Fusing Deep Features by Kernel Collaborative Representation for Remote Sensing Scene Classification
Remote sensing scene classification is widely concerned because of its wide applications. Recently, convolutional neural networks (CNNs) have made a significant breakthrough in remote sensing image scene classification. However, the accuracy of using only a fully connected layer of CNNs as a classif...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 12429 - 12439 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Remote sensing scene classification is widely concerned because of its wide applications. Recently, convolutional neural networks (CNNs) have made a significant breakthrough in remote sensing image scene classification. However, the accuracy of using only a fully connected layer of CNNs as a classifier is not satisfied, especially for few-shot remote sensing images. In this article, we propose a feature-fusion-based kernel collaborative representation classification (FF-KCRC) framework for few-shot remote sensing images, which can make full use of the synergy between samples and the similarity between different types of image features to improve the accuracy of scene classification for few-shot remote sensing images. Specifically, we first design an effective feature extraction strategy to obtain more discriminative image features from CNNs, in which transfer learning is used to transfer the weights of pretrained CNNs to alleviate the few-shot training problem. Then, we design the FF-KCRC framework to make full use of the synergy between different categories and fuse the classification of different features, where "kernel trick" is used to address the problem of linear indivisibility. Extensive experiments have been conducted on publicly available remote sensing image datasets, and the results show that the proposed FF-KCRC achieves state-of-the-art results. |
---|---|
AbstractList | Remote sensing scene classification is widely concerned because of its wide applications. Recently, convolutional neural networks (CNNs) have made a significant breakthrough in remote sensing image scene classification. However, the accuracy of using only a fully connected layer of CNNs as a classifier is not satisfied, especially for few-shot remote sensing images. In this article, we propose a feature-fusion-based kernel collaborative representation classification (FF-KCRC) framework for few-shot remote sensing images, which can make full use of the synergy between samples and the similarity between different types of image features to improve the accuracy of scene classification for few-shot remote sensing images. Specifically, we first design an effective feature extraction strategy to obtain more discriminative image features from CNNs, in which transfer learning is used to transfer the weights of pretrained CNNs to alleviate the few-shot training problem. Then, we design the FF-KCRC framework to make full use of the synergy between different categories and fuse the classification of different features, where “kernel trick” is used to address the problem of linear indivisibility. Extensive experiments have been conducted on publicly available remote sensing image datasets, and the results show that the proposed FF-KCRC achieves state-of-the-art results. |
Author | Li, Yong Ma, Mingyang Cheng, Wei Chen, Xiaoning |
Author_xml | – sequence: 1 givenname: Xiaoning orcidid: 0000-0002-9335-9180 surname: Chen fullname: Chen, Xiaoning email: chenxiaoning2018@mail.nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Mingyang orcidid: 0000-0002-2944-628X surname: Ma fullname: Ma, Mingyang email: mamingyang@mail.nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Yong orcidid: 0000-0002-8290-3910 surname: Li fullname: Li, Yong email: ruikel@nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Wei orcidid: 0000-0002-0874-9927 surname: Cheng fullname: Cheng, Wei email: pupil_119@nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China |
BookMark | eNp9kUFv3CAQhVGVSt2k_QW5IPXsLQPGhmO07bZJI1XKpmeE8RCxcmAL3kr59yXrpIceehrN8N7HaN45OYspIiGXwNYATH-62d1f3e3WnHFYCxCM9eINWXGQ0IAU8oysQAvdQMvad-S8lD1jHe-1WBG3PZYQH-hnxAPdop2PGQsdnuh3zBEnuknTZIeU7Rx-I73DQ33GONc2RepTrqPHNCPdYTxxdg4j0s1kSwk-uJPuPXnr7VTww0u9ID-3X-4335rbH1-vN1e3jWuZmhvthBhaGHoNUrfKOmW1k2PnVauc9-0AfOihF6MarOdWC1SSc8uVHASg7sUFuV64Y7J7c8jh0eYnk2wwp0HKD8bmObgJjUfNnPKqHmdsfaUI1zkrVf0cRyXHyvq4sA45_Tpimc0-HXOs6xveAYOeix6qSi8ql1MpGb1xYbnNnG2YDDDznI9Z8jHP-ZiXfKpX_ON93fj_rsvFFRDxr0N3XCqhxB8we570 |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3543459 crossref_primary_10_1109_JSTARS_2022_3229729 crossref_primary_10_1117_1_JRS_16_044510 crossref_primary_10_1109_JSTARS_2022_3225791 crossref_primary_10_1109_TGRS_2024_3386533 crossref_primary_10_3390_rs16050738 crossref_primary_10_1109_JSTARS_2022_3202246 crossref_primary_10_1109_TGRS_2023_3331880 crossref_primary_10_1109_TGRS_2023_3336471 crossref_primary_10_3390_rs15215201 |
Cites_doi | 10.1109/TGRS.2019.2906883 10.1109/LGRS.2019.2896411 10.1109/TIP.2007.911828 10.1016/j.patcog.2018.12.023 10.1109/TGRS.2020.3015157 10.1109/JSTARS.2018.2866595 10.1109/TGRS.2019.2907932 10.1145/1869790.1869829 10.1109/TGRS.2017.2783902 10.1109/IGARSS39084.2020.9323602 10.1109/IGARSS.2019.8898445 10.1109/TGRS.2019.2908756 10.1080/2150704X.2020.1746854 10.1109/CVPR.2005.177 10.1109/TGRS.2015.2393857 10.1109/TGRS.2006.881741 10.1109/TGRS.2019.2909695 10.1109/WHISPERS.2015.8075422 10.1023/B:VISI.0000029664.99615.94 10.1109/TGRS.2019.2913816 10.1109/TPAMI.2002.1017623 10.1109/GlobalSIP.2018.8646414 10.1007/BF00130487 10.1016/j.isprsjprs.2014.10.002 10.1109/TGRS.2017.2711275 10.1109/LGRS.2019.2937872 10.1109/TPAMI.2008.79 10.1145/3065386 10.1109/TGRS.2020.3016820 10.1109/IGARSS.2018.8517805 10.1109/JSTARS.2021.3084441 10.1109/CVPR.2015.7298594 10.1109/TGRS.2018.2845668 10.1109/TGRS.2018.2869101 10.1109/TGRS.2018.2864987 10.1049/iet-cvi.2014.0270 10.1109/TIP.2018.2878958 10.1109/TGRS.2015.2488681 10.1109/LGRS.2019.2902675 10.1109/TGRS.2019.2917161 10.1109/TGRS.2020.2964288 10.1109/LGRS.2019.2897652 10.1016/j.patcog.2016.07.001 10.3390/rs9111139 10.1109/CVPR.2016.90 10.1109/JSTARS.2020.2988477 10.1109/JSTARS.2020.3005403 10.1109/LGRS.2019.2902615 10.1109/JSTARS.2019.2919317 10.1109/TGRS.2020.3021283 10.1109/TGRS.2019.2931801 10.3390/rs11050518 10.1109/TIP.2006.881969 10.1109/LGRS.2018.2880136 10.1016/j.neucom.2019.05.019 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2021.3130073 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 12439 |
ExternalDocumentID | oai_doaj_org_article_fe90c8f8535d4f22a3c6ca58b79ed85d 10_1109_JSTARS_2021_3130073 9625838 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 3102019ZX015 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c408t-9c33b41b7915948ac8a9c5d6f848cff4b12b7173d8baf2a93e8522a285b31e973 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:07:00 EDT 2025 Fri Jul 25 10:48:47 EDT 2025 Tue Jul 01 03:16:20 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Wed Aug 27 05:07:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-9c33b41b7915948ac8a9c5d6f848cff4b12b7173d8baf2a93e8522a285b31e973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9335-9180 0000-0002-2944-628X 0000-0002-8290-3910 0000-0002-0874-9927 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9625838 |
PQID | 2610172371 |
PQPubID | 75722 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fe90c8f8535d4f22a3c6ca58b79ed85d crossref_citationtrail_10_1109_JSTARS_2021_3130073 ieee_primary_9625838 crossref_primary_10_1109_JSTARS_2021_3130073 proquest_journals_2610172371 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref10 ref16 ref19 ref18 ref51 ref50 roy (ref61) 2018 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 castelluccio (ref17) 2015; 28 ref49 ref8 ref7 ref9 ref4 ref3 ref5 ref40 xia (ref30) 0; 38 ref35 ref34 ref37 ref36 ref31 ref32 ref2 ref1 ref39 ref38 simonyan (ref6) 0 dos santos (ref33) 0 ref24 ref23 ref26 ref25 ref20 ref22 ref21 lei (ref54) 0 ref28 ref27 ref29 ref60 |
References_xml | – ident: ref46 doi: 10.1109/TGRS.2019.2906883 – ident: ref2 doi: 10.1109/LGRS.2019.2896411 – ident: ref25 doi: 10.1109/TIP.2007.911828 – ident: ref28 doi: 10.1016/j.patcog.2018.12.023 – ident: ref20 doi: 10.1109/TGRS.2020.3015157 – ident: ref48 doi: 10.1109/JSTARS.2018.2866595 – ident: ref49 doi: 10.1109/TGRS.2019.2907932 – ident: ref29 doi: 10.1145/1869790.1869829 – ident: ref16 doi: 10.1109/TGRS.2017.2783902 – ident: ref39 doi: 10.1109/IGARSS39084.2020.9323602 – ident: ref44 doi: 10.1109/IGARSS.2019.8898445 – ident: ref52 doi: 10.1109/TGRS.2019.2908756 – ident: ref40 doi: 10.1080/2150704X.2020.1746854 – ident: ref38 doi: 10.1109/CVPR.2005.177 – ident: ref32 doi: 10.1109/TGRS.2015.2393857 – ident: ref34 doi: 10.1109/TGRS.2006.881741 – ident: ref14 doi: 10.1109/TGRS.2019.2909695 – ident: ref27 doi: 10.1109/WHISPERS.2015.8075422 – ident: ref37 doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 28 start-page: 627 year: 2015 ident: ref17 article-title: Land use classification in remote sensing images by convolutional neural networks publication-title: Acta Ecologica Sinica – year: 2018 ident: ref61 article-title: Effects of degradations on deep neural network architectures – ident: ref12 doi: 10.1109/TGRS.2019.2913816 – ident: ref36 doi: 10.1109/TPAMI.2002.1017623 – ident: ref42 doi: 10.1109/GlobalSIP.2018.8646414 – ident: ref35 doi: 10.1007/BF00130487 – ident: ref1 doi: 10.1016/j.isprsjprs.2014.10.002 – start-page: 203 year: 0 ident: ref33 article-title: Evaluating the potential of texture and color descriptors for remote sensing image retrieval and classification publication-title: Proc Int Conf Comput Vis Theory Appl – ident: ref11 doi: 10.1109/TGRS.2017.2711275 – ident: ref59 doi: 10.1109/LGRS.2019.2937872 – ident: ref24 doi: 10.1109/TPAMI.2008.79 – ident: ref5 doi: 10.1145/3065386 – ident: ref53 doi: 10.1109/TGRS.2020.3016820 – ident: ref55 doi: 10.1109/IGARSS.2018.8517805 – ident: ref21 doi: 10.1109/JSTARS.2021.3084441 – ident: ref7 doi: 10.1109/CVPR.2015.7298594 – ident: ref57 doi: 10.1109/TGRS.2018.2845668 – ident: ref41 doi: 10.1109/TGRS.2018.2869101 – ident: ref58 doi: 10.1109/TGRS.2018.2864987 – ident: ref31 doi: 10.1049/iet-cvi.2014.0270 – ident: ref60 doi: 10.1109/TIP.2018.2878958 – ident: ref4 doi: 10.1109/TGRS.2015.2488681 – ident: ref50 doi: 10.1109/LGRS.2019.2902675 – start-page: 1 year: 0 ident: ref6 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc 3rd Int Conf Learn Representations – ident: ref19 doi: 10.1109/TGRS.2019.2917161 – ident: ref9 doi: 10.1109/TGRS.2020.2964288 – ident: ref22 doi: 10.1109/LGRS.2019.2897652 – ident: ref18 doi: 10.1016/j.patcog.2016.07.001 – ident: ref10 doi: 10.3390/rs9111139 – ident: ref8 doi: 10.1109/CVPR.2016.90 – ident: ref23 doi: 10.1109/JSTARS.2020.2988477 – ident: ref45 doi: 10.1109/JSTARS.2020.3005403 – ident: ref43 doi: 10.1109/LGRS.2019.2902615 – ident: ref13 doi: 10.1109/JSTARS.2019.2919317 – ident: ref51 doi: 10.1109/TGRS.2020.3021283 – ident: ref15 doi: 10.1109/TGRS.2019.2931801 – ident: ref56 doi: 10.3390/rs11050518 – volume: 38 start-page: 298 year: 0 ident: ref30 article-title: Structural high-resolution satellite image indexing publication-title: Proc ISPRS TC VII Symp -100 Years ISPRS – ident: ref26 doi: 10.1109/TIP.2006.881969 – start-page: 471 year: 0 ident: ref54 article-title: Sparse representation or collaborative representation: Which helps face recognition publication-title: Proc Int Conf Comput Vis – ident: ref3 doi: 10.1109/LGRS.2018.2880136 – ident: ref47 doi: 10.1016/j.neucom.2019.05.019 |
SSID | ssj0062793 |
Score | 2.3019803 |
Snippet | Remote sensing scene classification is widely concerned because of its wide applications. Recently, convolutional neural networks (CNNs) have made a... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12429 |
SubjectTerms | Accuracy Artificial neural networks Classification Collaboration Collaborative representation classification (CRC) Design Dictionaries Feature extraction feature fusion Image classification Kernel kernel trick Kernels Neural networks Remote sensing Representations scene classification Sensors Training Transfer learning |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF5EXcX6RQ4eLTZN2ibHdXUVRQ-7Ct5CkqZepMq6K_jvnUmzqyLoxWtJ03ZmMjOvmbwh5IhlRmHkAGxiVCoqwCmSNzz1QtWZrI0sPR4UvrktL-_F1UPx8KXVF9aEdfTAneBOGq8yJxuIKkUtmjw33JXOFNJWyteyqNH7Qsybg6nOB5c5mF3kGGKZOgEj74_GgAZzBiCV4_bUtzgU6Ppjf5UfTjlEmuE6WYspIu13r7ZBlny7SVYuQgve9x5xQ6xVf6Rn3r9QzOBmgJipfafXftL6Jzr41Oybp6NQ6RoPGLUUUlS4BOrxdIyl6zDP2IG7o6E5JpYNhXFb5H54fje4TGOrhNSJTE5T5Ti3goFQGPKvGCeNckVdNlJI1zTCstzifnstrWlyo7iXkHiZXBaWM68qvk2W2-fW7xDKKy6M9aJSkCuBoJVUsKwFUp8ZJgxLSD4XnHaRRxzbWTzpgCcypTtpa5S2jtJOyPHippeORuP34aeokcVQ5MAOF8AydLQM_ZdlJKSH-lxMogDqSS4Tsj_Xr47r9VUDjkQwzCu2-x-P3iOr-Dndr5p9sjydzPwBJC9Texjs9APwD-km priority: 102 providerName: Directory of Open Access Journals |
Title | Fusing Deep Features by Kernel Collaborative Representation for Remote Sensing Scene Classification |
URI | https://ieeexplore.ieee.org/document/9625838 https://www.proquest.com/docview/2610172371 https://doaj.org/article/fe90c8f8535d4f22a3c6ca58b79ed85d |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB21lZC4AKUgFkrlA8dmG8dOYh9LYalalUOXSr1ZtjPhQJVW7S5S-XpmHO8ioELcVpETOfsm9nv2-A3AO1l6yzMHaRNvC92STjGqVwVq25Wm86ZBPih89rk5vtAnl_XlBuyvz8IgYko-wyn_THv53XVc8lLZgSWybpTZhE0SbuNZrdWo21RtMtglPmILtozJDkOytAcU4ofnc9KClSSJqnhz6rdZKJn15-oqfw3JaZ6ZPYWzVQ_H9JJv0-UiTOOPP8wb__cVnsGTTDjF4Rgh27CBw3N49CkV9L3fgTjjzPev4gPijWA-uCT9LcK9OMXbAa_E0a84-Y7iPOXN5uNKgyDCS5cIbBRzToSn58wjDZ4ildrkJKTU7gVczD5-OToucuGFIurSLAoblQpahtZKdnPx0Xgb667pjTax73WQVeDd-84E31feKjRE43xl6qAk2la9hK3hesBXIFSrtA-oW0vMy9dcrJIGCc1Gal5qLydQrYBwMbuSc3GMK5fUSWndiJ5j9FxGbwL765tuRlOOfzd_zwivm7KjdrpAyLj8gboebRlNT-yl7nRPb6NiE6nD9CdgZ-puAjuM5vohGcgJ7K7ixeWv_86RKmVprVr5-uG73sBj7uC4lLMLW4vbJb4lcrMIe2lRYC_F9k-_SPSQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VIgQXvgpiaQEfODbbOHYS-1gKy0K7PXRbqbfIdiYcqNKq7CKVX98Zx7uIDyFuUWRHTt7EfmPPvAF4K3NneeUg38TZTNfkpxjVqQy1bXPTOlMhJwrPjqvpmf58Xp5vwO46FwYRY_AZjvkynuW3l2HJW2V7lsi6UeYO3KV1vyyGbK3VvFsVdZTYJUZiMxaNSRpDMrd7ZOT7J3PyBgtJTqri46lf1qEo15_qq_wxKceVZvIIZqsxDgEmX8fLhR-HH7_JN_7vSzyGh4lyiv3BRp7ABvZP4d7HWNL3ZgvChGPfv4j3iFeCGeGSPHDhb8QhXvd4IQ5-Wsp3FCcxcjYlLPWCKC_dIrhRzDkUnp4zDzR9ilhsk8OQYrtncDb5cHowzVLphSzo3CwyG5TyWvraStZzccE4G8q26ow2oeu0l4Xn8_vWeNcVzio0RORcYUqvJNpaPYfN_rLHFyBUrbTzqGtL3MuVXK6SpgnNUmpOaidHUKyAaELSJefyGBdN9E9y2wzoNYxek9Abwe6609Ugy_Hv5u8Y4XVT1tSONwiZJv2iTYc2D6Yj_lK2uqO3UaEKNGD6CNiash3BFqO5fkgCcgQ7K3tp0v__rSG_lJ1rVcuXf-_1Bu5PT2dHzdGn48NteMCDHTZ2dmBzcb3EV0R1Fv51tPBb5D325Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+Deep+Features+by+Kernel+Collaborative+Representation+for+Remote+Sensing+Scene+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Chen%2C+Xiaoning&rft.au=Ma%2C+Mingyang&rft.au=Li%2C+Yong&rft.au=Cheng%2C+Wei&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=12429&rft.epage=12439&rft_id=info:doi/10.1109%2FJSTARS.2021.3130073&rft.externalDocID=9625838 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |