with S.S at inoculation ratio of 20:1, the microalgae cell viability attained 84.84%, the biomass productivity reached 80 mg·L−1·day−1, and the NH4+-N, TP, TOC and IC removal efficiencies achieved 72.2%, 48.3%, 65% and 63.4%, respectively. This study provides an environmentally sustainable strategy for biogas slurry treatment.
[Display omitted]
•Co-culture enhanced the removal of pollutants and the output of biomass.•Bacteria reduced the oxidative stress of pollutant to microalgae.•Bacteria improved the cell activity of microalgae.•Symbiosis of microalgae and bacteria reduced carbon emission.•The optimum inoculation ratio of microalgae and bacteria is 20:1. |
---|---|
AbstractList | The improper disposal of biogas slurry will result in significant pollution of the environment. Microalgae-bacteria symbiosis systems can effectively treat biogas slurry while also producing useful biomass. In this study, Chlorella vulgaris (C.V) and indigenous Shinella sp. YHB03 (S.S) were co-cultured and mono-cultured to purify biogas slurry. The inoculation ratio of C.V and S.S in the co-culture was optimized. The enhancement rate was creatively introduced to quantitatively analyze the changes between co-cultures and mono-cultures. The introduction of S.S into the C.V culture increased the carbon emission reduction capacity of the system, improved the microbe's tolerance to biogas slurry, and raised algal cell viability. Biomass production, pollutants removal and value-added products output were significantly enhanced when co-cultured C.V with S.S. And as the inoculation ratio of C.V and S.S increased from 2:1 to 50:1, this synergistic effect increased at first, then dropped, with 20:1 being the optimal. When co-cultured C.V with S.S at inoculation ratio of 20:1, the microalgae cell viability attained 84.84%, the biomass productivity reached 80 mg·L⁻¹·day⁻¹, and the NH₄⁺-N, TP, TOC and IC removal efficiencies achieved 72.2%, 48.3%, 65% and 63.4%, respectively. This study provides an environmentally sustainable strategy for biogas slurry treatment. The improper disposal of biogas slurry will result in significant pollution of the environment. Microalgae-bacteria symbiosis systems can effectively treat biogas slurry while also producing useful biomass. In this study, Chlorella vulgaris (C.V) and indigenous Shinella sp. YHB03 (S.S) were co-cultured and mono-cultured to purify biogas slurry. The inoculation ratio of C.V and S.S in the co-culture was optimized. The enhancement rate was creatively introduced to quantitatively analyze the changes between co-cultures and mono-cultures. The introduction of S.S into the C.V culture increased the carbon emission reduction capacity of the system, improved the microbe's tolerance to biogas slurry, and raised algal cell viability. Biomass production, pollutants removal and value-added products output were significantly enhanced when co-cultured C.V with S.S. And as the inoculation ratio of C.V and S.S increased from 2:1 to 50:1, this synergistic effect increased at first, then dropped, with 20:1 being the optimal. When co-cultured C.V with S.S at inoculation ratio of 20:1, the microalgae cell viability attained 84.84%, the biomass productivity reached 80 mg·L−1·day−1, and the NH4+-N, TP, TOC and IC removal efficiencies achieved 72.2%, 48.3%, 65% and 63.4%, respectively. This study provides an environmentally sustainable strategy for biogas slurry treatment. [Display omitted] •Co-culture enhanced the removal of pollutants and the output of biomass.•Bacteria reduced the oxidative stress of pollutant to microalgae.•Bacteria improved the cell activity of microalgae.•Symbiosis of microalgae and bacteria reduced carbon emission.•The optimum inoculation ratio of microalgae and bacteria is 20:1. |
ArticleNumber | 132271 |
Author | Yu, Zhigang Zhang, Qi Liu, Yuhuan Ruan, Roger Huang, Qiaoyun Yan, Hongbin Wang, Yunpu Cui, Xian |
Author_xml | – sequence: 1 givenname: Qiaoyun surname: Huang fullname: Huang, Qiaoyun organization: Engineering Research Center for Biomass Conversion, MOE, Nanchang University, Nanchang, 330047, China – sequence: 2 givenname: Hongbin surname: Yan fullname: Yan, Hongbin organization: Engineering Research Center for Biomass Conversion, MOE, Nanchang University, Nanchang, 330047, China – sequence: 3 givenname: Yuhuan surname: Liu fullname: Liu, Yuhuan organization: Engineering Research Center for Biomass Conversion, MOE, Nanchang University, Nanchang, 330047, China – sequence: 4 givenname: Xian surname: Cui fullname: Cui, Xian organization: Engineering Research Center for Biomass Conversion, MOE, Nanchang University, Nanchang, 330047, China – sequence: 5 givenname: Yunpu surname: Wang fullname: Wang, Yunpu organization: Engineering Research Center for Biomass Conversion, MOE, Nanchang University, Nanchang, 330047, China – sequence: 6 givenname: Zhigang orcidid: 0000-0001-5352-2126 surname: Yu fullname: Yu, Zhigang organization: Advanced Water Management Centre, The University of Queensland, Saint Lucia, 4072, Australia – sequence: 7 givenname: Roger orcidid: 0000-0001-8835-2649 surname: Ruan fullname: Ruan, Roger organization: Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, 55108, USA – sequence: 8 givenname: Qi surname: Zhang fullname: Zhang, Qi email: zhangqi09300218@163.com organization: Engineering Research Center for Biomass Conversion, MOE, Nanchang University, Nanchang, 330047, China |
BookMark | eNqFkU1r3DAQQEVJoZu0P6GgYy7eSrIl2_RQSkjaQCCX5CzG8nirxZYSjTaw1_zyauuceslJH8x7oKdzdhZiQMa-SrGVQppv--3ezfiU4lYJpbayVqqVH9hGdm1fybYzZ2wjet1XRivziZ0T7YWQrWibDXu9niZ0mXic-OJdijDvAKsBXMbkgfsQ3WGG7GPg6bTwshl83AFxmg8pHXlOCHnBkDmEcZXEtIPgaSl40RRXwakceP6DnI5LEZAvgiNlXD6zjxPMhF_e1gv2eHP9cPW7urv_dXv1865yjehyBcpAD0Y7LTvjBtmYodOD1EaJuh7KtWmlGBvEoZbj0EwoTWNUD9j2U62hry_Y5eotpZ4PSNkunhzOMwSMB7LKtFp3pjaqjH5fR8tbiBJO1vn8L0JO4GcrhT2Vt3v7Vt6eytu1fKH1f_RT8guk47vcj5XDUuHFY7LkPAaHo0_lj-wY_TuGv4kspkg |
CitedBy_id | crossref_primary_10_1016_j_biteb_2023_101462 crossref_primary_10_1016_j_heliyon_2024_e31170 crossref_primary_10_1002_jsfa_13913 crossref_primary_10_1016_j_biortech_2022_127891 crossref_primary_10_1016_j_jenvman_2025_125018 crossref_primary_10_1016_j_jhazmat_2024_135670 crossref_primary_10_1016_j_algal_2024_103664 crossref_primary_10_1016_j_jenvman_2024_120669 crossref_primary_10_1021_acsestwater_4c00339 crossref_primary_10_1080_15592324_2022_2148371 crossref_primary_10_1007_s40726_024_00325_7 crossref_primary_10_1016_j_chemosphere_2023_138938 crossref_primary_10_1016_j_algal_2024_103824 crossref_primary_10_1080_09593330_2023_2250545 crossref_primary_10_3390_foods11172579 crossref_primary_10_1016_j_cej_2023_144585 crossref_primary_10_1016_j_jwpe_2024_105111 crossref_primary_10_1016_j_biortech_2024_130736 crossref_primary_10_1016_j_jenvman_2024_121720 crossref_primary_10_1016_j_enconman_2024_118981 crossref_primary_10_1016_j_algal_2023_103351 crossref_primary_10_1016_j_chemosphere_2023_140742 crossref_primary_10_1016_j_jece_2023_111554 crossref_primary_10_1016_j_biortech_2022_128118 crossref_primary_10_1007_s10973_024_13419_7 crossref_primary_10_1016_j_jenvman_2024_121792 crossref_primary_10_1016_j_biortech_2024_131055 crossref_primary_10_3390_fermentation10110577 crossref_primary_10_1007_s11356_024_33179_z |
Cites_doi | 10.1016/j.biortech.2022.126892 10.1016/j.biortech.2011.11.113 10.1016/j.biortech.2021.124846 10.1016/j.biortech.2021.125640 10.1016/j.biteb.2021.100931 10.1016/j.jwpe.2020.101568 10.1186/s13068-017-0799-8 10.1016/j.coesh.2021.100315 10.1016/j.algal.2019.101747 10.1016/j.biortech.2019.121353 10.1016/j.algal.2019.101744 10.1016/j.biortech.2022.126691 10.1016/j.jwpe.2020.101890 10.1002/mbo3.482 10.1016/j.jhazmat.2020.124455 10.1016/j.jclepro.2020.120449 10.1016/j.cjche.2021.05.039 10.1016/j.jhazmat.2021.126264 10.1016/j.ijhydene.2016.04.009 10.1007/s00253-016-7835-7 10.1016/j.biortech.2022.127187 10.1016/j.chemosphere.2022.134252 10.1016/j.biortech.2017.05.003 10.1016/j.biortech.2018.08.131 10.3390/md14050100 10.1016/j.jbiotec.2020.10.029 10.1016/j.watres.2017.04.078 10.1016/j.biortech.2019.121718 10.1016/j.cej.2018.02.058 10.1016/j.biotechadv.2020.107684 10.1016/j.cej.2021.131436 10.1038/nature04056 10.1016/j.copbio.2015.02.007 10.1111/lam.12678 10.1016/j.biortech.2014.05.087 10.1016/j.biortech.2017.09.074 10.1016/j.biortech.2020.123754 10.1016/j.renene.2017.08.034 10.1016/j.biortech.2018.10.034 10.1016/j.biortech.2020.123531 10.1016/j.biortech.2019.122017 10.1016/j.envres.2020.109857 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2022.132271 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1786 |
ExternalDocumentID | 10_1016_j_jclepro_2022_132271 S0959652622018753 |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-a26a9a65c5186cb146b85b1562033b5c56710d4eeb31db4fe164629ae79f35a93 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Fri Jul 11 00:14:03 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Tue Jul 01 03:24:05 EDT 2025 Fri Feb 23 02:39:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nutrient removal Pollutant tolerance Biomass production Co-culture Enhancement rate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-a26a9a65c5186cb146b85b1562033b5c56710d4eeb31db4fe164629ae79f35a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8835-2649 0000-0001-5352-2126 |
PQID | 2675586362 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2675586362 crossref_citationtrail_10_1016_j_jclepro_2022_132271 crossref_primary_10_1016_j_jclepro_2022_132271 elsevier_sciencedirect_doi_10_1016_j_jclepro_2022_132271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-15 |
PublicationDateYYYYMMDD | 2022-08-15 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Acién, Gómez-Serrano, Morales-Amaral, Fernández-Sevilla, Molina-Grima (bib1) 2016; 100 Li, Chu, Xie, Xie, Chang, Ho (bib17) 2022; 349 Fuentes, Garbayo, Cuaresma, Montero, González-Del-Valle, Vílchez (bib6) 2016; 14 Xu, Li, Wang, Wu (bib34) 2016; 41 Nguyen, Nguyen, Ha, Kang (bib25) 2021; 39 Nishi, Akizuki, Toda, Matsuyama, Ida (bib26) 2022; 297 Mujtaba, Lee (bib22) 2017; 120 Chokshi, Pancha, Ghosh, Mishra (bib4) 2017; 244 Ke, Liu, Du, Wang, Zheng, Li (bib14) 2021; 44 Zhang, Liu, Li, Yu, Chen, Ye, Wang, Hu, Liu, Xiao, Jin (bib40) 2017; 10 Zhu, Feng, Xu, Qin, Shang, Feng, Wang, Yuan (bib43) 2019; 285 Huang, Liu, Li, Wang, Wu, Wang, Zhao, Yin, Liang, Zhang (bib10) 2022; 25 Chen, Hu, Qi, Song, Chen (bib2) 2019; 292 Ji, Zhang, Wang, Wang, Liu (bib12) 2020; 312 Ma, Zhou, Fu, Cheng, Min, Liu, Zhang, Chen, Ruan (bib21) 2014; 167 Romero, Visentini, Márquez, Santiago, Castro, Gagneten (bib30) 2020; 189 Zhang, Zhang, Wu, Wang, Yang, Yan, Jin, Chen, Song, Cheng (bib39) 2021; 340 Li, Liu, Xu, Li, Zhang, Jiang, Zheng, Wang (bib19) 2017; 64 Zhu, Qin, Feng, Shang, Wang, Yuan (bib44) 2019; 274 Huo, Kong, Zhu, Qian, Huang, Chen, Ruan (bib11) 2020; 45 Yong, Chew, Khoo, Show, Chang (bib37) 2021; 47 Yang, Li, Lu, Fang, Guo, Ma (bib36) 2020; 38 Ji, Jiang, Zhang, Jiang, Zheng (bib13) 2018; 247 Ge, Qiu, Tremblay, Viner, Champagne, Jessop (bib7) 2018; 342 Nagarajan, Kusmayadi, Yen, Dong, Lee, Chang (bib23) 2019; 289 Wang, Wei, Li, Chen, Lei, Yuan, Shimizu, Zhang, Kim, Lee (bib33) 2022; 17 Yan, Lu, Liu, Cui, Wang, Yu, Ruan, Zhang (bib35) 2022; 354 Peng, de-Bashan, Higgins (bib27) 2021; 325 Su, Mennerich, Urban (bib32) 2012; 105 Qu, Zhang, Chen, Ho (bib28) 2021; 418 Chia, Chew, Leong, Ho, Munawaroh, Show (bib3) 2021; 425 Zhang, Cheng, Pei, Pan, Jiang, Hou, Han (bib38) 2018; 115 Rezvani, Sarrafzadeh, Oh (bib29) 2020; 45 Zhou, Wang, Zheng, Wu, Wang, Liu, Xiang, Cao, Ruan, Liu (bib42) 2018; 269 Kouzuma, Watanabe (bib15) 2015; 33 Zhang, Wang, Yu, Zhou, Gu, Huang, Xiao, Zhou, Ruan, Liu (bib41) 2020; 256 Li, Cao, Wang, Xu (bib18) 2022; 347 Leong, Lim, Lam, Lam, Sin, Samson (bib16) 2021; 409 Liu, Gu, Zhang (bib20) 2019 Croft, Lawrence, Raux-Deery, Warren, Smith (bib5) 2005; 438 Gu, Liu, Zou, Zhang, Lu, Yan, Cao, Liu, Ruan (bib8) 2021; 328 Nguyen, Nguyen, An Binh, Bui, Ngo, Vo, Andrew Lin, Vo, Guo, Lin, Breider (bib24) 2020; 314 Sambles, Moore, Lux, Jones, Littlejohn, Gouveia, Aves, Studholme, Lee, Love (bib31) 2017; 6 Li (10.1016/j.jclepro.2022.132271_bib18) 2022; 347 Yang (10.1016/j.jclepro.2022.132271_bib36) 2020; 38 Zhu (10.1016/j.jclepro.2022.132271_bib43) 2019; 285 Ke (10.1016/j.jclepro.2022.132271_bib14) 2021; 44 Liu (10.1016/j.jclepro.2022.132271_bib20) 2019 Chia (10.1016/j.jclepro.2022.132271_bib3) 2021; 425 Nagarajan (10.1016/j.jclepro.2022.132271_bib23) 2019; 289 Xu (10.1016/j.jclepro.2022.132271_bib34) 2016; 41 Ji (10.1016/j.jclepro.2022.132271_bib12) 2020; 312 Acién (10.1016/j.jclepro.2022.132271_bib1) 2016; 100 Zhou (10.1016/j.jclepro.2022.132271_bib42) 2018; 269 Kouzuma (10.1016/j.jclepro.2022.132271_bib15) 2015; 33 Nishi (10.1016/j.jclepro.2022.132271_bib26) 2022; 297 Rezvani (10.1016/j.jclepro.2022.132271_bib29) 2020; 45 Chen (10.1016/j.jclepro.2022.132271_bib2) 2019; 292 Peng (10.1016/j.jclepro.2022.132271_bib27) 2021; 325 Yong (10.1016/j.jclepro.2022.132271_bib37) 2021; 47 Leong (10.1016/j.jclepro.2022.132271_bib16) 2021; 409 Ge (10.1016/j.jclepro.2022.132271_bib7) 2018; 342 Huo (10.1016/j.jclepro.2022.132271_bib11) 2020; 45 Yan (10.1016/j.jclepro.2022.132271_bib35) 2022; 354 Croft (10.1016/j.jclepro.2022.132271_bib5) 2005; 438 Zhang (10.1016/j.jclepro.2022.132271_bib40) 2017; 10 Gu (10.1016/j.jclepro.2022.132271_bib8) 2021; 328 Sambles (10.1016/j.jclepro.2022.132271_bib31) 2017; 6 Su (10.1016/j.jclepro.2022.132271_bib32) 2012; 105 Li (10.1016/j.jclepro.2022.132271_bib19) 2017; 64 Fuentes (10.1016/j.jclepro.2022.132271_bib6) 2016; 14 Qu (10.1016/j.jclepro.2022.132271_bib28) 2021; 418 Zhang (10.1016/j.jclepro.2022.132271_bib41) 2020; 256 Nguyen (10.1016/j.jclepro.2022.132271_bib25) 2021; 39 Nguyen (10.1016/j.jclepro.2022.132271_bib24) 2020; 314 Wang (10.1016/j.jclepro.2022.132271_bib33) 2022; 17 Huang (10.1016/j.jclepro.2022.132271_bib10) 2022; 25 Ma (10.1016/j.jclepro.2022.132271_bib21) 2014; 167 Mujtaba (10.1016/j.jclepro.2022.132271_bib22) 2017; 120 Ji (10.1016/j.jclepro.2022.132271_bib13) 2018; 247 Chokshi (10.1016/j.jclepro.2022.132271_bib4) 2017; 244 Zhu (10.1016/j.jclepro.2022.132271_bib44) 2019; 274 Zhang (10.1016/j.jclepro.2022.132271_bib39) 2021; 340 Li (10.1016/j.jclepro.2022.132271_bib17) 2022; 349 Zhang (10.1016/j.jclepro.2022.132271_bib38) 2018; 115 Romero (10.1016/j.jclepro.2022.132271_bib30) 2020; 189 |
References_xml | – volume: 44 start-page: 182 year: 2021 end-page: 191 ident: bib14 article-title: Component analysis and risk assessment of biogas slurry from biogas plants publication-title: Chin. J. Chem. Eng. – volume: 244 start-page: 1376 year: 2017 end-page: 1383 ident: bib4 article-title: Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae publication-title: Bioresour. Technol. – volume: 418 start-page: 126264 year: 2021 ident: bib28 article-title: New concept in swine wastewater treatment: development of a self-sustaining synergetic microalgae-bacteria symbiosis (ABS) system to achieve environmental sustainability publication-title: J. Hazard Mater. – volume: 45 start-page: 101747 year: 2020 ident: bib29 article-title: Hydrogen producer microalgae in interaction with hydrogen consumer denitrifiers as a novel strategy for nitrate removal from groundwater and biomass production publication-title: Algal Res. – volume: 38 start-page: 101568 year: 2020 ident: bib36 article-title: Model-based evaluation of algal-bacterial systems for sewage treatment publication-title: J. Water Proc. Eng. – volume: 33 start-page: 125 year: 2015 end-page: 129 ident: bib15 article-title: Exploring the potential of algae/bacteria interactions publication-title: Curr. Opin. Biotechnol. – year: 2019 ident: bib20 article-title: A-B Processes towards Energy Self-Sufficient Municipal Wastewater Treatment – volume: 312 start-page: 123531 year: 2020 ident: bib12 article-title: Removal mechanisms of phosphorus in non-aerated microalgal-bacterial granular sludge process publication-title: Bioresour. Technol. – volume: 292 start-page: 122017 year: 2019 ident: bib2 article-title: The interactions of algae-activated sludge symbiotic system and its effects on wastewater treatment and lipid accumulation publication-title: Bioresour. Technol. – volume: 115 start-page: 276 year: 2018 end-page: 287 ident: bib38 article-title: Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production publication-title: Renew. Energy – volume: 314 start-page: 123754 year: 2020 ident: bib24 article-title: Co-culture of microalgae-activated sludge for wastewater treatment and biomass production: exploring their role under different inoculation ratios publication-title: Bioresour. Technol. – volume: 269 start-page: 285 year: 2018 end-page: 291 ident: bib42 article-title: Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from publication-title: Bioresour. Technol. – volume: 100 start-page: 9013 year: 2016 end-page: 9022 ident: bib1 article-title: Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? publication-title: Appl. Microbiol. Biotechnol. – volume: 39 start-page: 101890 year: 2021 ident: bib25 article-title: Potential of versatile bacteria isolated from activated sludge for the bioremediation of arsenic and antimony publication-title: J. Water Proc. Eng. – volume: 289 start-page: 121718 year: 2019 ident: bib23 article-title: Current advances in biological swine wastewater treatment using microalgae-based processes publication-title: Bioresour. Technol. – volume: 105 start-page: 67 year: 2012 end-page: 73 ident: bib32 article-title: Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios publication-title: Bioresour. Technol. – volume: 340 start-page: 125640 year: 2021 ident: bib39 article-title: Biochemical wastewater from landfill leachate pretreated by microalgae achieving algae's self-reliant cultivation in full wastewater-recycling chain with desirable lipid productivity publication-title: Bioresour. Technol. – volume: 45 start-page: 101744 year: 2020 ident: bib11 article-title: Co-culture of publication-title: Algal Res. – volume: 274 start-page: 313 year: 2019 end-page: 320 ident: bib44 article-title: Treatment of low C/N ratio wastewater and biomass production using co-culture of publication-title: Bioresour. Technol. – volume: 438 start-page: 90 year: 2005 end-page: 93 ident: bib5 article-title: Algae acquire vitamin B publication-title: Nature – volume: 297 start-page: 134252 year: 2022 ident: bib26 article-title: Advanced light-tolerant microalgae-nitrifying bacteria consortia for stable ammonia removal under strong light irradiation using light-shielding hydrogel publication-title: Chemosphere – volume: 41 start-page: 9276 year: 2016 end-page: 9283 ident: bib34 article-title: Improved hydrogen production and biomass through the co-cultivation of publication-title: Int. J. Hydrogen Energy – volume: 14 start-page: 100 year: 2016 ident: bib6 article-title: Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds publication-title: Mar. Drugs – volume: 342 start-page: 310 year: 2018 end-page: 320 ident: bib7 article-title: Centrate wastewater treatment with publication-title: Chem. Eng. J. – volume: 64 start-page: 57 year: 2017 end-page: 65 ident: bib19 article-title: Stress of algicidal substances from a bacterium publication-title: Lett. Appl. Microbiol. – volume: 285 start-page: 121353 year: 2019 ident: bib43 article-title: Cultivation of publication-title: Bioresour. Technol. – volume: 247 start-page: 44 year: 2018 end-page: 50 ident: bib13 article-title: The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater publication-title: Bioresour. Technol. – volume: 325 start-page: 179 year: 2021 end-page: 185 ident: bib27 article-title: reduces oxidative stress in the green microalgae publication-title: J. Biotechnol. – volume: 189 start-page: 109857 year: 2020 ident: bib30 article-title: Physiological and morphological responses of green microalgae publication-title: Environ. Res. – volume: 25 start-page: 100315 year: 2022 ident: bib10 article-title: A review of biogas slurry treatment technology based on microalgae cultivation publication-title: Curr. Opin. Environ. Sci. Heal. – volume: 354 start-page: 127187 year: 2022 ident: bib35 article-title: Development of microalgae-bacteria symbiosis system for the enhanced treatment of biogas slurry publication-title: Bioresour. Technol. – volume: 409 start-page: 124455 year: 2021 ident: bib16 article-title: Novel sequential flow baffled microalgal-bacterial photobioreactor for enhancing nitrogen assimilation into microalgal biomass whilst bioremediating nutrient-rich wastewater simultaneously publication-title: J. Hazard Mater. – volume: 328 start-page: 124846 year: 2021 ident: bib8 article-title: Enhancement of nutrients removal and biomass accumulation of publication-title: Bioresour. Technol. – volume: 347 start-page: 126691 year: 2022 ident: bib18 article-title: Research on the treatment mechanism of anthraquinone dye wastewater by algal-bacterial symbiotic system publication-title: Bioresour. Technol. – volume: 120 start-page: 174 year: 2017 end-page: 184 ident: bib22 article-title: Treatment of real wastewater using co-culture of immobilized publication-title: Water Res. – volume: 425 start-page: 131436 year: 2021 ident: bib3 article-title: CO publication-title: Chem. Eng. J. – volume: 167 start-page: 8 year: 2014 end-page: 13 ident: bib21 article-title: Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system publication-title: Bioresour. Technol. – volume: 349 start-page: 126892 year: 2022 ident: bib17 article-title: Insights into the microalgae-bacteria consortia treating swine wastewater: symbiotic mechanism and resistance genes analysis publication-title: Bioresour. Technol. – volume: 6 start-page: 1 year: 2017 end-page: 9 ident: bib31 article-title: Metagenomic analysis of the complex microbial consortium associated with cultures of the oil-rich alga publication-title: Microbiologyopen – volume: 256 start-page: 120449 year: 2020 ident: bib41 article-title: Pine sawdust as algal biofilm biocarrier for wastewater treatment and algae-based byproducts production publication-title: J. Clean. Prod. – volume: 17 start-page: 100931 year: 2022 ident: bib33 article-title: Effect of stepwise or one-time illumination strategy on the development of algal-bacterial aerobic granular sludge in sequencing batch reactor publication-title: Bioresour. Technol. Reports. – volume: 47 start-page: 107684 year: 2021 ident: bib37 article-title: Prospects and development of algal-bacterial biotechnology in environmental management and protection publication-title: Biotechnol. Adv. – volume: 10 start-page: 1 year: 2017 end-page: 16 ident: bib40 article-title: Cultivation of algal biofilm using different lignocellulosic materials as carriers publication-title: Biotechnol. Biofuels – volume: 349 start-page: 126892 year: 2022 ident: 10.1016/j.jclepro.2022.132271_bib17 article-title: Insights into the microalgae-bacteria consortia treating swine wastewater: symbiotic mechanism and resistance genes analysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.126892 – volume: 105 start-page: 67 year: 2012 ident: 10.1016/j.jclepro.2022.132271_bib32 article-title: Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.11.113 – volume: 328 start-page: 124846 year: 2021 ident: 10.1016/j.jclepro.2022.132271_bib8 article-title: Enhancement of nutrients removal and biomass accumulation of Chlorella vulgaris in pig manure anaerobic digestate effluent by the pretreatment of indigenous bacteria publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.124846 – volume: 340 start-page: 125640 year: 2021 ident: 10.1016/j.jclepro.2022.132271_bib39 article-title: Biochemical wastewater from landfill leachate pretreated by microalgae achieving algae's self-reliant cultivation in full wastewater-recycling chain with desirable lipid productivity publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125640 – volume: 17 start-page: 100931 year: 2022 ident: 10.1016/j.jclepro.2022.132271_bib33 article-title: Effect of stepwise or one-time illumination strategy on the development of algal-bacterial aerobic granular sludge in sequencing batch reactor publication-title: Bioresour. Technol. Reports. doi: 10.1016/j.biteb.2021.100931 – volume: 38 start-page: 101568 year: 2020 ident: 10.1016/j.jclepro.2022.132271_bib36 article-title: Model-based evaluation of algal-bacterial systems for sewage treatment publication-title: J. Water Proc. Eng. doi: 10.1016/j.jwpe.2020.101568 – volume: 10 start-page: 1 year: 2017 ident: 10.1016/j.jclepro.2022.132271_bib40 article-title: Cultivation of algal biofilm using different lignocellulosic materials as carriers publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0799-8 – volume: 25 start-page: 100315 year: 2022 ident: 10.1016/j.jclepro.2022.132271_bib10 article-title: A review of biogas slurry treatment technology based on microalgae cultivation publication-title: Curr. Opin. Environ. Sci. Heal. doi: 10.1016/j.coesh.2021.100315 – volume: 45 start-page: 101747 year: 2020 ident: 10.1016/j.jclepro.2022.132271_bib29 article-title: Hydrogen producer microalgae in interaction with hydrogen consumer denitrifiers as a novel strategy for nitrate removal from groundwater and biomass production publication-title: Algal Res. doi: 10.1016/j.algal.2019.101747 – volume: 285 start-page: 121353 year: 2019 ident: 10.1016/j.jclepro.2022.132271_bib43 article-title: Cultivation of Chlorella vulgaris on unsterilized dairy-derived liquid digestate for simultaneous biofuels feedstock production and pollutant removal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121353 – volume: 45 start-page: 101744 year: 2020 ident: 10.1016/j.jclepro.2022.132271_bib11 article-title: Co-culture of Chlorella and wastewater-borne bacteria in vinegar production wastewater: enhancement of nutrients removal and influence of algal biomass generation publication-title: Algal Res. doi: 10.1016/j.algal.2019.101744 – year: 2019 ident: 10.1016/j.jclepro.2022.132271_bib20 – volume: 347 start-page: 126691 year: 2022 ident: 10.1016/j.jclepro.2022.132271_bib18 article-title: Research on the treatment mechanism of anthraquinone dye wastewater by algal-bacterial symbiotic system publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.126691 – volume: 39 start-page: 101890 year: 2021 ident: 10.1016/j.jclepro.2022.132271_bib25 article-title: Potential of versatile bacteria isolated from activated sludge for the bioremediation of arsenic and antimony publication-title: J. Water Proc. Eng. doi: 10.1016/j.jwpe.2020.101890 – volume: 6 start-page: 1 year: 2017 ident: 10.1016/j.jclepro.2022.132271_bib31 article-title: Metagenomic analysis of the complex microbial consortium associated with cultures of the oil-rich alga Botryococcus braunii publication-title: Microbiologyopen doi: 10.1002/mbo3.482 – volume: 409 start-page: 124455 year: 2021 ident: 10.1016/j.jclepro.2022.132271_bib16 article-title: Novel sequential flow baffled microalgal-bacterial photobioreactor for enhancing nitrogen assimilation into microalgal biomass whilst bioremediating nutrient-rich wastewater simultaneously publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.124455 – volume: 256 start-page: 120449 year: 2020 ident: 10.1016/j.jclepro.2022.132271_bib41 article-title: Pine sawdust as algal biofilm biocarrier for wastewater treatment and algae-based byproducts production publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120449 – volume: 44 start-page: 182 year: 2021 ident: 10.1016/j.jclepro.2022.132271_bib14 article-title: Component analysis and risk assessment of biogas slurry from biogas plants publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2021.05.039 – volume: 418 start-page: 126264 year: 2021 ident: 10.1016/j.jclepro.2022.132271_bib28 article-title: New concept in swine wastewater treatment: development of a self-sustaining synergetic microalgae-bacteria symbiosis (ABS) system to achieve environmental sustainability publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.126264 – volume: 41 start-page: 9276 year: 2016 ident: 10.1016/j.jclepro.2022.132271_bib34 article-title: Improved hydrogen production and biomass through the co-cultivation of Chlamydomonas reinhardtii and Bradyrhizobium japonicum publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.04.009 – volume: 100 start-page: 9013 year: 2016 ident: 10.1016/j.jclepro.2022.132271_bib1 article-title: Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7835-7 – volume: 354 start-page: 127187 year: 2022 ident: 10.1016/j.jclepro.2022.132271_bib35 article-title: Development of microalgae-bacteria symbiosis system for the enhanced treatment of biogas slurry publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127187 – volume: 297 start-page: 134252 year: 2022 ident: 10.1016/j.jclepro.2022.132271_bib26 article-title: Advanced light-tolerant microalgae-nitrifying bacteria consortia for stable ammonia removal under strong light irradiation using light-shielding hydrogel publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.134252 – volume: 244 start-page: 1376 year: 2017 ident: 10.1016/j.jclepro.2022.132271_bib4 article-title: Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.003 – volume: 269 start-page: 285 year: 2018 ident: 10.1016/j.jclepro.2022.132271_bib42 article-title: Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.08.131 – volume: 14 start-page: 100 year: 2016 ident: 10.1016/j.jclepro.2022.132271_bib6 article-title: Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds publication-title: Mar. Drugs doi: 10.3390/md14050100 – volume: 325 start-page: 179 year: 2021 ident: 10.1016/j.jclepro.2022.132271_bib27 article-title: Azospirillum brasilense reduces oxidative stress in the green microalgae Chlorella sorokiniana under different stressors publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2020.10.029 – volume: 120 start-page: 174 year: 2017 ident: 10.1016/j.jclepro.2022.132271_bib22 article-title: Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2017.04.078 – volume: 289 start-page: 121718 year: 2019 ident: 10.1016/j.jclepro.2022.132271_bib23 article-title: Current advances in biological swine wastewater treatment using microalgae-based processes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121718 – volume: 342 start-page: 310 year: 2018 ident: 10.1016/j.jclepro.2022.132271_bib7 article-title: Centrate wastewater treatment with Chlorella vulgaris: simultaneous enhancement of nutrient removal, biomass and lipid production publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.02.058 – volume: 47 start-page: 107684 year: 2021 ident: 10.1016/j.jclepro.2022.132271_bib37 article-title: Prospects and development of algal-bacterial biotechnology in environmental management and protection publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2020.107684 – volume: 425 start-page: 131436 year: 2021 ident: 10.1016/j.jclepro.2022.132271_bib3 article-title: CO2 mitigation and phycoremediation of industrial flue gas and wastewater via microalgae-bacteria consortium: possibilities and challenges publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131436 – volume: 438 start-page: 90 year: 2005 ident: 10.1016/j.jclepro.2022.132271_bib5 article-title: Algae acquire vitamin B12 through a symbiotic relationship with bacteria publication-title: Nature doi: 10.1038/nature04056 – volume: 33 start-page: 125 year: 2015 ident: 10.1016/j.jclepro.2022.132271_bib15 article-title: Exploring the potential of algae/bacteria interactions publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.02.007 – volume: 64 start-page: 57 year: 2017 ident: 10.1016/j.jclepro.2022.132271_bib19 article-title: Stress of algicidal substances from a bacterium Exiguobacterium sp. h10 on Microcystis aeruginosa publication-title: Lett. Appl. Microbiol. doi: 10.1111/lam.12678 – volume: 167 start-page: 8 year: 2014 ident: 10.1016/j.jclepro.2022.132271_bib21 article-title: Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.05.087 – volume: 247 start-page: 44 year: 2018 ident: 10.1016/j.jclepro.2022.132271_bib13 article-title: The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.074 – volume: 314 start-page: 123754 year: 2020 ident: 10.1016/j.jclepro.2022.132271_bib24 article-title: Co-culture of microalgae-activated sludge for wastewater treatment and biomass production: exploring their role under different inoculation ratios publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123754 – volume: 115 start-page: 276 year: 2018 ident: 10.1016/j.jclepro.2022.132271_bib38 article-title: Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production publication-title: Renew. Energy doi: 10.1016/j.renene.2017.08.034 – volume: 274 start-page: 313 year: 2019 ident: 10.1016/j.jclepro.2022.132271_bib44 article-title: Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.10.034 – volume: 312 start-page: 123531 year: 2020 ident: 10.1016/j.jclepro.2022.132271_bib12 article-title: Removal mechanisms of phosphorus in non-aerated microalgal-bacterial granular sludge process publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123531 – volume: 292 start-page: 122017 year: 2019 ident: 10.1016/j.jclepro.2022.132271_bib2 article-title: The interactions of algae-activated sludge symbiotic system and its effects on wastewater treatment and lipid accumulation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122017 – volume: 189 start-page: 109857 year: 2020 ident: 10.1016/j.jclepro.2022.132271_bib30 article-title: Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109857 |
SSID | ssj0017074 |
Score | 2.5323036 |
Snippet | The improper disposal of biogas slurry will result in significant pollution of the environment. Microalgae-bacteria symbiosis systems can effectively treat... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 132271 |
SubjectTerms | biogas Biomass production carbon cell viability Chlorella vulgaris Co-culture coculture Enhancement rate microalgae Nutrient removal Pollutant tolerance pollution slurries symbiosis synergism value added |
Title | Effects of microalgae-bacteria inoculation ratio on biogas slurry treatment and microorganism interactions in the symbiosis system |
URI | https://dx.doi.org/10.1016/j.jclepro.2022.132271 https://www.proquest.com/docview/2675586362 |
Volume | 362 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL3oQP3F-jAheu61pknZHEcdU3EUFbyFpU-nYWlm3gxcP_uW-17TzA0SwpyQkj5KXvo_0vd8j5DzWhjMNTk5shfCgmXqRFZFnE5HKIOE8qao33I3l6JHfPImnFrlscmEwrLKW_U6mV9K6HunVu9l7ybLePd5gScEkY1hYTiDiJ-chnvLu2yrMww_7DokZr7tw9mcWT2_SnQAxEFTgJjLWRb8s9H_TTz8kdaV-httkq7Yb6YV7tR3Ssvku2fyCJrhH3h0ScUmLlM4wzg7TNKxnHB6zpllexHWxLlrxnULDZMWzLmk5Xc7nr3QVdk51njgiruxTOaMILDF3aRAldChYjrR8nQGBMgMCFSL0PnkcXj1cjry6xIIX83608DSTeqCliIUfydiA2DSRMODTsX4QGBiWYIEk3ILL7SeGpxbhyNhA23CQBkIPggOylhe5PSSUcYS6S5N-CD4nTIssGI_w6FhYxMlrE95srIpr_HEsgzFVTaDZRNX8UMgP5fjRJt3VshcHwPHXgqjhmvp2khQoib-WnjVcVvCV4a8TndtiWSoGfpWIJGj7o_-TPyYb2MMbaV-ckLXFfGlPwaRZmE51Zjtk_eL6djT-AJA7-KY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLcQOzAO02Cb6MaHJ23HtI1ru-mBA-JDhRYuA4mbZycOSkUTVLeaeuHAv8Q_yHtxUj4khDSJnBwnfrLec96H8_x7hPyKteFMQ5ATWyECaKZBZEUU2ESkspNwnpTVG07PZP-Cn1yKyyVyX5-FwbTKSvd7nV5q66qnVXGzdZNlrT-4gyUFk4xhYTlRV7Ae2Pk_iNvc7vEBCPk3Y0eH5_v9oCotEMS8HU0DzaTuaSliEUYyNqAuTCQMxDKs3ekY6JZgeRNuIdQME8NTizBcrKdtt5d2hEYEJtD7HzioCyyb0Lxd5JWE3baHfsb9NZze47Gh1qg5gtmDZoS4lLEmBoLd8DWD-MI0lPbu6DP5VDmqdM_zYo0s2XydrD6BL_xC7jz0saNFSseY2IfnQmxgPAC0pllexFV1MFouNAoNkxVX2lF3PZtM5nSR5051nngivs6UG1NEspj4cxcObii4qtTNx0DAZUCghKD-Si7ehfHfyHJe5HaDUMYRWy9N2l0IcuG1yIK3CpeOhUVgvgbhNWNVXAGeY92Na1Vnto1UJQ-F8lBeHg3SXAy78Ygfbw2IaqmpZ0tXgVV6a-jPWsoKPmv8V6NzW8ycYhDIiUiCe_H9_8nvkJX--elQDY_PBj_IR3yC2-Gh2CTL08nMboE_NTXb5fql5O97fzAP-cYzTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+microalgae-bacteria+inoculation+ratio+on+biogas+slurry+treatment+and+microorganism+interactions+in+the+symbiosis+system&rft.jtitle=Journal+of+cleaner+production&rft.au=Huang%2C+Qiaoyun&rft.au=Yan%2C+Hongbin&rft.au=Liu%2C+Yuhuan&rft.au=Cui%2C+Xian&rft.date=2022-08-15&rft.issn=0959-6526&rft.volume=362&rft.spage=132271&rft_id=info:doi/10.1016%2Fj.jclepro.2022.132271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2022_132271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |