OsGRP3 Enhances Drought Resistance by Altering Phenylpropanoid Biosynthesis Pathway in Rice (Oryza sativa L.)
As a sessile organism, rice often faces various kinds of abiotic stresses, such as drought stress. Drought stress seriously harms plant growth and damages crop yield every year. Therefore, it is urgent to elucidate the mechanisms of drought resistance in rice. In this study, we identified a glycine-...
Saved in:
Published in | International journal of molecular sciences Vol. 23; no. 13; p. 7045 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.06.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a sessile organism, rice often faces various kinds of abiotic stresses, such as drought stress. Drought stress seriously harms plant growth and damages crop yield every year. Therefore, it is urgent to elucidate the mechanisms of drought resistance in rice. In this study, we identified a glycine-rich RNA-binding protein, OsGRP3, in rice. Evolutionary analysis showed that it was closely related to OsGR-RBP4, which was involved in various abiotic stresses. The expression of OsGRP3 was shown to be induced by several abiotic stress treatments and phytohormone treatments. Then, the drought tolerance tests of transgenic plants confirmed that OsGRP3 enhanced drought resistance in rice. Meanwhile, the yeast two-hybrid assay, bimolecular luminescence complementation assay and bimolecular fluorescence complementation assay demonstrated that OsGRP3 bound with itself may affect the RNA chaperone function. Subsequently, the RNA-seq analysis, physiological experiments and histochemical staining showed that OsGRP3 influenced the phenylpropanoid biosynthesis pathway and further modulated lignin accumulation. Herein, our findings suggested that OsGRP3 enhanced drought resistance in rice by altering the phenylpropanoid biosynthesis pathway and further increasing lignin accumulation. |
---|---|
AbstractList | As a sessile organism, rice often faces various kinds of abiotic stresses, such as drought stress. Drought stress seriously harms plant growth and damages crop yield every year. Therefore, it is urgent to elucidate the mechanisms of drought resistance in rice. In this study, we identified a glycine-rich RNA-binding protein, OsGRP3, in rice. Evolutionary analysis showed that it was closely related to OsGR-RBP4, which was involved in various abiotic stresses. The expression of OsGRP3 was shown to be induced by several abiotic stress treatments and phytohormone treatments. Then, the drought tolerance tests of transgenic plants confirmed that OsGRP3 enhanced drought resistance in rice. Meanwhile, the yeast two-hybrid assay, bimolecular luminescence complementation assay and bimolecular fluorescence complementation assay demonstrated that OsGRP3 bound with itself may affect the RNA chaperone function. Subsequently, the RNA-seq analysis, physiological experiments and histochemical staining showed that OsGRP3 influenced the phenylpropanoid biosynthesis pathway and further modulated lignin accumulation. Herein, our findings suggested that OsGRP3 enhanced drought resistance in rice by altering the phenylpropanoid biosynthesis pathway and further increasing lignin accumulation.As a sessile organism, rice often faces various kinds of abiotic stresses, such as drought stress. Drought stress seriously harms plant growth and damages crop yield every year. Therefore, it is urgent to elucidate the mechanisms of drought resistance in rice. In this study, we identified a glycine-rich RNA-binding protein, OsGRP3, in rice. Evolutionary analysis showed that it was closely related to OsGR-RBP4, which was involved in various abiotic stresses. The expression of OsGRP3 was shown to be induced by several abiotic stress treatments and phytohormone treatments. Then, the drought tolerance tests of transgenic plants confirmed that OsGRP3 enhanced drought resistance in rice. Meanwhile, the yeast two-hybrid assay, bimolecular luminescence complementation assay and bimolecular fluorescence complementation assay demonstrated that OsGRP3 bound with itself may affect the RNA chaperone function. Subsequently, the RNA-seq analysis, physiological experiments and histochemical staining showed that OsGRP3 influenced the phenylpropanoid biosynthesis pathway and further modulated lignin accumulation. Herein, our findings suggested that OsGRP3 enhanced drought resistance in rice by altering the phenylpropanoid biosynthesis pathway and further increasing lignin accumulation. As a sessile organism, rice often faces various kinds of abiotic stresses, such as drought stress. Drought stress seriously harms plant growth and damages crop yield every year. Therefore, it is urgent to elucidate the mechanisms of drought resistance in rice. In this study, we identified a glycine-rich RNA-binding protein, OsGRP3, in rice. Evolutionary analysis showed that it was closely related to OsGR-RBP4, which was involved in various abiotic stresses. The expression of OsGRP3 was shown to be induced by several abiotic stress treatments and phytohormone treatments. Then, the drought tolerance tests of transgenic plants confirmed that OsGRP3 enhanced drought resistance in rice. Meanwhile, the yeast two-hybrid assay, bimolecular luminescence complementation assay and bimolecular fluorescence complementation assay demonstrated that OsGRP3 bound with itself may affect the RNA chaperone function. Subsequently, the RNA-seq analysis, physiological experiments and histochemical staining showed that OsGRP3 influenced the phenylpropanoid biosynthesis pathway and further modulated lignin accumulation. Herein, our findings suggested that OsGRP3 enhanced drought resistance in rice by altering the phenylpropanoid biosynthesis pathway and further increasing lignin accumulation. |
Author | Hu, Zhongli Huang, Wenchao Dou, Yangfan Geng, Han Dan, Zhiwu Zeng, Yafei Liang, Ting Xu, Wuwu Cheng, Mingxing Zhao, Weibo Fu, Jinmei |
AuthorAffiliation | 1 State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; xuwuwu@whu.edu.cn (W.X.); 2019202040079@whu.edu.cn (Y.D.); genghan@whu.edu.cn (H.G.); 2021202040088@whu.edu.cn (J.F.); zwdan@whu.edu.cn (Z.D.); 2015202040066@whu.edu.cn (T.L.); chengmingxing@whu.edu.cn (M.C.); weibozhao@whu.edu.cn (W.Z.); zengyafei@whu.edu.cn (Y.Z.); huzhongli@whu.edu.cn (Z.H.) 2 College of Life Sciences, Wuhan University, Wuhan 430072, China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; xuwuwu@whu.edu.cn (W.X.); 2019202040079@whu.edu.cn (Y.D.); genghan@whu.edu.cn (H.G.); 2021202040088@whu.edu.cn (J.F.); zwdan@whu.edu.cn (Z.D.); 2015202040066@whu.edu.cn (T.L.); chengmingxing@whu.edu.cn (M.C.); weibozhao@whu.edu.cn (W.Z.); zengyafei@whu.edu.cn (Y.Z.); huzhongli@whu.edu.cn (Z.H.) – name: 2 College of Life Sciences, Wuhan University, Wuhan 430072, China |
Author_xml | – sequence: 1 givenname: Wuwu surname: Xu fullname: Xu, Wuwu – sequence: 2 givenname: Yangfan surname: Dou fullname: Dou, Yangfan – sequence: 3 givenname: Han surname: Geng fullname: Geng, Han – sequence: 4 givenname: Jinmei surname: Fu fullname: Fu, Jinmei – sequence: 5 givenname: Zhiwu surname: Dan fullname: Dan, Zhiwu – sequence: 6 givenname: Ting surname: Liang fullname: Liang, Ting – sequence: 7 givenname: Mingxing orcidid: 0000-0002-5067-9969 surname: Cheng fullname: Cheng, Mingxing – sequence: 8 givenname: Weibo surname: Zhao fullname: Zhao, Weibo – sequence: 9 givenname: Yafei surname: Zeng fullname: Zeng, Yafei – sequence: 10 givenname: Zhongli surname: Hu fullname: Hu, Zhongli – sequence: 11 givenname: Wenchao surname: Huang fullname: Huang, Wenchao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35806050$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1r3DAQxUVJaT7aW89F0EsK3XQsyZJ9KaRpmhQWdlnas5Ht8VqLLW0lOcX962uTNGxDLpIY_ebxZt4pObLOIiFvE7jgPIdPZtcHxhOuQKQvyEkiGFsASHV08D4mpyHsABhnaf6KHPM0AwkpnJB-FW42a06vbatthYF-9W7YtpFuMJgQ5xotR3rZRfTGbum6RTt2e-_22jpT0y_GhdHGdqbpWsf2tx6psXRjpsbzlR__aBp0NHeaLi8-vCYvG90FfPNwn5Gf365_XN0ulqub71eXy0UlIIuLvJFlqaBJqroErJVgmiuVN2XdYJZkjNcgK5GyJstzkFwi4nRKiapBlQvkZ-Tzve5-KHusK7TR667Ye9NrPxZOm-L_H2vaYuvuipxJqQRMAucPAt79GjDEojehwq7TFt0QCiYzpRjITEzo-yfozg3eTuPNlEwkgJipd4eOHq38S2ICPt4DlXcheGwekQSKOejiMOgJZ0_wysRpz26ex3TPN_0FI2asjg |
CitedBy_id | crossref_primary_10_1080_17429145_2023_2266514 crossref_primary_10_1016_j_plaphy_2024_108860 crossref_primary_10_1007_s12298_024_01529_3 crossref_primary_10_1111_tpj_17213 crossref_primary_10_1111_tpj_17124 crossref_primary_10_3390_ijms24129794 crossref_primary_10_1016_j_cj_2023_10_008 crossref_primary_10_1016_j_jhazmat_2025_137970 crossref_primary_10_1016_j_rsci_2024_02_004 crossref_primary_10_1016_j_stress_2024_100684 crossref_primary_10_3390_ijms232415984 crossref_primary_10_5511_plantbiotechnology_24_0131a crossref_primary_10_1039_D3EN00504F crossref_primary_10_1080_21645698_2024_2448869 crossref_primary_10_1016_j_arabjc_2023_105595 crossref_primary_10_1186_s12870_024_04923_x crossref_primary_10_3390_ijms251910440 crossref_primary_10_1016_j_stress_2024_100698 crossref_primary_10_3390_agronomy14020301 crossref_primary_10_3390_foods13213412 crossref_primary_10_3390_plants12193504 crossref_primary_10_3390_plants12091892 crossref_primary_10_1038_s41598_024_59341_8 crossref_primary_10_1038_s41598_024_61510_8 |
Cites_doi | 10.1016/j.plantsci.2013.10.006 10.1093/jxb/erv512 10.1038/ncomms5572 10.1104/pp.15.01280 10.1046/j.1365-313X.2003.01629.x 10.1371/journal.pcbi.1002986 10.3389/fpls.2020.572137 10.1007/s11240-014-0563-8 10.1038/s41576-021-00413-0 10.1016/j.sbi.2019.07.012 10.1007/s11103-020-01018-7 10.1093/nar/gku468 10.1111/pbi.12951 10.1093/jxb/erx139 10.1016/j.cub.2011.03.015 10.1038/s41438-020-00372-3 10.1007/s11427-020-1683-x 10.1016/j.sbi.2012.11.006 10.1038/s41467-020-19977-2 10.1105/tpc.18.00321 10.1016/j.molp.2015.04.007 10.1023/B:PLAN.0000009288.46713.1f 10.1186/s12284-021-00473-0 10.1007/s12033-017-9992-z 10.1016/j.molp.2020.06.009 10.2478/s11658-006-0042-2 10.3389/fpls.2021.677611 10.1007/s00425-010-1326-3 10.1016/S1671-2927(09)60254-6 10.1104/pp.16.00379 10.3390/plants4010112 10.1111/j.1365-3040.2007.01748.x 10.1104/pp.103.021048 10.1007/s10265-006-0058-8 10.1111/j.1742-4658.2005.04653.x 10.3390/ijms22158327 10.1111/tpj.15350 10.1104/pp.20.01106 10.1093/jxb/erq058 10.1111/ppl.13423 10.1071/FP18241 10.1016/j.plantsci.2007.04.010 10.1093/pcp/pcm087 10.1111/jipb.13061 10.3389/fpls.2018.00302 10.1111/pce.12829 10.1104/pp.19.01464 10.1007/s11033-009-9636-x 10.1111/j.1365-313X.2008.03518.x 10.1104/pp.110.157370 10.3389/fpls.2020.00785 10.1093/nar/gkv245 10.1016/j.plaphy.2012.07.020 10.1111/nph.17799 10.1093/molbev/msw054 10.1093/jxb/erz486 10.12688/f1000research.7678.1 10.1016/j.bbrc.2014.07.043 10.1126/science.aaz7614 10.1111/j.1744-7909.2010.00892.x 10.1007/s40626-018-0119-0 10.1111/j.1365-313X.2005.02420.x 10.1111/jipb.13054 10.1016/j.cell.2016.08.029 10.1016/j.tplants.2012.08.004 10.3390/ijms19020335 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms23137045 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Proquest Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC9266740 35806050 10_3390_ijms23137045 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the Creative Research Groups of the Natural Science Foundation of Hubei Province grantid: 2020CFA009 – fundername: National Key R&D Program of China grantid: 2017YFD0100400 – fundername: National Rice Industry Technology System grantid: CARS-01-07 – fundername: National Natural Science Foundation of China grantid: 31771746 – fundername: National Rice Industry Technology System grantid: no. CARS-01-07 – fundername: the National Key R&D Program of China grantid: no. 2017YFD0100400 – fundername: National Natural Science Foundation of China grantid: no. 31771746 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c408t-9f6bb70f1cdb0ed742a3779fbdfe81823d06c452f8990636eee63666e7fe794e3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:13:33 EDT 2025 Tue Aug 05 10:51:38 EDT 2025 Fri Jul 25 09:38:26 EDT 2025 Thu Apr 03 06:57:19 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Tue Jul 01 03:40:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | drought response lignin GRP flavonoids phenylpropanoid biosynthesis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-9f6bb70f1cdb0ed742a3779fbdfe81823d06c452f8990636eee63666e7fe794e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5067-9969 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms23137045 |
PMID | 35806050 |
PQID | 2686160044 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9266740 proquest_miscellaneous_2687720684 proquest_journals_2686160044 pubmed_primary_35806050 crossref_primary_10_3390_ijms23137045 crossref_citationtrail_10_3390_ijms23137045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220624 |
PublicationDateYYYYMMDD | 2022-06-24 |
PublicationDate_xml | – month: 6 year: 2022 text: 20220624 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kang (ref_19) 2013; 18 Gong (ref_15) 2020; 63 Baudo (ref_55) 1999; 50 Yu (ref_66) 2014; 450 Jabeen (ref_23) 2017; 59 Lamers (ref_3) 2020; 182 Loughlin (ref_50) 2019; 59 Gupta (ref_2) 2020; 368 Chen (ref_62) 2007; 120 Zhu (ref_4) 2016; 167 Schmidt (ref_25) 2010; 37 Wang (ref_47) 2016; 39 Zandalinas (ref_10) 2020; 71 Chen (ref_12) 2021; 63 Xu (ref_36) 2020; 11 Kumar (ref_65) 2016; 33 Tu (ref_37) 2020; 7 Lenka (ref_22) 2019; 46 Lee (ref_46) 2016; 172 Qian (ref_7) 2021; 12 Kim (ref_54) 2007; 48 Janiak (ref_11) 2016; 67 Shi (ref_58) 2016; 170 Liu (ref_43) 2020; 103 Daubner (ref_51) 2013; 23 Staiger (ref_27) 2003; 33 Czolpinska (ref_20) 2018; 9 Tan (ref_21) 2014; 119 Shim (ref_56) 2021; 14 Huang (ref_33) 2010; 153 Shi (ref_59) 2015; 43 Lee (ref_26) 2012; 60 Yan (ref_34) 2021; 107 Kim (ref_57) 2010; 61 Basu (ref_6) 2016; 5 ref_30 Moura (ref_39) 2010; 52 Zhang (ref_1) 2021; 23 Maris (ref_52) 2005; 272 Shi (ref_60) 2017; 68 Xiao (ref_29) 2015; 169 Sibout (ref_64) 2003; 132 Silva (ref_42) 2018; 30 Ziemienowicz (ref_28) 2003; 53 Kim (ref_53) 2005; 42 Hauser (ref_14) 2011; 21 Yang (ref_17) 2014; 214 Kim (ref_16) 2008; 55 Chen (ref_18) 2010; 9 Park (ref_44) 2011; 233 Xiao (ref_63) 2014; 5 Yao (ref_9) 2021; 11 Ma (ref_68) 2015; 8 ref_41 Lillo (ref_32) 2008; 31 Khan (ref_49) 2014; 42 Bang (ref_45) 2018; 17 Li (ref_35) 2021; 233 Philippe (ref_40) 2015; 4 Yoshida (ref_13) 2020; 11 Wang (ref_38) 2020; 184 Dong (ref_31) 2021; 63 Cao (ref_24) 2006; 11 Mukarram (ref_5) 2021; 172 ref_8 Tian (ref_61) 2018; 30 Chen (ref_67) 2020; 13 Sahi (ref_48) 2007; 173 |
References_xml | – volume: 214 start-page: 106 year: 2014 ident: ref_17 article-title: Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions publication-title: Plant Sci. doi: 10.1016/j.plantsci.2013.10.006 – volume: 67 start-page: 1003 year: 2016 ident: ref_11 article-title: Gene expression regulation in roots under drought publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv512 – volume: 5 start-page: 4572 year: 2014 ident: ref_63 article-title: O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat publication-title: Nat. Commun. doi: 10.1038/ncomms5572 – volume: 170 start-page: 294 year: 2016 ident: ref_58 article-title: RNA Recognition Motif-Containing Protein ORRM4 Broadly Affects Mitochondrial RNA Editing and Impacts Plant Development and Flowering publication-title: Plant Physiol. doi: 10.1104/pp.15.01280 – volume: 33 start-page: 361 year: 2003 ident: ref_27 article-title: The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01629.x – ident: ref_30 doi: 10.1371/journal.pcbi.1002986 – volume: 11 start-page: 572137 year: 2021 ident: ref_9 article-title: Transcriptional Regulation of Drought Response in Arabidopsis and Woody Plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.572137 – volume: 119 start-page: 635 year: 2014 ident: ref_21 article-title: Overexpression of MpGR-RBP1, a glycine-rich RNA-binding protein gene from Malus prunifolia (Willd.) Borkh., confers salt stress tolerance and protects against oxidative stress in Arabidopsis publication-title: Plant Cell Tissue Organ Cult. (PCTOC) doi: 10.1007/s11240-014-0563-8 – volume: 23 start-page: 104 year: 2021 ident: ref_1 article-title: Abiotic stress responses in plants publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-021-00413-0 – volume: 59 start-page: 134 year: 2019 ident: ref_50 article-title: TDP-43 and FUS–structural insights into RNA recognition and self-association publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2019.07.012 – volume: 103 start-page: 689 year: 2020 ident: ref_43 article-title: Lignin synthesized by CmCAD2 and CmCAD3 in oriental melon (Cucumis melo L.) seedlings contributes to drought tolerance publication-title: Plant Mol. Biol. doi: 10.1007/s11103-020-01018-7 – volume: 42 start-page: 8705 year: 2014 ident: ref_49 article-title: Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: Implications for its RNA chaperone function publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku468 – volume: 17 start-page: 118 year: 2018 ident: ref_45 article-title: Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12951 – volume: 68 start-page: 2833 year: 2017 ident: ref_60 article-title: ORRM5, an RNA recognition motif-containing protein, has a unique effect on mitochondrial RNA editing publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx139 – volume: 21 start-page: R346 year: 2011 ident: ref_14 article-title: Evolution of Abscisic Acid Synthesis and Signaling Mechanisms publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.03.015 – volume: 7 start-page: 150 year: 2020 ident: ref_37 article-title: Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes publication-title: Hortic. Res. doi: 10.1038/s41438-020-00372-3 – volume: 63 start-page: 635 year: 2020 ident: ref_15 article-title: Plant abiotic stress response and nutrient use efficiency publication-title: Sci. China Life Sci. doi: 10.1007/s11427-020-1683-x – volume: 23 start-page: 100 year: 2013 ident: ref_51 article-title: RRM-RNA recognition: NMR or crystallography...and new findings publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2012.11.006 – volume: 11 start-page: 6184 year: 2020 ident: ref_13 article-title: Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants publication-title: Nat. Commun. doi: 10.1038/s41467-020-19977-2 – volume: 30 start-page: 2529 year: 2018 ident: ref_61 article-title: RNA-Binding Protein RBP-P Is Required for Glutelin and Prolamine mRNA Localization in Rice Endosperm Cells publication-title: Plant Cell doi: 10.1105/tpc.18.00321 – volume: 8 start-page: 1274 year: 2015 ident: ref_68 article-title: A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants publication-title: Mol. Plant doi: 10.1016/j.molp.2015.04.007 – volume: 53 start-page: 201 year: 2003 ident: ref_28 article-title: Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7 publication-title: Plant Mol. Biol. doi: 10.1023/B:PLAN.0000009288.46713.1f – volume: 14 start-page: 31 year: 2021 ident: ref_56 article-title: The Rice GLYCINE-RICH PROTEIN 3 Confers Drought Tolerance by Regulating mRNA Stability of ROS Scavenging-Related Genes publication-title: Rice doi: 10.1186/s12284-021-00473-0 – volume: 59 start-page: 66 year: 2017 ident: ref_23 article-title: Ectopic Expression of Plant RNA Chaperone Offering Multiple Stress Tolerance in E. coli publication-title: Mol. Biotechnol. doi: 10.1007/s12033-017-9992-z – volume: 13 start-page: 1194 year: 2020 ident: ref_67 article-title: TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data publication-title: Mol. Plant doi: 10.1016/j.molp.2020.06.009 – volume: 11 start-page: 526 year: 2006 ident: ref_24 article-title: AtGRP7 is involved in the regulation of abscisic acid and stress responses in arabidopsis publication-title: Cell. Mol. Biol. Lett. doi: 10.2478/s11658-006-0042-2 – volume: 12 start-page: 1143 year: 2021 ident: ref_7 article-title: Regulatory Mechanisms of bHLH Transcription Factors in Plant Adaptive Responses to Various Abiotic Stresses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.677611 – volume: 233 start-page: 621 year: 2011 ident: ref_44 article-title: Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli publication-title: Planta doi: 10.1007/s00425-010-1326-3 – volume: 9 start-page: 1577 year: 2010 ident: ref_18 article-title: Characterization and Expression Analysis of Four Glycine-Rich RNA-Binding Proteins Involved in Osmotic Response in Tobacco (Nicotiana tabacum cv. Xanthi) publication-title: Agric. Sci. China doi: 10.1016/S1671-2927(09)60254-6 – volume: 172 start-page: 575 year: 2016 ident: ref_46 article-title: Overexpression of the OsERF71 Transcription Factor Alters Rice Root Structure and Drought Resistance publication-title: Plant Physiol. doi: 10.1104/pp.16.00379 – volume: 4 start-page: 112 year: 2015 ident: ref_40 article-title: Cell Wall Metabolism in Response to Abiotic Stress publication-title: Plants doi: 10.3390/plants4010112 – volume: 31 start-page: 587 year: 2008 ident: ref_32 article-title: Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2007.01748.x – volume: 132 start-page: 848 year: 2003 ident: ref_64 article-title: Expression Pattern of Two Paralogs Encoding Cinnamyl Alcohol Dehydrogenases in Arabidopsis. Isolation and Characterization of the Corresponding Mutants publication-title: Plant Physiol. doi: 10.1104/pp.103.021048 – volume: 120 start-page: 337 year: 2007 ident: ref_62 article-title: Root and vascular tissue-specific expression of glycine-rich protein AtGRP9 and its interaction with AtCAD5, a cinnamyl alcohol dehydrogenase, in Arabidopsis thaliana publication-title: J. Plant Res. doi: 10.1007/s10265-006-0058-8 – volume: 169 start-page: 2102 year: 2015 ident: ref_29 article-title: JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis publication-title: Plant Physiol. – volume: 272 start-page: 2118 year: 2005 ident: ref_52 article-title: The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression publication-title: FEBS J. doi: 10.1111/j.1742-4658.2005.04653.x – ident: ref_8 doi: 10.3390/ijms22158327 – volume: 107 start-page: 847 year: 2021 ident: ref_34 article-title: MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation publication-title: Plant J. doi: 10.1111/tpj.15350 – volume: 184 start-page: 1273 year: 2020 ident: ref_38 article-title: HEAT SHOCK FACTOR A8a Modulates Flavonoid Synthesis and Drought Tolerance publication-title: Plant Physiol. doi: 10.1104/pp.20.01106 – volume: 61 start-page: 2317 year: 2010 ident: ref_57 article-title: Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq058 – volume: 172 start-page: 1291 year: 2021 ident: ref_5 article-title: Drought: Sensing, Signalling, Effects and Tolerance in Higher Plants publication-title: Physiol. Plant. doi: 10.1111/ppl.13423 – volume: 46 start-page: 482 year: 2019 ident: ref_22 article-title: Heterologous expression of rice RNA-binding glycine-rich (RBG) gene OsRBGD3 in transgenic Arabidopsis thaliana confers cold stress tolerance publication-title: Funct. Plant Biol. doi: 10.1071/FP18241 – volume: 173 start-page: 144 year: 2007 ident: ref_48 article-title: Molecular characterization of a novel isoform of rice (Oryza sativa L.) glycine rich-RNA binding protein and evidence for its involvement in high temperature stress response publication-title: Plant Sci. doi: 10.1016/j.plantsci.2007.04.010 – volume: 48 start-page: 1170 year: 2007 ident: ref_54 article-title: A Zinc Finger-Containing Glycine-Rich RNA-Binding Protein, atRZ-1a, Has a Negative Impact on Seed Germination and Seedling Growth of Arabidopsis thaliana Under Salt or Drought Stress Conditions publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcm087 – volume: 63 start-page: 53 year: 2021 ident: ref_12 article-title: Protein kinases in plant responses to drought, salt, and cold stress publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13061 – volume: 9 start-page: 302 year: 2018 ident: ref_20 article-title: Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00302 – volume: 39 start-page: 2740 year: 2016 ident: ref_47 article-title: OsDi19-4 acts downstream of OsCDPK14 to positively regulate ABA response in rice publication-title: Plant Cell Environ. doi: 10.1111/pce.12829 – volume: 182 start-page: 1624 year: 2020 ident: ref_3 article-title: How Plants Sense and Respond to Stressful Environments publication-title: Plant Physiol. doi: 10.1104/pp.19.01464 – volume: 37 start-page: 839 year: 2010 ident: ref_25 article-title: A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8 publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-009-9636-x – volume: 55 start-page: 455 year: 2008 ident: ref_16 article-title: Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03518.x – volume: 153 start-page: 1526 year: 2010 ident: ref_33 article-title: Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress publication-title: Plant Physiol. doi: 10.1104/pp.110.157370 – volume: 11 start-page: 785 year: 2020 ident: ref_36 article-title: SiMYB56 Confers Drought Stress Tolerance in Transgenic Rice by Regulating Lignin Biosynthesis and ABA Signaling Pathway publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00785 – volume: 43 start-page: 3814 year: 2015 ident: ref_59 article-title: Two RNA recognition motif-containing proteins are plant mitochondrial editing factors publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv245 – volume: 60 start-page: 46 year: 2012 ident: ref_26 article-title: Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.07.020 – volume: 233 start-page: 390 year: 2021 ident: ref_35 article-title: PuC3H35 confers drought tolerance by enhancing lignin and proanthocyanidin biosynthesis in the roots of Populus ussuriensis publication-title: New Phytol. doi: 10.1111/nph.17799 – volume: 33 start-page: 1870 year: 2016 ident: ref_65 article-title: MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw054 – volume: 71 start-page: 1734 year: 2020 ident: ref_10 article-title: Signal transduction networks during stress combination publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz486 – volume: 5 start-page: 1554 year: 2016 ident: ref_6 article-title: Plant adaptation to drought stress publication-title: F1000Research doi: 10.12688/f1000research.7678.1 – volume: 450 start-page: 1575 year: 2014 ident: ref_66 article-title: Protoplast: A more efficient system to study nucleo-cytoplasmic interactions publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.07.043 – volume: 368 start-page: 266 year: 2020 ident: ref_2 article-title: The physiology of plant responses to drought publication-title: Science doi: 10.1126/science.aaz7614 – volume: 52 start-page: 360 year: 2010 ident: ref_39 article-title: Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2010.00892.x – volume: 30 start-page: 251 year: 2018 ident: ref_42 article-title: Proline accumulation induces the production of total phenolics in transgenic tobacco plants under water deficit without increasing the G6PDH activity publication-title: Theor. Exp. Plant Physiol. doi: 10.1007/s40626-018-0119-0 – volume: 50 start-page: 1867 year: 1999 ident: ref_55 article-title: Isolation of a cDNA corresponding to a low temperature- and ABA-responsive gene encoding a putative glycine-rich RNA-binding protein in Solanum commersonii publication-title: J. Exp. Bot. – volume: 42 start-page: 890 year: 2005 ident: ref_53 article-title: Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02420.x – volume: 63 start-page: 180 year: 2021 ident: ref_31 article-title: Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13054 – volume: 167 start-page: 313 year: 2016 ident: ref_4 article-title: Abiotic Stress Signaling and Responses in Plants publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 18 start-page: 100 year: 2013 ident: ref_19 article-title: Plant RNA chaperones in stress response publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.08.004 – ident: ref_41 doi: 10.3390/ijms19020335 |
SSID | ssj0023259 |
Score | 2.4811912 |
Snippet | As a sessile organism, rice often faces various kinds of abiotic stresses, such as drought stress. Drought stress seriously harms plant growth and damages crop... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7045 |
SubjectTerms | Abiotic stress Abscisic acid Amino acids Biosynthesis Cold Drought Droughts Food security Gene Expression Regulation, Plant Heat Kinases Lignin Lignin - metabolism Metabolism Oryza - metabolism Oxidative stress Phylogenetics Plant Proteins - metabolism Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Proteins Rice Salinity Stress, Physiological - genetics Transgenic plants |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDI82pkl7mca-uPGhIIG0CXWkSZu2TwgxDoTGOJ2GxFvVNK7uEOSAHkPlr8due93BNF760FhtZMexf7FjM7aRoFkGiANPGZl5AdoYLylQr5SxhIislXU5huNf-vA0ODoLz9oDt7JNq5ztifVGbSc5nZFvSx1rX1P8cefq2qOuURRdbVtovGSvfLQ0lNIV9w86wKVk3SzNRxvk6TDRTeK7Qpi_PT6_LNG1UZGgi0zzJukfP_NpuuSc_em_Y29bx5HvNpJeZC_AvWevm1aS1Qd2eVIeDAeK77sRybHkP-r-O1M-hJJcRHzHTcV3KTiO1ooPRuCqC5wF7gaTseX4obJy6A0iNR-gW3iXVXzs-BA3Ev715Ka6zzgl_vzJ-M_v3z6y0_7-771Dr22l4OWBiKfIf21MJAo_t0aARTycUaXBwtgC0GRLZYXOg1AWCL_QadEAgE-tISoANRbUJ7bgJg6WGFeSSgJmoa8MoosiNAZslscxyESoIsh7bGvGzTRv64xTu4uLFPEG8T6d532PbXbUV019jf_QrcwEk7ZaVqZ_10SPrXfDqB8U9MgcTG5rGgQQQsdI87mRY_cjCgEjnBM9Fj2ScEdAtbcfj7jxqK7BneByiwLx5flpLbM3kq5LCO3JYIUtTG9uYRWdmKlZq1fqA3vk8Xc priority: 102 providerName: ProQuest |
Title | OsGRP3 Enhances Drought Resistance by Altering Phenylpropanoid Biosynthesis Pathway in Rice (Oryza sativa L.) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35806050 https://www.proquest.com/docview/2686160044 https://www.proquest.com/docview/2687720684 https://pubmed.ncbi.nlm.nih.gov/PMC9266740 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL4pjMpIIIFQNtd2nPQBoQHtJsS2qqJS36I4dtSizt2aDgh_PXdJG60MJF78EF8Sy-fz_X455w7gZRfdsnOxCqQRaaDQxwTdHO1KGkuMyFpRpWM4OdXHI_V5HI63YF1tdDWBxV-pHdWTGi1m-z8vy_do8O-IcSJlP5h-Oy8QpsgI4ck27KJPiqiWwYlq4gkIG6qyafTBI6ANuj4Cf-PuTed0A3H-eXDymifq34U7KwjJDmud34Mt5-_DrbqoZPkAzs-Ko-FAsp6fkEYL9qmqxLNkQ1cQWMRrzJTskMLk6LfYYOJ8OcNR4L4wn1qGDypKj7gQpdkAAeKPtGRTz4a4pbDXZ4vyV8roCND3lH3Zf_MQRv3e14_HwaqoQpApHi9RE9qYiOedzBruLDLjlHIO5sbmDp23kJbrTIUiRyKG8EU757DV2kW5Q9t18hHs-Ll3T4BJQckB07AjDfKMPDTG2TSLYye6XOYqa8Hb9Wwm2SrjOBW-mCXIPGjuk-tz34JXjfRFnWnjH3J7a8Uk6-WSCB3rjqbodAteNN1oKRT-SL2bX1UySCW4jlHmca3H5kUUDEZix1sQbWi4EaAs3Js9fjqpsnF3EeJEij_9z-E_g9uC_qDgOhBqD3aWiyv3HHHN0rRhOxpH2Mb9ozbsfuidDoZt8jRhu1rMvwFe_vsY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGEIIXxG8KA4zEJBAKc23HSR4Qmti6jnVbVW3S3rI4vqhFWzqWjin8UfyN3CVN6EDwtpc8xCfHOp_93Zez7xh7EyEsA4TaU1YmnkaM8aIM15WyjhiRc7JKx7C7Z_qH-suRf7TEfjZ3YehYZbMnVhu1m6b0j3xNmtB0DcUfP51986hqFEVXmxIatVnsQHmJlK34uL2B87sqZW_z4HPfm1cV8FItwhkOxVgbiKybOivAITVMKOleZl0GiF5SOWFS7csMmQjitwEAfBoDQQZovKCw3xvsplaI5HQzvbfVEjwlq-JsXcQ8z_iRqQ_ao6BYm3w9LdCVUoGgi1OLEPiXX_vn8cwFvOvdY3fnjipfry3rPluC_AG7VZeuLB-y0_1iazRUfDMfk90UfKOq9zPjIyjIJcV33JZ8nYLxiI58OIa8PMFR4O4znTiOHRVljt4nSvMhuqGXScknOR_hxsXf7p-XPxJOB42-J3zw4d0jdngtSn7MlvNpDk8ZV5JSECZ-V1lkM5lvLbgkDUOQkVCZTjvsfaPNOJ3nNafyGicx8hvSfbyo-w5bbaXP6nwe_5BbaSYmnq_qIv5tgx32um3G9UhBliSH6UUlg4RFmBBlntTz2H6IQs5IH0WHBVdmuBWgXN9XW_LJuMr5HaEjFWjx7P_DesVu9w92B_Fge2_nObsj6aqGMJ7UK2x5dn4BL9CBmtmXldVydnzdy-QXF4Au5g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN8UBhiJSSAU6tqJkzwgNGjLxkZXVUzaW4hjRy3a0rF0TOFP46_jLl90IHjbSx7ik2Od73z3y53vAJ6HaJatDVxHahE7LtoYJ0xRr6Q2hIiMEWU5hk9jtX3gfjz0DtfgZ3MXhtIqmzOxPKjNIqF_5D2hAtVXFH_spXVaxGQwenvyzaEOUhRpbdppVCKya4tzhG_5m50B7vWmEKPh5_fbTt1hwElcHixxWUprn6f9xGhuDcLEmArwpdqkFi2ZkIarxPVEiqgEbbmy1uJTKeunFgXZSpz3Cqz7hIo6sP5uOJ5MW7gnRdmqrY8W0FFeqKq0eylD3pt_Pc7RsZI-p2tUqwbxLy_3z2TNFes3ugk3areVbVVydgvWbHYbrlaNLIs7cLyff5hOJBtmM5KinA3K7j9LNrU5Oaj4jumCbVFoHm0lm8xsVhzhKvAsWswNw4nyIkNfFKnZBJ3S87hg84xN8RhjL_ZPix8xo7Sj7zHbe_3yLhxcCpvvQSdbZPYBMCmoIGHs9aVGbJN6WlsTJ0FgRchl6iZdeNVwM0rqKufUbOMoQrRDvI9Wed-FzZb6pKru8Q-6jWZjolrH8-i3RHbhWTuM2kkhlzizi7OSBuELVwHS3K_2sf0QBaARTPIu-Bd2uCWgyt8XR7L5rKwAHqJbhUL38P_LegrXUEWivZ3x7iO4LujeBleOcDegszw9s4_Rm1rqJ7XYMvhy2ZryCw7BNHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OsGRP3+Enhances+Drought+Resistance+by+Altering+Phenylpropanoid+Biosynthesis+Pathway+in+Rice+%28Oryza+sativa+L.%29&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Xu%2C+Wuwu&rft.au=Dou%2C+Yangfan&rft.au=Geng%2C+Han&rft.au=Fu%2C+Jinmei&rft.date=2022-06-24&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=23&rft.issue=13&rft.spage=7045&rft_id=info:doi/10.3390%2Fijms23137045&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms23137045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |