Petunidin, a B-ring 5′-O-Methylated Derivative of Delphinidin, Stimulates Osteoblastogenesis and Reduces sRANKL-Induced Bone Loss
Several lines of evidence suggest that oxidative stress is one of the key pathogenic mechanisms of osteoporosis. We aimed to elucidate the bone protective effects of petunidin, one of the most common anthocyanidins, considering its potent antioxidative activity. Petunidin (>5 μg/mL) significantly...
Saved in:
Published in | International journal of molecular sciences Vol. 20; no. 11; p. 2795 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
07.06.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several lines of evidence suggest that oxidative stress is one of the key pathogenic mechanisms of osteoporosis. We aimed to elucidate the bone protective effects of petunidin, one of the most common anthocyanidins, considering its potent antioxidative activity. Petunidin (>5 μg/mL) significantly inhibited osteoclastogenesis and downregulated c-fos, Nfatc1, Mmp9, Ctsk, and Dc-stamp mRNA expression in RAW264.7 cells. Conversely, petunidin (>16 μg/mL) stimulated mineralized matrix formation and gene expression of Bmp2 and Ocn, whereas it suppressed Mmp13, Mmp2, and Mmp9 mRNA expression and proteolytic activities of MMP13 and MMP9 in MC3T3-E1 cells. Micro-CT and bone histomorphometry analyses of sRANKL-induced osteopenic C57BL/6J mice showed that daily oral administration of petunidin (7.5 mg/kg/day) increased bone volume to tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), the ratio of osteoid volume to tissue volume (OV/TV), osteoid thickness (O.Th), the ratio of osteoid surface to bone surface (OS/BS), the ratio of osteoblast surface to bone surface (Ob.S/BS), and the number of osteoblast per unit of bone surface (N.Ob/BS), and decreased trabecular separation (Tb.Sp), the ratio of eroded surface to bone surface (ES/BS), the ratio of osteoclast surface to bone surface (Oc.S/BS), and number of osteoclast per unit of bone surface (N.Oc/BS), compared to untreated mice. Furthermore, histological sections of the femurs showed that oral administration of petunidin to sRANKL-induced osteopenic mice increased the size of osteoblasts located along the bone surface and the volume of osteoid was consistent with the in vitro osteoblast differentiation and MMP inhibition. These results suggest that petunidin is a promising natural agent to improve sRANKL-induced osteopenia in mice through increased osteoid formation, reflecting accelerated osteoblastogenesis, concomitant with suppressed bone resorption. |
---|---|
AbstractList | Several lines of evidence suggest that oxidative stress is one of the key pathogenic mechanisms of osteoporosis. We aimed to elucidate the bone protective effects of petunidin, one of the most common anthocyanidins, considering its potent antioxidative activity. Petunidin (>5 μg/mL) significantly inhibited osteoclastogenesis and downregulated
,
,
,
, and
mRNA expression in RAW264.7 cells. Conversely, petunidin (>16 μg/mL) stimulated mineralized matrix formation and gene expression of
and
, whereas it suppressed
,
, and
mRNA expression and proteolytic activities of
and
in MC3T3-E1 cells. Micro-CT and bone histomorphometry analyses of sRANKL-induced osteopenic C57BL/6J mice showed that daily oral administration of petunidin (7.5 mg/kg/day) increased bone volume to tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), the ratio of osteoid volume to tissue volume (OV/TV), osteoid thickness (O.Th), the ratio of osteoid surface to bone surface (OS/BS), the ratio of osteoblast surface to bone surface (Ob.S/BS), and the number of osteoblast per unit of bone surface (N.Ob/BS), and decreased trabecular separation (Tb.Sp), the ratio of eroded surface to bone surface (ES/BS), the ratio of osteoclast surface to bone surface (Oc.S/BS), and number of osteoclast per unit of bone surface (N.Oc/BS), compared to untreated mice. Furthermore, histological sections of the femurs showed that oral administration of petunidin to sRANKL-induced osteopenic mice increased the size of osteoblasts located along the bone surface and the volume of osteoid was consistent with the in vitro osteoblast differentiation and MMP inhibition. These results suggest that petunidin is a promising natural agent to improve sRANKL-induced osteopenia in mice through increased osteoid formation, reflecting accelerated osteoblastogenesis, concomitant with suppressed bone resorption. Several lines of evidence suggest that oxidative stress is one of the key pathogenic mechanisms of osteoporosis. We aimed to elucidate the bone protective effects of petunidin, one of the most common anthocyanidins, considering its potent antioxidative activity. Petunidin (>5 μg/mL) significantly inhibited osteoclastogenesis and downregulated c-fos, Nfatc1, Mmp9, Ctsk, and Dc-stamp mRNA expression in RAW264.7 cells. Conversely, petunidin (>16 μg/mL) stimulated mineralized matrix formation and gene expression of Bmp2 and Ocn, whereas it suppressed Mmp13, Mmp2, and Mmp9 mRNA expression and proteolytic activities of MMP13 and MMP9 in MC3T3-E1 cells. Micro-CT and bone histomorphometry analyses of sRANKL-induced osteopenic C57BL/6J mice showed that daily oral administration of petunidin (7.5 mg/kg/day) increased bone volume to tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), the ratio of osteoid volume to tissue volume (OV/TV), osteoid thickness (O.Th), the ratio of osteoid surface to bone surface (OS/BS), the ratio of osteoblast surface to bone surface (Ob.S/BS), and the number of osteoblast per unit of bone surface (N.Ob/BS), and decreased trabecular separation (Tb.Sp), the ratio of eroded surface to bone surface (ES/BS), the ratio of osteoclast surface to bone surface (Oc.S/BS), and number of osteoclast per unit of bone surface (N.Oc/BS), compared to untreated mice. Furthermore, histological sections of the femurs showed that oral administration of petunidin to sRANKL-induced osteopenic mice increased the size of osteoblasts located along the bone surface and the volume of osteoid was consistent with the in vitro osteoblast differentiation and MMP inhibition. These results suggest that petunidin is a promising natural agent to improve sRANKL-induced osteopenia in mice through increased osteoid formation, reflecting accelerated osteoblastogenesis, concomitant with suppressed bone resorption. Several lines of evidence suggest that oxidative stress is one of the key pathogenic mechanisms of osteoporosis. We aimed to elucidate the bone protective effects of petunidin, one of the most common anthocyanidins, considering its potent antioxidative activity. Petunidin (>5 μg/mL) significantly inhibited osteoclastogenesis and downregulated c-fos, Nfatc1, Mmp9, Ctsk, and Dc-stamp mRNA expression in RAW264.7 cells. Conversely, petunidin (>16 μg/mL) stimulated mineralized matrix formation and gene expression of Bmp2 and Ocn, whereas it suppressed Mmp13, Mmp2, and Mmp9 mRNA expression and proteolytic activities of MMP13 and MMP9 in MC3T3-E1 cells. Micro-CT and bone histomorphometry analyses of sRANKL-induced osteopenic C57BL/6J mice showed that daily oral administration of petunidin (7.5 mg/kg/day) increased bone volume to tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), the ratio of osteoid volume to tissue volume (OV/TV), osteoid thickness (O.Th), the ratio of osteoid surface to bone surface (OS/BS), the ratio of osteoblast surface to bone surface (Ob.S/BS), and the number of osteoblast per unit of bone surface (N.Ob/BS), and decreased trabecular separation (Tb.Sp), the ratio of eroded surface to bone surface (ES/BS), the ratio of osteoclast surface to bone surface (Oc.S/BS), and number of osteoclast per unit of bone surface (N.Oc/BS), compared to untreated mice. Furthermore, histological sections of the femurs showed that oral administration of petunidin to sRANKL-induced osteopenic mice increased the size of osteoblasts located along the bone surface and the volume of osteoid was consistent with the in vitro osteoblast differentiation and MMP inhibition. These results suggest that petunidin is a promising natural agent to improve sRANKL-induced osteopenia in mice through increased osteoid formation, reflecting accelerated osteoblastogenesis, concomitant with suppressed bone resorption.Several lines of evidence suggest that oxidative stress is one of the key pathogenic mechanisms of osteoporosis. We aimed to elucidate the bone protective effects of petunidin, one of the most common anthocyanidins, considering its potent antioxidative activity. Petunidin (>5 μg/mL) significantly inhibited osteoclastogenesis and downregulated c-fos, Nfatc1, Mmp9, Ctsk, and Dc-stamp mRNA expression in RAW264.7 cells. Conversely, petunidin (>16 μg/mL) stimulated mineralized matrix formation and gene expression of Bmp2 and Ocn, whereas it suppressed Mmp13, Mmp2, and Mmp9 mRNA expression and proteolytic activities of MMP13 and MMP9 in MC3T3-E1 cells. Micro-CT and bone histomorphometry analyses of sRANKL-induced osteopenic C57BL/6J mice showed that daily oral administration of petunidin (7.5 mg/kg/day) increased bone volume to tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), the ratio of osteoid volume to tissue volume (OV/TV), osteoid thickness (O.Th), the ratio of osteoid surface to bone surface (OS/BS), the ratio of osteoblast surface to bone surface (Ob.S/BS), and the number of osteoblast per unit of bone surface (N.Ob/BS), and decreased trabecular separation (Tb.Sp), the ratio of eroded surface to bone surface (ES/BS), the ratio of osteoclast surface to bone surface (Oc.S/BS), and number of osteoclast per unit of bone surface (N.Oc/BS), compared to untreated mice. Furthermore, histological sections of the femurs showed that oral administration of petunidin to sRANKL-induced osteopenic mice increased the size of osteoblasts located along the bone surface and the volume of osteoid was consistent with the in vitro osteoblast differentiation and MMP inhibition. These results suggest that petunidin is a promising natural agent to improve sRANKL-induced osteopenia in mice through increased osteoid formation, reflecting accelerated osteoblastogenesis, concomitant with suppressed bone resorption. Several lines of evidence suggest that oxidative stress is one of the key pathogenic mechanisms of osteoporosis. We aimed to elucidate the bone protective effects of petunidin, one of the most common anthocyanidins, considering its potent antioxidative activity. Petunidin (>5 μg/mL) significantly inhibited osteoclastogenesis and downregulated c-fos , Nfatc1 , Mmp9 , Ctsk , and Dc-stamp mRNA expression in RAW264.7 cells. Conversely, petunidin (>16 μg/mL) stimulated mineralized matrix formation and gene expression of Bmp2 and Ocn , whereas it suppressed Mmp13 , Mmp2 , and Mmp9 mRNA expression and proteolytic activities of MMP13 and MMP9 in MC3T3-E1 cells. Micro-CT and bone histomorphometry analyses of sRANKL-induced osteopenic C57BL/6J mice showed that daily oral administration of petunidin (7.5 mg/kg/day) increased bone volume to tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), the ratio of osteoid volume to tissue volume (OV/TV), osteoid thickness (O.Th), the ratio of osteoid surface to bone surface (OS/BS), the ratio of osteoblast surface to bone surface (Ob.S/BS), and the number of osteoblast per unit of bone surface (N.Ob/BS), and decreased trabecular separation (Tb.Sp), the ratio of eroded surface to bone surface (ES/BS), the ratio of osteoclast surface to bone surface (Oc.S/BS), and number of osteoclast per unit of bone surface (N.Oc/BS), compared to untreated mice. Furthermore, histological sections of the femurs showed that oral administration of petunidin to sRANKL-induced osteopenic mice increased the size of osteoblasts located along the bone surface and the volume of osteoid was consistent with the in vitro osteoblast differentiation and MMP inhibition. These results suggest that petunidin is a promising natural agent to improve sRANKL-induced osteopenia in mice through increased osteoid formation, reflecting accelerated osteoblastogenesis, concomitant with suppressed bone resorption. |
Author | Maeda, Toyonobu Nagaoka, Masahiro Nomura, Atsushi Kruger, Marlena C. Niida, Shumpei Suzuki, Keiko Kato, Yasumasa Moriwaki, Sawako |
AuthorAffiliation | 4 AKITAYA HONTEN Co., Ltd., Gifu 500-8471, Japan; a-nomura@akitayahonten.co.jp 5 School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand; M.C.Kruger@massey.ac.nz 1 Department of Pharmacology, School of Dentistry, Ohu University, Fukushima 963-8611, Japan; m-nagaoka@den.ohu-u.ac.jp 6 Department of Pharmacology, School of Dentistry, Showa University, Tokyo 142-8555, Japan 2 Department of Oral Function and Molecular Biology, School of Dentistry, Ohu University, Fukushima 963-8611, Japan; t-maeda@den.ohu-u.ac.jp (T.M.); yasumasa-kato@umin.ac.jp (Y.K.) 3 Medical Genome Center, National Center for Geriatrics and Gerontology (NCGG), Aichi 474-8511, Japan; cyawa@ncvc.go.jp (S.M.); sniida@ncgg.go.jp (S.N.) |
AuthorAffiliation_xml | – name: 4 AKITAYA HONTEN Co., Ltd., Gifu 500-8471, Japan; a-nomura@akitayahonten.co.jp – name: 1 Department of Pharmacology, School of Dentistry, Ohu University, Fukushima 963-8611, Japan; m-nagaoka@den.ohu-u.ac.jp – name: 3 Medical Genome Center, National Center for Geriatrics and Gerontology (NCGG), Aichi 474-8511, Japan; cyawa@ncvc.go.jp (S.M.); sniida@ncgg.go.jp (S.N.) – name: 2 Department of Oral Function and Molecular Biology, School of Dentistry, Ohu University, Fukushima 963-8611, Japan; t-maeda@den.ohu-u.ac.jp (T.M.); yasumasa-kato@umin.ac.jp (Y.K.) – name: 6 Department of Pharmacology, School of Dentistry, Showa University, Tokyo 142-8555, Japan – name: 5 School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand; M.C.Kruger@massey.ac.nz |
Author_xml | – sequence: 1 givenname: Masahiro surname: Nagaoka fullname: Nagaoka, Masahiro – sequence: 2 givenname: Toyonobu surname: Maeda fullname: Maeda, Toyonobu – sequence: 3 givenname: Sawako surname: Moriwaki fullname: Moriwaki, Sawako – sequence: 4 givenname: Atsushi surname: Nomura fullname: Nomura, Atsushi – sequence: 5 givenname: Yasumasa orcidid: 0000-0003-0192-9324 surname: Kato fullname: Kato, Yasumasa – sequence: 6 givenname: Shumpei surname: Niida fullname: Niida, Shumpei – sequence: 7 givenname: Marlena C. orcidid: 0000-0002-8646-9672 surname: Kruger fullname: Kruger, Marlena C. – sequence: 8 givenname: Keiko surname: Suzuki fullname: Suzuki, Keiko |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31181661$$D View this record in MEDLINE/PubMed |
BookMark | eNptksluFDEQhi0URBa4cUaWuHBIg5de7AtSEraIgUEBzpa7XT3jUbc9sd0j5YbEG_FIPAkeZYKGiJNdqq9-_bUcowPnHSD0lJKXnEvyyq7GyAilrJHVA3RES8YKQurmYO9_iI5jXBHCOKvkI3TIKRW0rukR-vkF0uSsse4Ua3xeBOsWuPr941cxLz5BWt4MOoHBbyDYjU52A9j3ORrWS7ur-prsOG2piOcxgW8HHZNfgINoI9bO4CswU5fT8ers88dZcem2ocHnuQ888zE-Rg97PUR4sntP0Pd3b79dfChm8_eXF2ezoiuJSIU0NWl5KY3pe9mYrq85NKChF1xqYRpeV7UgLZSN4LzvelkK2YDhrcjZtqX8BL2-1V1P7QimA5eCHtQ62FGHG-W1Vf9mnF2qhd-ous5DZCILvNgJBH89QUxqtLGDYdAO_BQVy9PlFWtKltHn99CVn4LL7WWqlLLkTMhMPdt39NfK3X4ywG6BLuRBBehVZ1Peg98atIOiRG2PQO0fQS46vVd0p_tf_A8_IrXf |
CitedBy_id | crossref_primary_10_3390_antiox13091143 crossref_primary_10_1016_j_plaphy_2024_109268 crossref_primary_10_3390_ijms21207623 crossref_primary_10_1016_j_intimp_2024_113531 crossref_primary_10_3390_cells12222666 crossref_primary_10_3390_ijms25115873 crossref_primary_10_1016_j_foodchem_2021_130425 crossref_primary_10_1016_j_ejmech_2024_116335 crossref_primary_10_1080_10826068_2021_1881906 crossref_primary_10_1016_j_jaim_2023_100823 crossref_primary_10_1002_smll_202006287 crossref_primary_10_3390_ijms20205196 crossref_primary_10_3390_ijms252212091 crossref_primary_10_1016_j_jfca_2022_104491 crossref_primary_10_3389_fendo_2023_1168687 crossref_primary_10_3389_fphar_2021_773660 crossref_primary_10_1016_j_cellimm_2024_104858 crossref_primary_10_3389_fendo_2021_779638 crossref_primary_10_3390_molecules28145364 crossref_primary_10_3390_ijms251910437 crossref_primary_10_1016_j_tem_2020_11_007 crossref_primary_10_3390_nu15040919 crossref_primary_10_1039_D2RA08284E crossref_primary_10_3390_ijms21030714 crossref_primary_10_3389_fgene_2021_680115 crossref_primary_10_3390_molecules26030537 crossref_primary_10_3390_ijms21207570 |
Cites_doi | 10.1016/S0031-9422(03)00438-2 10.1074/jbc.M411313200 10.1126/science.7939685 10.1056/NEJM198803313181305 10.1016/j.fct.2017.11.032 10.1016/j.lfs.2004.08.025 10.1138/20100467 10.1186/ar401 10.3390/molecules23092327 10.1172/JCI200318859 10.1016/j.jnutbio.2007.09.004 10.1111/j.1600-0625.2008.00829.x 10.1111/bph.13627 10.1002/jbmr.137 10.1016/j.bonr.2015.03.003 10.1038/nm.1954 10.3390/nu8010032 10.1093/gerona/gls163 10.1359/jbmr.090217 10.1016/j.jnutbio.2009.11.002 10.1371/journal.pone.0097177 10.1021/jf405356b 10.1210/er.2002-0023 10.1007/s00774-009-0088-0 10.1002/jbmr.1649 10.4103/0976-0105.177703 10.1146/annurev-food-041715-033346 10.1016/j.cccn.2005.04.014 10.1210/jc.2002-021496 10.1007/s11914-012-0119-y 10.1002/mnfr.200700092 10.1016/j.molmed.2005.11.007 10.1093/jn/133.6.1892 10.1016/j.canlet.2005.04.033 10.3390/nu9101089 10.1016/S0006-291X(05)80311-0 10.3945/an.115.009233 10.1210/edrv-14-4-424 10.1359/jbmr.070121 10.1016/j.bbrc.2003.12.073 10.1016/S1534-5807(02)00369-6 10.1359/jbmr.091017 10.1002/jbmr.141 10.1016/j.bbamcr.2009.07.004 10.3390/antiox3010144 10.1002/jbmr.1805 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms20112795 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Dentistry |
EISSN | 1422-0067 |
ExternalDocumentID | PMC6600628 31181661 10_3390_ijms20112795 |
Genre | Journal Article |
GeographicLocations | China Japan |
GeographicLocations_xml | – name: China – name: Japan |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M NPM 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c408t-9d60b349ddff97dcf63e7eaef839a8d7365680be47833fcf94897ed3b8a8dbb13 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:42:59 EDT 2025 Mon Jul 21 10:51:03 EDT 2025 Fri Jul 25 20:28:01 EDT 2025 Thu Apr 03 07:02:53 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 Tue Jul 01 01:45:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | petunidin anthocyanin osteoblast osteoclast osteoporosis bone anabolism |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-9d60b349ddff97dcf63e7eaef839a8d7365680be47833fcf94897ed3b8a8dbb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. Present Affiliation: Biobank, National Cerebral and Cardiovascular Center (NCVC), Osaka 564-8565, Japan. |
ORCID | 0000-0002-8646-9672 0000-0003-0192-9324 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms20112795 |
PMID | 31181661 |
PQID | 2249943289 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6600628 proquest_miscellaneous_2259352742 proquest_journals_2249943289 pubmed_primary_31181661 crossref_citationtrail_10_3390_ijms20112795 crossref_primary_10_3390_ijms20112795 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190607 |
PublicationDateYYYYMMDD | 2019-06-07 |
PublicationDate_xml | – month: 6 year: 2019 text: 20190607 day: 7 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Muthusami (ref_3) 2005; 360 McGhie (ref_9) 2007; 51 Wada (ref_28) 2006; 12 Afaq (ref_35) 2009; 18 ref_14 Canalis (ref_33) 2003; 24 Almeida (ref_4) 2010; 25 Zhang (ref_45) 2005; 76 ref_18 Li (ref_24) 2007; 22 ref_17 Dempster (ref_31) 2013; 28 Raisz (ref_1) 1988; 318 Kato (ref_48) 2005; 280 Vincenti (ref_38) 2001; 4 Nair (ref_42) 2016; 7 Lin (ref_15) 2017; 174 Welch (ref_22) 2012; 27 Wallace (ref_41) 2015; 6 Ghosh (ref_16) 2007; 16 Stein (ref_34) 1993; 14 Folgueras (ref_29) 2010; 1803 Chiba (ref_10) 2003; 133 Kim (ref_12) 2011; 22 Chang (ref_23) 2009; 15 Bai (ref_25) 2004; 314 Maggio (ref_5) 2003; 88 Grigoriadis (ref_26) 1994; 266 ref_36 ref_37 Devareddy (ref_13) 2008; 19 Chen (ref_46) 2006; 235 Tomimori (ref_30) 2009; 24 Maeda (ref_49) 2015; 2 Kong (ref_19) 2003; 64 Lila (ref_21) 2016; 7 Tsuji (ref_11) 2009; 27 Hubert (ref_40) 2014; 3 Almeida (ref_6) 2010; 7 Chen (ref_39) 2010; 25 Skates (ref_32) 2018; 111 Lean (ref_2) 2003; 112 Bouxsein (ref_50) 2010; 25 ref_44 Khosla (ref_7) 2013; 68 ref_43 Takayanagi (ref_27) 2002; 3 Levis (ref_8) 2012; 10 Fang (ref_20) 2014; 62 Bax (ref_47) 1992; 183 |
References_xml | – volume: 64 start-page: 923 year: 2003 ident: ref_19 article-title: Analysis and biological activities of anthocyanins publication-title: Phytochemistry doi: 10.1016/S0031-9422(03)00438-2 – volume: 280 start-page: 10938 year: 2005 ident: ref_48 article-title: Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phospholipase D-mitogen-activated protein kinase signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M411313200 – volume: 266 start-page: 443 year: 1994 ident: ref_26 article-title: c-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodeling publication-title: Science doi: 10.1126/science.7939685 – volume: 318 start-page: 818 year: 1988 ident: ref_1 article-title: Local and systemic factors in the pathogenesis of osteoporosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJM198803313181305 – volume: 111 start-page: 445 year: 2018 ident: ref_32 article-title: Berries containing anthocyanins with enhanced methylation profiles are more effective at ameliorating high fat diet-induced metabolic damage publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2017.11.032 – volume: 76 start-page: 1465 year: 2005 ident: ref_45 article-title: Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables publication-title: Life Sci. doi: 10.1016/j.lfs.2004.08.025 – volume: 7 start-page: 340 year: 2010 ident: ref_6 article-title: Aging and oxidative stress: A new look at old bone publication-title: IBMS BoneKEy doi: 10.1138/20100467 – volume: 16 start-page: 200 year: 2007 ident: ref_16 article-title: Anthocyanins and anthocyanin-rich extracts: Role in diabetes and eye function publication-title: Asia Pac. J. Clin. Nutr. – volume: 4 start-page: 157 year: 2001 ident: ref_38 article-title: Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: Integration of complex signaling pathways for the recruitment of gene-specific transcription factors publication-title: Arthritis Res. doi: 10.1186/ar401 – ident: ref_36 doi: 10.3390/molecules23092327 – volume: 112 start-page: 915 year: 2003 ident: ref_2 article-title: A crucial role for thiol antioxidants in estrogen-deficiency bone loss publication-title: J. Clin. Investig. doi: 10.1172/JCI200318859 – volume: 19 start-page: 694 year: 2008 ident: ref_13 article-title: Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2007.09.004 – volume: 18 start-page: 553 year: 2009 ident: ref_35 article-title: Protective effect of pomegranate-derived products on UVB-mediated damage in human reconstituted skin publication-title: Exp. Dermatol. doi: 10.1111/j.1600-0625.2008.00829.x – volume: 174 start-page: 1226 year: 2017 ident: ref_15 article-title: Effects of anthocyanins on the prevention and treatment of cancer publication-title: Br. J. Pharmacol. doi: 10.1111/bph.13627 – volume: 25 start-page: 2399 year: 2010 ident: ref_39 article-title: Dietary-induced serum phenolic acids promote bone growth via p38 MAPK/β-catenin canonical Wnt signaling publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.137 – volume: 2 start-page: 36 year: 2015 ident: ref_49 article-title: Mineral trioxide aggregate induces osteoblastogenesis via Atf6 publication-title: Bone Rep. doi: 10.1016/j.bonr.2015.03.003 – volume: 15 start-page: 682 year: 2009 ident: ref_23 article-title: Inhibition of osteoblastic bone formation by nuclear factor-κB publication-title: Nat. Med. doi: 10.1038/nm.1954 – ident: ref_18 doi: 10.3390/nu8010032 – volume: 68 start-page: 1226 year: 2013 ident: ref_7 article-title: Pathogenesis of age-related bone loss in humans publication-title: J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/gls163 – volume: 24 start-page: 1194 year: 2009 ident: ref_30 article-title: Evaluation of Pharmaceuticals With a Novel 50-Hour Animal Model of Bone Loss publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.090217 – volume: 22 start-page: 8 year: 2011 ident: ref_12 article-title: The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2009.11.002 – ident: ref_14 doi: 10.1371/journal.pone.0097177 – volume: 62 start-page: 3904 year: 2014 ident: ref_20 article-title: Some Anthocyanins Could Be Efficiently Absorbed across the Gastrointestinal Mucosa: Extensive Presystemic Metabolism Reduces Apparent Bioavailability publication-title: J. Agric. Food Chem. doi: 10.1021/jf405356b – volume: 24 start-page: 218 year: 2003 ident: ref_33 article-title: Bone Morphogenetic Proteins, Their Antagonists, and the Skeleton publication-title: Endocr. Rev. doi: 10.1210/er.2002-0023 – volume: 27 start-page: 673 year: 2009 ident: ref_11 article-title: Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice publication-title: J. Bone Miner. Metab. doi: 10.1007/s00774-009-0088-0 – volume: 27 start-page: 1872 year: 2012 ident: ref_22 article-title: Habitual flavonoid intakes are positively associated with bone mineral density in women publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1649 – volume: 7 start-page: 27 year: 2016 ident: ref_42 article-title: A simple practice guide for dose conversion between animals and human publication-title: J. Basic Clin. Pharm. doi: 10.4103/0976-0105.177703 – ident: ref_37 – volume: 7 start-page: 375 year: 2016 ident: ref_21 article-title: Unraveling Anthocyanin Bioavailability for Human Health publication-title: Annu. Rev. Food Sci. Technol. doi: 10.1146/annurev-food-041715-033346 – ident: ref_44 – volume: 360 start-page: 81 year: 2005 ident: ref_3 article-title: Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats publication-title: Clin. Chim. Acta doi: 10.1016/j.cccn.2005.04.014 – volume: 88 start-page: 1523 year: 2003 ident: ref_5 article-title: Marked decrease in plasma antioxidants in aged osteoporotic women: Results of a cross-sectional study publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2002-021496 – volume: 10 start-page: 296 year: 2012 ident: ref_8 article-title: The role of diet in osteoporosis prevention and management publication-title: Curr. Osteoporos. Rep. doi: 10.1007/s11914-012-0119-y – volume: 51 start-page: 702 year: 2007 ident: ref_9 article-title: The bioavailability and absorption of anthocyanins: Towards a better understanding publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.200700092 – volume: 12 start-page: 17 year: 2006 ident: ref_28 article-title: RANKL-RANK signaling in osteoclastogenesis and bone disease publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2005.11.007 – volume: 133 start-page: 1892 year: 2003 ident: ref_10 article-title: Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice publication-title: J. Nutr. doi: 10.1093/jn/133.6.1892 – volume: 235 start-page: 248 year: 2006 ident: ref_46 article-title: Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line publication-title: Cancer Lett. doi: 10.1016/j.canlet.2005.04.033 – ident: ref_17 doi: 10.3390/nu9101089 – volume: 183 start-page: 1153 year: 1992 ident: ref_47 article-title: Stimulation of osteoclastic bone resorption by hydrogen peroxide publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(05)80311-0 – volume: 6 start-page: 620 year: 2015 ident: ref_41 article-title: Anthocyanins publication-title: Adv. Nutr. doi: 10.3945/an.115.009233 – volume: 14 start-page: 424 year: 1993 ident: ref_34 article-title: Molecular Mechanisms Mediating Proliferation/Differentiation Interrelationships During Progressive Development of the Osteoblast Phenotype publication-title: Endocr. Rev. doi: 10.1210/edrv-14-4-424 – volume: 22 start-page: 646 year: 2007 ident: ref_24 article-title: Endogenous TNFalpha lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-kappaB publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.070121 – volume: 314 start-page: 197 year: 2004 ident: ref_25 article-title: Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2003.12.073 – volume: 3 start-page: 889 year: 2002 ident: ref_27 article-title: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts publication-title: Dev. Cell doi: 10.1016/S1534-5807(02)00369-6 – ident: ref_43 – volume: 25 start-page: 769 year: 2010 ident: ref_4 article-title: Estrogens attenuate oxidative stress and the differentiation and apoptosis of osteoblasts by DNA binding-independent actions of the ERα publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.091017 – volume: 25 start-page: 1468 year: 2010 ident: ref_50 article-title: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.141 – volume: 1803 start-page: 3 year: 2010 ident: ref_29 article-title: Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2009.07.004 – volume: 3 start-page: 144 year: 2014 ident: ref_40 article-title: Dietary Polyphenols, Berries, and Age-Related Bone Loss: A Review Based on Human, Animal, and Cell Studies publication-title: Antioxidants doi: 10.3390/antiox3010144 – volume: 28 start-page: 2 year: 2013 ident: ref_31 article-title: Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1805 |
SSID | ssj0023259 |
Score | 2.3922205 |
Snippet | Several lines of evidence suggest that oxidative stress is one of the key pathogenic mechanisms of osteoporosis. We aimed to elucidate the bone protective... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2795 |
SubjectTerms | Antioxidants Arthritis Cancer Dentistry Flavonoids Food Fruits Genes Kinases Medical research Natural & organic foods Nutrition Osteoporosis Oxidative stress Polyphenols Vegetables |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEFQXkFCjISnMBqEjt-nFAfLBX0gQqVeouS2KZB22QhWSRuSPyj_qT-ks4k2bAFwTGZSWJnxp4ZezwfIc-l0HA_0UyArWIQf0VMx4Iz7uLYWO-KzONB4b19uXMk3h0nx8OCWzOkVS7mxG6itnWBa-TrYGqMERzig9ezrwxRo3B3dYDQuEquRWBpMKVLT96OARePO7C0CGwQk4mRfeI7hzB_vfxy2qDtixUiSyybpL_8zD_TJZfsz-Q2uTU4jnSjl_QdcsVVq-R6DyX5Y5Xc2Ma0H0Ruu0t-fXDtvCrBKr2iGd1kuHRHk_OfZ-yA7TmQzBQcTEu3Qfm-d3W_ae3hajo7KYenPrblKeJ6uYYegBrUOfjYbf0Z58WyoVll6SGWfAVyc7ix_36XIQJIAe_crCtHd6GX98jR5M2nrR02gC2wQoS6ZcbKMOfCWOu9UbbwkjvlMufBg8q0VRwcPx3mTijNuS-8EdooZ3mugZrnEb9PVir4xkNCObBrxCELw1zIPMsg_Faxj1QoRAYBU0BeLv53WgyVyBEQY5pCRILSSZelE5AXI_esr8DxD761hejSYRw26W-tCcizkQwjCLdFssrVc-RJDLih0MiAPOglPX6I47lcUJ-AqEs6MDJgde7LlKo86ap0S9mdT330_2Y9JjehA6ZLPlNrZKX9NndPwM1p86edLl8A7o3-pw priority: 102 providerName: ProQuest |
Title | Petunidin, a B-ring 5′-O-Methylated Derivative of Delphinidin, Stimulates Osteoblastogenesis and Reduces sRANKL-Induced Bone Loss |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31181661 https://www.proquest.com/docview/2249943289 https://www.proquest.com/docview/2259352742 https://pubmed.ncbi.nlm.nih.gov/PMC6600628 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71ISQuiDeBsjISnMCQjZ3YPiDUhS4VdLfVwkp7i_JwaNA2KU0W0RsS_4ifxC9hJpuNuhQkLlEST2LH43i-8WM-gMeB1Hjf11yireLof_W59qTgwnqeSTObRBltFB6Ng_2pfDfzZxuwYhttK7D6q2tHfFLTs_nzb1_OX-EP_5I8TnTZX-SfTyqyY54y_iZso01SxGUwkt18AsKGhjaNBjw4ddDLJfCXnl43TpcQ558LJy9YouF1uNZCSLa71PkN2LDFTbiyJJU8vwU_jmy9KHK0Sc9YxAacBu6Y_-v7T37IRxb1Mkd4mbI32PS-NlG_WZnh1fz0OG-f-lDnJ8TqZSt2iI2gjBFh1-Un6hXzikVFyiYU8BWTq8nu-P0BJ_6PBN85KAvLDvDLbsN0uPfx9T5vqRZ4Il1dc5MGbiykSdMsMypNskBYZSObIX6KdKoEwj7txlYqLUSWZEZqo2wqYo2pcdwXd2CrwDzuARMoromFzHVjGcRRhM638rK-cqWM0F1y4OmqjsOkjUNOdBjzEP0R0kh4USMOPOmkT5fxN_4ht7NSV7hqRCHCE2OkQJ_SgUddMv4_NCkSFbZckIxvEIRiIR24u9Rul5GgXbkIYBxQa3rvBCg293pKkR83MbqDoNmdev8_i_8AruKpadagqR3Yqs8W9iGinTruwaaaKTzq4dsebA_2xkeTHtkfv9c08d8pcwRb |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FIBQuCMJmCNBI5ASteNztpQ8IJQzDhFmCQiLl5nhpE6OJPWAPKDck_ocDn8SXUOWNCQhuOdpdXut1V5VdVQ_giSM93G97XKKt4hh_9bhnScGFtiwVJzoKEioUnkyd4aF8c2QfrcD3thaG0irbNbFaqOM8om_kW2hqlJIC44MX84-cWKPo72pLoVHDYqTPvmDIVjzf7aN-Ny1r8Org5ZA3rAI8kqZXchU7ZiikiuMkUW4cJY7Qrg50gq5C4MWuQA_HM0MtXU-IJEqU9JSrYxF6OBqGPYHnvQSXpUBLTpXpg9ddgCesipythzaPO7Zy6kR7FDS30g-nBdlayyUmi2UT-Jdf-2d65pK9G1yHa42jyrZrZN2AFZ2tw5WauvJsHdb6lGZETHE34dtbXS6yFK3gMxawHU6fCpn98-sPvscnGpEwQ4c2Zn0E--eqzzjLE9yazU_S5qh3ZXpKPGK6YHsIuzxEn77M39M6nBYsyGK2Ty1mcbjY356OxpwYRyI8506eaTbGp7wFhxeihtuwmuE17gITKO4R75lphtIJgwDDfddKeq4pZYABmgFP2_ftR03ncyLgmPkYAZF2_GXtGLDZSc_rjh__kNtoVec3877wf6PUgMfdMM5Y-g0TZDpfkIyt0O3FmzTgTq3p7kKC6oARPga45zDQCVA38PMjWXpSdQV3nKoe9t7_b-sRrA0PJmN_vDsd3Yer-DCqSnxzN2C1_LTQD9DFKsOHFa4ZHF_0RPoF3Sg9UA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVDwuCMqjgQKLRE-wiuPd2N4DQg1p1JI0jQKVejN-7LZGqR2wA-oNiX_EkZ_DL2HGdkIKgluP9o53bc-3OzP27HwAzxzp4fmOxyXaKo7xV5t7thRcaNtWsdFRYGij8MHI2TuSb447x2vwY7EXhtIqF2tiuVDHWUTfyFtoapSSAuODlqnTIsa9_qvZR04MUvSndUGnUUFkoM-_YPiWv9zvoa63bbu_--71Hq8ZBngkLa_gKnasUEgVx8YoN46MI7SrA23QbQi82BXo7XhWqKXrCWEio6SnXB2L0MPWMGwL7PcKrLsUFTVgvbs7Gk-W4Z6wS6q2NlpA7nSUU6XdC6GsVvLhLCfLa7vEa7FqEP_ycv9M1lyxfv1bcLN2W9lOhbPbsKbTDbhaEVmeb8D1HiUdEW_cHfg21sU8TdAmvmAB63L6cMg6P79-54f8QCMupujexqyH0P9cVh1nmcGj6ew0qa96WyRnxCqmc3aIIMxC9PCL7IRW5SRnQRqzCRWcxeZ8sjMaDDnxj0TYZzdLNRviU96Fo0tRxD1opDjGJjCB4h6xoFlWKJ0wCDD4d23Tdi0pAwzXmvB88b79qK6DTnQcUx_jIdKOv6qdJmwvpWdV_Y9_yG0tVOfXq0Du_8ZsE54um3H-0k-ZINXZnGQ6Cp1gvMkm3K80vRxI0K5ghE8T3AsYWApQbfCLLWlyWtYId5xyd-yD_9_WE7iGk8gf7o8GD-EGPosqs-DcLWgUn-b6EfpbRfi4BjaD95c9l34Bm7xC4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Petunidin%2C+a+B-ring+5%E2%80%B2-O-Methylated+Derivative+of+Delphinidin%2C+Stimulates+Osteoblastogenesis+and+Reduces+sRANKL-Induced+Bone+Loss&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Nagaoka%2C+Masahiro&rft.au=Maeda%2C+Toyonobu&rft.au=Moriwaki%2C+Sawako&rft.au=Nomura%2C+Atsushi&rft.date=2019-06-07&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=20&rft.issue=11&rft.spage=2795&rft_id=info:doi/10.3390%2Fijms20112795&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms20112795 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |