Fusing Deep Features by Kernel Collaborative Representation for Remote Sensing Scene Classification

Remote sensing scene classification is widely concerned because of its wide applications. Recently, convolutional neural networks (CNNs) have made a significant breakthrough in remote sensing image scene classification. However, the accuracy of using only a fully connected layer of CNNs as a classif...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 12429 - 12439
Main Authors Chen, Xiaoning, Ma, Mingyang, Li, Yong, Cheng, Wei
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Remote sensing scene classification is widely concerned because of its wide applications. Recently, convolutional neural networks (CNNs) have made a significant breakthrough in remote sensing image scene classification. However, the accuracy of using only a fully connected layer of CNNs as a classifier is not satisfied, especially for few-shot remote sensing images. In this article, we propose a feature-fusion-based kernel collaborative representation classification (FF-KCRC) framework for few-shot remote sensing images, which can make full use of the synergy between samples and the similarity between different types of image features to improve the accuracy of scene classification for few-shot remote sensing images. Specifically, we first design an effective feature extraction strategy to obtain more discriminative image features from CNNs, in which transfer learning is used to transfer the weights of pretrained CNNs to alleviate the few-shot training problem. Then, we design the FF-KCRC framework to make full use of the synergy between different categories and fuse the classification of different features, where "kernel trick" is used to address the problem of linear indivisibility. Extensive experiments have been conducted on publicly available remote sensing image datasets, and the results show that the proposed FF-KCRC achieves state-of-the-art results.
AbstractList Remote sensing scene classification is widely concerned because of its wide applications. Recently, convolutional neural networks (CNNs) have made a significant breakthrough in remote sensing image scene classification. However, the accuracy of using only a fully connected layer of CNNs as a classifier is not satisfied, especially for few-shot remote sensing images. In this article, we propose a feature-fusion-based kernel collaborative representation classification (FF-KCRC) framework for few-shot remote sensing images, which can make full use of the synergy between samples and the similarity between different types of image features to improve the accuracy of scene classification for few-shot remote sensing images. Specifically, we first design an effective feature extraction strategy to obtain more discriminative image features from CNNs, in which transfer learning is used to transfer the weights of pretrained CNNs to alleviate the few-shot training problem. Then, we design the FF-KCRC framework to make full use of the synergy between different categories and fuse the classification of different features, where “kernel trick” is used to address the problem of linear indivisibility. Extensive experiments have been conducted on publicly available remote sensing image datasets, and the results show that the proposed FF-KCRC achieves state-of-the-art results.
Author Li, Yong
Ma, Mingyang
Cheng, Wei
Chen, Xiaoning
Author_xml – sequence: 1
  givenname: Xiaoning
  orcidid: 0000-0002-9335-9180
  surname: Chen
  fullname: Chen, Xiaoning
  email: chenxiaoning2018@mail.nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Mingyang
  orcidid: 0000-0002-2944-628X
  surname: Ma
  fullname: Ma, Mingyang
  email: mamingyang@mail.nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Yong
  orcidid: 0000-0002-8290-3910
  surname: Li
  fullname: Li, Yong
  email: ruikel@nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0002-0874-9927
  surname: Cheng
  fullname: Cheng, Wei
  email: pupil_119@nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kUFv3CAQhVGVSt2k_QW5IPXsLQPGhmO07bZJI1XKpmeE8RCxcmAL3kr59yXrpIceehrN8N7HaN45OYspIiGXwNYATH-62d1f3e3WnHFYCxCM9eINWXGQ0IAU8oysQAvdQMvad-S8lD1jHe-1WBG3PZYQH-hnxAPdop2PGQsdnuh3zBEnuknTZIeU7Rx-I73DQ33GONc2RepTrqPHNCPdYTxxdg4j0s1kSwk-uJPuPXnr7VTww0u9ID-3X-4335rbH1-vN1e3jWuZmhvthBhaGHoNUrfKOmW1k2PnVauc9-0AfOihF6MarOdWC1SSc8uVHASg7sUFuV64Y7J7c8jh0eYnk2wwp0HKD8bmObgJjUfNnPKqHmdsfaUI1zkrVf0cRyXHyvq4sA45_Tpimc0-HXOs6xveAYOeix6qSi8ql1MpGb1xYbnNnG2YDDDznI9Z8jHP-ZiXfKpX_ON93fj_rsvFFRDxr0N3XCqhxB8we570
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3543459
crossref_primary_10_1109_JSTARS_2022_3229729
crossref_primary_10_1117_1_JRS_16_044510
crossref_primary_10_1109_JSTARS_2022_3225791
crossref_primary_10_1109_TGRS_2024_3386533
crossref_primary_10_3390_rs16050738
crossref_primary_10_1109_JSTARS_2022_3202246
crossref_primary_10_1109_TGRS_2023_3331880
crossref_primary_10_1109_TGRS_2023_3336471
crossref_primary_10_3390_rs15215201
Cites_doi 10.1109/TGRS.2019.2906883
10.1109/LGRS.2019.2896411
10.1109/TIP.2007.911828
10.1016/j.patcog.2018.12.023
10.1109/TGRS.2020.3015157
10.1109/JSTARS.2018.2866595
10.1109/TGRS.2019.2907932
10.1145/1869790.1869829
10.1109/TGRS.2017.2783902
10.1109/IGARSS39084.2020.9323602
10.1109/IGARSS.2019.8898445
10.1109/TGRS.2019.2908756
10.1080/2150704X.2020.1746854
10.1109/CVPR.2005.177
10.1109/TGRS.2015.2393857
10.1109/TGRS.2006.881741
10.1109/TGRS.2019.2909695
10.1109/WHISPERS.2015.8075422
10.1023/B:VISI.0000029664.99615.94
10.1109/TGRS.2019.2913816
10.1109/TPAMI.2002.1017623
10.1109/GlobalSIP.2018.8646414
10.1007/BF00130487
10.1016/j.isprsjprs.2014.10.002
10.1109/TGRS.2017.2711275
10.1109/LGRS.2019.2937872
10.1109/TPAMI.2008.79
10.1145/3065386
10.1109/TGRS.2020.3016820
10.1109/IGARSS.2018.8517805
10.1109/JSTARS.2021.3084441
10.1109/CVPR.2015.7298594
10.1109/TGRS.2018.2845668
10.1109/TGRS.2018.2869101
10.1109/TGRS.2018.2864987
10.1049/iet-cvi.2014.0270
10.1109/TIP.2018.2878958
10.1109/TGRS.2015.2488681
10.1109/LGRS.2019.2902675
10.1109/TGRS.2019.2917161
10.1109/TGRS.2020.2964288
10.1109/LGRS.2019.2897652
10.1016/j.patcog.2016.07.001
10.3390/rs9111139
10.1109/CVPR.2016.90
10.1109/JSTARS.2020.2988477
10.1109/JSTARS.2020.3005403
10.1109/LGRS.2019.2902615
10.1109/JSTARS.2019.2919317
10.1109/TGRS.2020.3021283
10.1109/TGRS.2019.2931801
10.3390/rs11050518
10.1109/TIP.2006.881969
10.1109/LGRS.2018.2880136
10.1016/j.neucom.2019.05.019
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2021.3130073
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 12439
ExternalDocumentID oai_doaj_org_article_fe90c8f8535d4f22a3c6ca58b79ed85d
10_1109_JSTARS_2021_3130073
9625838
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 3102019ZX015
  funderid: 10.13039/501100012226
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-9c33b41b7915948ac8a9c5d6f848cff4b12b7173d8baf2a93e8522a285b31e973
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Wed Aug 27 01:07:00 EDT 2025
Fri Jul 25 10:48:47 EDT 2025
Tue Jul 01 03:16:20 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Wed Aug 27 05:07:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-9c33b41b7915948ac8a9c5d6f848cff4b12b7173d8baf2a93e8522a285b31e973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9335-9180
0000-0002-2944-628X
0000-0002-8290-3910
0000-0002-0874-9927
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9625838
PQID 2610172371
PQPubID 75722
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_fe90c8f8535d4f22a3c6ca58b79ed85d
crossref_citationtrail_10_1109_JSTARS_2021_3130073
ieee_primary_9625838
crossref_primary_10_1109_JSTARS_2021_3130073
proquest_journals_2610172371
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref10
ref16
ref19
ref18
ref51
ref50
roy (ref61) 2018
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
castelluccio (ref17) 2015; 28
ref49
ref8
ref7
ref9
ref4
ref3
ref5
ref40
xia (ref30) 0; 38
ref35
ref34
ref37
ref36
ref31
ref32
ref2
ref1
ref39
ref38
simonyan (ref6) 0
dos santos (ref33) 0
ref24
ref23
ref26
ref25
ref20
ref22
ref21
lei (ref54) 0
ref28
ref27
ref29
ref60
References_xml – ident: ref46
  doi: 10.1109/TGRS.2019.2906883
– ident: ref2
  doi: 10.1109/LGRS.2019.2896411
– ident: ref25
  doi: 10.1109/TIP.2007.911828
– ident: ref28
  doi: 10.1016/j.patcog.2018.12.023
– ident: ref20
  doi: 10.1109/TGRS.2020.3015157
– ident: ref48
  doi: 10.1109/JSTARS.2018.2866595
– ident: ref49
  doi: 10.1109/TGRS.2019.2907932
– ident: ref29
  doi: 10.1145/1869790.1869829
– ident: ref16
  doi: 10.1109/TGRS.2017.2783902
– ident: ref39
  doi: 10.1109/IGARSS39084.2020.9323602
– ident: ref44
  doi: 10.1109/IGARSS.2019.8898445
– ident: ref52
  doi: 10.1109/TGRS.2019.2908756
– ident: ref40
  doi: 10.1080/2150704X.2020.1746854
– ident: ref38
  doi: 10.1109/CVPR.2005.177
– ident: ref32
  doi: 10.1109/TGRS.2015.2393857
– ident: ref34
  doi: 10.1109/TGRS.2006.881741
– ident: ref14
  doi: 10.1109/TGRS.2019.2909695
– ident: ref27
  doi: 10.1109/WHISPERS.2015.8075422
– ident: ref37
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 28
  start-page: 627
  year: 2015
  ident: ref17
  article-title: Land use classification in remote sensing images by convolutional neural networks
  publication-title: Acta Ecologica Sinica
– year: 2018
  ident: ref61
  article-title: Effects of degradations on deep neural network architectures
– ident: ref12
  doi: 10.1109/TGRS.2019.2913816
– ident: ref36
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref42
  doi: 10.1109/GlobalSIP.2018.8646414
– ident: ref35
  doi: 10.1007/BF00130487
– ident: ref1
  doi: 10.1016/j.isprsjprs.2014.10.002
– start-page: 203
  year: 0
  ident: ref33
  article-title: Evaluating the potential of texture and color descriptors for remote sensing image retrieval and classification
  publication-title: Proc Int Conf Comput Vis Theory Appl
– ident: ref11
  doi: 10.1109/TGRS.2017.2711275
– ident: ref59
  doi: 10.1109/LGRS.2019.2937872
– ident: ref24
  doi: 10.1109/TPAMI.2008.79
– ident: ref5
  doi: 10.1145/3065386
– ident: ref53
  doi: 10.1109/TGRS.2020.3016820
– ident: ref55
  doi: 10.1109/IGARSS.2018.8517805
– ident: ref21
  doi: 10.1109/JSTARS.2021.3084441
– ident: ref7
  doi: 10.1109/CVPR.2015.7298594
– ident: ref57
  doi: 10.1109/TGRS.2018.2845668
– ident: ref41
  doi: 10.1109/TGRS.2018.2869101
– ident: ref58
  doi: 10.1109/TGRS.2018.2864987
– ident: ref31
  doi: 10.1049/iet-cvi.2014.0270
– ident: ref60
  doi: 10.1109/TIP.2018.2878958
– ident: ref4
  doi: 10.1109/TGRS.2015.2488681
– ident: ref50
  doi: 10.1109/LGRS.2019.2902675
– start-page: 1
  year: 0
  ident: ref6
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc 3rd Int Conf Learn Representations
– ident: ref19
  doi: 10.1109/TGRS.2019.2917161
– ident: ref9
  doi: 10.1109/TGRS.2020.2964288
– ident: ref22
  doi: 10.1109/LGRS.2019.2897652
– ident: ref18
  doi: 10.1016/j.patcog.2016.07.001
– ident: ref10
  doi: 10.3390/rs9111139
– ident: ref8
  doi: 10.1109/CVPR.2016.90
– ident: ref23
  doi: 10.1109/JSTARS.2020.2988477
– ident: ref45
  doi: 10.1109/JSTARS.2020.3005403
– ident: ref43
  doi: 10.1109/LGRS.2019.2902615
– ident: ref13
  doi: 10.1109/JSTARS.2019.2919317
– ident: ref51
  doi: 10.1109/TGRS.2020.3021283
– ident: ref15
  doi: 10.1109/TGRS.2019.2931801
– ident: ref56
  doi: 10.3390/rs11050518
– volume: 38
  start-page: 298
  year: 0
  ident: ref30
  article-title: Structural high-resolution satellite image indexing
  publication-title: Proc ISPRS TC VII Symp -100 Years ISPRS
– ident: ref26
  doi: 10.1109/TIP.2006.881969
– start-page: 471
  year: 0
  ident: ref54
  article-title: Sparse representation or collaborative representation: Which helps face recognition
  publication-title: Proc Int Conf Comput Vis
– ident: ref3
  doi: 10.1109/LGRS.2018.2880136
– ident: ref47
  doi: 10.1016/j.neucom.2019.05.019
SSID ssj0062793
Score 2.3019803
Snippet Remote sensing scene classification is widely concerned because of its wide applications. Recently, convolutional neural networks (CNNs) have made a...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12429
SubjectTerms Accuracy
Artificial neural networks
Classification
Collaboration
Collaborative representation classification (CRC)
Design
Dictionaries
Feature extraction
feature fusion
Image classification
Kernel
kernel trick
Kernels
Neural networks
Remote sensing
Representations
scene classification
Sensors
Training
Transfer learning
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF5EXcX6RQ4eLTZN2ibHdXUVRQ-7Ct5CkqZepMq6K_jvnUmzqyLoxWtJ03ZmMjOvmbwh5IhlRmHkAGxiVCoqwCmSNzz1QtWZrI0sPR4UvrktL-_F1UPx8KXVF9aEdfTAneBOGq8yJxuIKkUtmjw33JXOFNJWyteyqNH7Qsybg6nOB5c5mF3kGGKZOgEj74_GgAZzBiCV4_bUtzgU6Ppjf5UfTjlEmuE6WYspIu13r7ZBlny7SVYuQgve9x5xQ6xVf6Rn3r9QzOBmgJipfafXftL6Jzr41Oybp6NQ6RoPGLUUUlS4BOrxdIyl6zDP2IG7o6E5JpYNhXFb5H54fje4TGOrhNSJTE5T5Ti3goFQGPKvGCeNckVdNlJI1zTCstzifnstrWlyo7iXkHiZXBaWM68qvk2W2-fW7xDKKy6M9aJSkCuBoJVUsKwFUp8ZJgxLSD4XnHaRRxzbWTzpgCcypTtpa5S2jtJOyPHippeORuP34aeokcVQ5MAOF8AydLQM_ZdlJKSH-lxMogDqSS4Tsj_Xr47r9VUDjkQwzCu2-x-P3iOr-Dndr5p9sjydzPwBJC9Texjs9APwD-km
  priority: 102
  providerName: Directory of Open Access Journals
Title Fusing Deep Features by Kernel Collaborative Representation for Remote Sensing Scene Classification
URI https://ieeexplore.ieee.org/document/9625838
https://www.proquest.com/docview/2610172371
https://doaj.org/article/fe90c8f8535d4f22a3c6ca58b79ed85d
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB21lZC4AKUgFkrlA8dmG8dOYh9LYalalUOXSr1ZtjPhQJVW7S5S-XpmHO8ioELcVpETOfsm9nv2-A3AO1l6yzMHaRNvC92STjGqVwVq25Wm86ZBPih89rk5vtAnl_XlBuyvz8IgYko-wyn_THv53XVc8lLZgSWybpTZhE0SbuNZrdWo21RtMtglPmILtozJDkOytAcU4ofnc9KClSSJqnhz6rdZKJn15-oqfw3JaZ6ZPYWzVQ_H9JJv0-UiTOOPP8wb__cVnsGTTDjF4Rgh27CBw3N49CkV9L3fgTjjzPev4gPijWA-uCT9LcK9OMXbAa_E0a84-Y7iPOXN5uNKgyDCS5cIbBRzToSn58wjDZ4ildrkJKTU7gVczD5-OToucuGFIurSLAoblQpahtZKdnPx0Xgb667pjTax73WQVeDd-84E31feKjRE43xl6qAk2la9hK3hesBXIFSrtA-oW0vMy9dcrJIGCc1Gal5qLydQrYBwMbuSc3GMK5fUSWndiJ5j9FxGbwL765tuRlOOfzd_zwivm7KjdrpAyLj8gboebRlNT-yl7nRPb6NiE6nD9CdgZ-puAjuM5vohGcgJ7K7ixeWv_86RKmVprVr5-uG73sBj7uC4lLMLW4vbJb4lcrMIe2lRYC_F9k-_SPSQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VIgQXvgpiaQEfODbbOHYS-1gKy0K7PXRbqbfIdiYcqNKq7CKVX98Zx7uIDyFuUWRHTt7EfmPPvAF4K3NneeUg38TZTNfkpxjVqQy1bXPTOlMhJwrPjqvpmf58Xp5vwO46FwYRY_AZjvkynuW3l2HJW2V7lsi6UeYO3KV1vyyGbK3VvFsVdZTYJUZiMxaNSRpDMrd7ZOT7J3PyBgtJTqri46lf1qEo15_qq_wxKceVZvIIZqsxDgEmX8fLhR-HH7_JN_7vSzyGh4lyiv3BRp7ABvZP4d7HWNL3ZgvChGPfv4j3iFeCGeGSPHDhb8QhXvd4IQ5-Wsp3FCcxcjYlLPWCKC_dIrhRzDkUnp4zDzR9ilhsk8OQYrtncDb5cHowzVLphSzo3CwyG5TyWvraStZzccE4G8q26ow2oeu0l4Xn8_vWeNcVzio0RORcYUqvJNpaPYfN_rLHFyBUrbTzqGtL3MuVXK6SpgnNUmpOaidHUKyAaELSJefyGBdN9E9y2wzoNYxek9Abwe6609Ugy_Hv5u8Y4XVT1tSONwiZJv2iTYc2D6Yj_lK2uqO3UaEKNGD6CNiash3BFqO5fkgCcgQ7K3tp0v__rSG_lJ1rVcuXf-_1Bu5PT2dHzdGn48NteMCDHTZ2dmBzcb3EV0R1Fv51tPBb5D325Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+Deep+Features+by+Kernel+Collaborative+Representation+for+Remote+Sensing+Scene+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Chen%2C+Xiaoning&rft.au=Ma%2C+Mingyang&rft.au=Li%2C+Yong&rft.au=Cheng%2C+Wei&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=12429&rft.epage=12439&rft_id=info:doi/10.1109%2FJSTARS.2021.3130073&rft.externalDocID=9625838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon