Trustworthy Building Fire Detection Framework With Simulation-Based Learning

With the difficulty of collecting desirable training data due to the heterogeneities of IoT sensors in various buildings and the scarcity of fire events, it is time consuming and expensive to apply data-driven deep learning approaches to fire detection systems in specific building environments. Simu...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 55777 - 55789
Main Authors Kim, Young-Jin, Kim, Hanjin, Lee, Seunggi, Kim, Won-Tae
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the difficulty of collecting desirable training data due to the heterogeneities of IoT sensors in various buildings and the scarcity of fire events, it is time consuming and expensive to apply data-driven deep learning approaches to fire detection systems in specific building environments. Simulation-based learning has been actively researched to mitigate data scarcity problems by reproducing potential fire events. Since simulation-based learning mainly depends on synthetic training data, trained deep learning models may generate erroneous predictions in real-world scenarios that are unlike any of the training samples. In this paper, we propose a trustworthy building fire detection framework based on a multioutput encoder-decoder network, named MEDNet, which is designed for the practical usage of simulation-based learning in building fire detection. The fundamental steps of our approach are (1) modeling and simulating fire events to create realistic synthetic data that reflect data from actual buildings, (2) predicting a fire event and dissimilarities between real input data and synthetic training data based on the trained MEDNet model, and (3) operating a switching mechanism to use a knowledge-based method that does not depend on synthetic training data when dissimilarities exist. Finally, we perform simulation experiments based on a real building compartment where the proposed framework is compared with conventional time-series classification networks on various evaluation datasets. The proposed framework is trustworthy in practical usage because MEDNet with a switching mechanism achieves a 36.65% higher F1-score than conventional time-series classification networks and generates false-positive predictions lower than 0.02% even in unpredictable scenarios.
AbstractList With the difficulty of collecting desirable training data due to the heterogeneities of IoT sensors in various buildings and the scarcity of fire events, it is time consuming and expensive to apply data-driven deep learning approaches to fire detection systems in specific building environments. Simulation-based learning has been actively researched to mitigate data scarcity problems by reproducing potential fire events. Since simulation-based learning mainly depends on synthetic training data, trained deep learning models may generate erroneous predictions in real-world scenarios that are unlike any of the training samples. In this paper, we propose a trustworthy building fire detection framework based on a multioutput encoder-decoder network, named MEDNet, which is designed for the practical usage of simulation-based learning in building fire detection. The fundamental steps of our approach are (1) modeling and simulating fire events to create realistic synthetic data that reflect data from actual buildings, (2) predicting a fire event and dissimilarities between real input data and synthetic training data based on the trained MEDNet model, and (3) operating a switching mechanism to use a knowledge-based method that does not depend on synthetic training data when dissimilarities exist. Finally, we perform simulation experiments based on a real building compartment where the proposed framework is compared with conventional time-series classification networks on various evaluation datasets. The proposed framework is trustworthy in practical usage because MEDNet with a switching mechanism achieves a 36.65% higher F1-score than conventional time-series classification networks and generates false-positive predictions lower than 0.02% even in unpredictable scenarios.
Author Kim, Hanjin
Lee, Seunggi
Kim, Young-Jin
Kim, Won-Tae
Author_xml – sequence: 1
  givenname: Young-Jin
  orcidid: 0000-0002-9772-021X
  surname: Kim
  fullname: Kim, Young-Jin
  organization: Department of Computer Science Engineering, Korea University of Technology and Education, Cheonan, Republic of Korea
– sequence: 2
  givenname: Hanjin
  orcidid: 0000-0002-2436-3784
  surname: Kim
  fullname: Kim, Hanjin
  organization: Department of Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Republic of Korea
– sequence: 3
  givenname: Seunggi
  surname: Lee
  fullname: Lee, Seunggi
  organization: Department of Computer Science Engineering, Korea University of Technology and Education, Cheonan, Republic of Korea
– sequence: 4
  givenname: Won-Tae
  orcidid: 0000-0003-3426-3792
  surname: Kim
  fullname: Kim, Won-Tae
  email: wtkim@koreatech.ac.kr
  organization: Department of Computer Science Engineering, Korea University of Technology and Education, Cheonan, Republic of Korea
BookMark eNpNUcFOwzAMjRBIjMEXcKnEuSOJm7Q5jsFg0iQOA3GM0sTdMrYG0lZof09HEcIXW8_vPVt6F-S0DjUScs3ohDGqbqez2cNqNeGUswnQnAnBT8iIM6lSECBP_83n5KpptrSvoodEPiLLl9g17VeI7eaQ3HV-53y9TuY-YnKPLdrWhzqZR7PHnvOevPl2k6z8vtuZ4ya9Mw26ZIkm1r3ukpxVZtfg1W8fk9f5w8vsKV0-Py5m02VqM1q0qbJMWuEKWWWUQulyZhEYEyU1peIiK3nlrJOFKgvOqcsdVUoUrOKQCbBcwJgsBl8XzFZ_RL838aCD8foHCHGtTWy93aGWFqXIMwmG8oyBUQY5wzwHVVW5AtZ73QxeHzF8dti0ehu6WPfvay4YgJI8y3oWDCwbQ9NErP6uMqqPKeghBX1MQf-m0KuuB5VHxD-FAlVIWcA3ojSDPw
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_knosys_2023_111319
crossref_primary_10_1016_j_jobe_2022_105310
crossref_primary_10_1109_ACCESS_2022_3190852
crossref_primary_10_1016_j_eswa_2023_121665
crossref_primary_10_1142_S1469026823500141
crossref_primary_10_3390_s24051428
crossref_primary_10_1109_JSEN_2021_3124266
Cites_doi 10.3801/IAFSS.FSS.5-403
10.1016/j.firesaf.2020.103069
10.1016/S0379-7112(01)00057-1
10.1145/324138.324142
10.1007/s10973-019-08804-6
10.1145/1754414.1754419
10.1109/CVPR.2016.90
10.1016/j.atmosres.2017.06.025
10.1016/j.autcon.2017.08.027
10.1016/j.firesaf.2008.08.008
10.1007/BF01040709
10.1016/j.psep.2018.09.006
10.1007/s10694-020-01022-9
10.1109/MNET.2018.1700202
10.1007/s10694-016-0625-z
10.3801/IAFSS.FSS.9-1329
10.1007/s10618-019-00619-1
10.1016/j.autcon.2019.01.007
10.1109/IJCNN.2017.7966039
10.1007/s10694-020-00985-z
10.1109/ACCESS.2019.2946515
10.1016/j.enbuild.2014.08.015
10.1016/j.aei.2018.04.015
10.1016/j.buildenv.2006.11.001
10.1109/TIA.2017.2777925
10.1016/j.engstruct.2006.11.024
10.1016/j.compchemeng.2019.03.012
10.1109/JIOT.2019.2958185
10.1109/TRO.2014.2387571
10.1016/j.firesaf.2019.102854
10.1016/j.procs.2019.11.058
10.1002/prs.10068
10.1109/IROS.2017.8202133
10.1109/COMST.2018.2844341
10.1109/TSMC.2020.2968516
10.1023/B:FIRE.0000003313.97677.c5
10.1038/nature14539
10.1109/ACCESS.2014.2325029
10.1016/j.jlp.2016.11.020
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3071552
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 55789
ExternalDocumentID oai_doaj_org_article_6ce657463a02413a9ae21e7739ff7931
10_1109_ACCESS_2021_3071552
9398668
Genre orig-research
GrantInformation_xml – fundername: Institute for Information and Communication Technology Promotion (IITP)
  grantid: 2019-0-01347; 2015-0-00816
  funderid: 10.13039/501100010418
– fundername: Post-Doctoral Program of KOREATECH
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-9c16c5d86f4003bd71ce3115b0ab9254b2fdcd689b8220d7d099581f23453c253
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Tue Oct 22 15:13:02 EDT 2024
Thu Oct 10 17:43:47 EDT 2024
Fri Aug 23 02:46:22 EDT 2024
Wed Jun 26 19:27:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-9c16c5d86f4003bd71ce3115b0ab9254b2fdcd689b8220d7d099581f23453c253
ORCID 0000-0002-2436-3784
0000-0003-3426-3792
0000-0002-9772-021X
OpenAccessLink https://doaj.org/article/6ce657463a02413a9ae21e7739ff7931
PQID 2513396244
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_primary_10_1109_ACCESS_2021_3071552
ieee_primary_9398668
doaj_primary_oai_doaj_org_article_6ce657463a02413a9ae21e7739ff7931
proquest_journals_2513396244
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
babrauskas (ref48) 1990
ref17
ref16
ref19
ref18
ref51
ref50
kevin (ref39) 2019
ref45
ref47
ref42
ref41
malhotra (ref35) 2016
ref44
bukowski (ref49) 2003
roewekamp (ref38) 2008
(ref28) 2013
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref36
ref31
hamins (ref37) 2005
ref30
ref33
ref32
ref2
ref1
lee (ref46) 1978
fang (ref52) 2020
patterson (ref8) 2002; 2
sharma (ref7) 2017
ref24
zhang (ref53) 2016
ref26
ref25
ref20
ref22
ref21
akhloufi (ref23) 2018; 10643
ref27
ref29
ingason (ref43) 2015
References_xml – start-page: 183
  year: 2017
  ident: ref7
  article-title: Deep convolutional neural networks for fire detection in images
  publication-title: Proc Int Conf Eng Appl Neural Netw
  contributor:
    fullname: sharma
– ident: ref33
  doi: 10.3801/IAFSS.FSS.5-403
– ident: ref22
  doi: 10.1016/j.firesaf.2020.103069
– ident: ref44
  doi: 10.1016/S0379-7112(01)00057-1
– ident: ref34
  doi: 10.1145/324138.324142
– start-page: 281
  year: 2020
  ident: ref52
  article-title: A fault diagnosis framework for autonomous vehicles based on hybrid data analysis methods combined with fuzzy PID control
  publication-title: Proc 3rd Int Conf Unmanned Syst (ICUS)
  contributor:
    fullname: fang
– year: 2003
  ident: ref49
  article-title: Performance of home smoke alarms, analysis of the response of several available technologies in residential fire settings
  contributor:
    fullname: bukowski
– ident: ref12
  doi: 10.1007/s10973-019-08804-6
– volume: 2
  start-page: 9
  year: 2002
  ident: ref8
  article-title: SnapMirror: Fire-system-based asynchronous mirroring for disaster recovery
  publication-title: FAST
  contributor:
    fullname: patterson
– ident: ref50
  doi: 10.1145/1754414.1754419
– ident: ref42
  doi: 10.1109/CVPR.2016.90
– ident: ref14
  doi: 10.1016/j.atmosres.2017.06.025
– ident: ref30
  doi: 10.1016/j.autcon.2017.08.027
– year: 2016
  ident: ref53
  article-title: Understanding deep learning requires rethinking generalization
  publication-title: arXiv 1611 03530
  contributor:
    fullname: zhang
– ident: ref47
  doi: 10.1016/j.firesaf.2008.08.008
– ident: ref45
  doi: 10.1007/BF01040709
– year: 2016
  ident: ref35
  article-title: LSTM-based encoder-decoder for multi-sensor anomaly detection
  publication-title: arXiv 1607 00148
  contributor:
    fullname: malhotra
– ident: ref9
  doi: 10.1016/j.psep.2018.09.006
– ident: ref6
  doi: 10.1007/s10694-020-01022-9
– ident: ref4
  doi: 10.1109/MNET.2018.1700202
– ident: ref25
  doi: 10.1007/s10694-016-0625-z
– year: 1990
  ident: ref48
  publication-title: Heat Release in Fires
  contributor:
    fullname: babrauskas
– year: 2013
  ident: ref28
– ident: ref31
  doi: 10.3801/IAFSS.FSS.9-1329
– ident: ref40
  doi: 10.1007/s10618-019-00619-1
– volume: 10643
  year: 2018
  ident: ref23
  article-title: UAVs for wildland fires
  publication-title: Proc SPIE
  contributor:
    fullname: akhloufi
– ident: ref29
  doi: 10.1016/j.autcon.2019.01.007
– ident: ref41
  doi: 10.1109/IJCNN.2017.7966039
– ident: ref18
  doi: 10.1007/s10694-020-00985-z
– year: 1978
  ident: ref46
  article-title: An instrument to evaluate installed smoke detectors
  contributor:
    fullname: lee
– year: 2005
  ident: ref37
  article-title: Report of experimental results for the international fire model benchmarking and validation exercise# 3
  contributor:
    fullname: hamins
– ident: ref26
  doi: 10.1109/ACCESS.2019.2946515
– ident: ref21
  doi: 10.1016/j.enbuild.2014.08.015
– ident: ref32
  doi: 10.1016/j.aei.2018.04.015
– ident: ref15
  doi: 10.1016/j.buildenv.2006.11.001
– ident: ref51
  doi: 10.1109/TIA.2017.2777925
– ident: ref13
  doi: 10.1016/j.engstruct.2006.11.024
– ident: ref17
  doi: 10.1016/j.compchemeng.2019.03.012
– ident: ref5
  doi: 10.1109/JIOT.2019.2958185
– ident: ref19
  doi: 10.1109/TRO.2014.2387571
– year: 2008
  ident: ref38
  article-title: International collaborative fire modeling project (ICFMP). Summary of benchmark
  publication-title: Tech Rep GRS-227
  contributor:
    fullname: roewekamp
– ident: ref16
  doi: 10.1016/j.firesaf.2019.102854
– ident: ref27
  doi: 10.1016/j.procs.2019.11.058
– year: 2015
  ident: ref43
  article-title: Development of a test method for fire detection in road tunnels
  contributor:
    fullname: ingason
– ident: ref11
  doi: 10.1002/prs.10068
– ident: ref20
  doi: 10.1109/IROS.2017.8202133
– ident: ref2
  doi: 10.1109/COMST.2018.2844341
– ident: ref36
  doi: 10.1109/TSMC.2020.2968516
– ident: ref24
  doi: 10.1023/B:FIRE.0000003313.97677.c5
– ident: ref3
  doi: 10.1038/nature14539
– ident: ref1
  doi: 10.1109/ACCESS.2014.2325029
– year: 2019
  ident: ref39
  article-title: Fire dynamics simulator technical reference guide volume 3: Validation
  contributor:
    fullname: kevin
– ident: ref10
  doi: 10.1016/j.jlp.2016.11.020
SSID ssj0000816957
Score 2.3094587
Snippet With the difficulty of collecting desirable training data due to the heterogeneities of IoT sensors in various buildings and the scarcity of fire events, it is...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 55777
SubjectTerms Atmospheric modeling
building fire detection
Buildings
Classification
Coders
Data models
Deep learning
encoder-decoder network
Encoders-Decoders
Fire detection
Internet of Things
Machine learning
Model testing
modeling and simulation
Predictive models
Simulation
Simulation-based learning
supervised learning-based rare event detection
Switching
Training
Training data
Trustworthiness
SummonAdditionalLinks – databaseName: IEEE Electronic Library Online
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJzgUClTdApUPPZLFjh07PrILK4QKF0DlZm1sp0VVF0SzB_rrO-N4V4Vy4BZFSTTxG3s-PH4D8KXhEaMAaQoEIBTKe1NYVbdFq3hAa4_uXEupgYtLfXajzm-r2xU4XJ6FiTGm4rM4pMu0lx_u_ZxSZUdW2lrrehVWjbX9Wa1lPoUaSNjKZGIhwe3R8XiM_4AhYCmGqMnENfbM-CSO_txU5b-VOJmXySZcLATrq0p-DuddM_R_XnA2vlXyLXiX_Ux23CvGe1iJs23Y-Id9cAe-XtN5i1Qj-MRGuT02m-AayE5il0q0ZmyyKN5i3-66H-zq7lfu91WM0P4FlvlZv-_CzeT0enxW5OYKhVe87grrhfZVqDWiwmUTjPCRmHcaPm0sRo1N2QYfdG0bdCF4MAFdyaoWbSlVJX1ZyQ-wNrufxY_AJIZ8ccqDxeBDGUpMtV4rHG5hgwhGDeBwMeruoefQcCn24Nb1IDkCyWWQBjAiZJaPEgF2uoEj6vJ8ctpHXRml5ZTTziBxjJciGiMpB22lGMAOobD8SAZgAPsLnF2erL9dST1urEZH59Prb-3BOgnYZ172Ya17nMcD9EW65nNSwr_mR9ml
  priority: 102
  providerName: IEEE
Title Trustworthy Building Fire Detection Framework With Simulation-Based Learning
URI https://ieeexplore.ieee.org/document/9398668
https://www.proquest.com/docview/2513396244
https://doaj.org/article/6ce657463a02413a9ae21e7739ff7931
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2xTsMwELVQJxgQUBCBUnlgJNSJHTse20JUIWChFd2sxnagAwFBGPh7zo5bFTGwsCZREr9zfPcu53cInZfEAgugIgYDmJhpLWLJ8iquGDHg7SGcq1xq4O6eT2bsZp7NN1p9uZqwVh64BW7AteWZYJwuiPsF5MSk08QKQV2yUdKW-BC5Qab8GpwnXGYiyAzB-cFwPIYRASFMk0uY10557Icr8or9ocXKr3XZO5tiD-2GKBEP27fbR1u2PkA7G9qBXXQ7dbslfIXfFx6F5ta4gBUMX9nGF1jVuFiVXuHHZfOMH5YvoVtXPALvZXBQV306RLPiejqexKE1QqwZyZtY6oTrzOQcMCW0NCLR1unmlGRRSuB8ZVoZbXguSwgAiBEGAsEsT6qUsozqNKNHqFO_1vYYYQqEzS6IkUAdmHBppUpzBvAk0iRGsAhdrFBSb60ChvLMgUjVgqocqCqAGqGRQ3J9qZOv9gfAqCoYVf1l1Ah1nR3WN5FU5pznEeqt7KLCp_ahUtehRnIIU07-49GnaNsNp82y9FCnef-0ZxB3NGXfT7G-3yL4DQ5ez_o
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nc9MwEN0p5QA98FUYQgvowLFOJUuWrGMTyARIeiEdetPEkgwdhrQDzqH99d2VlQxfB24ej-2R9STt29XqLcCbhkf0AqQpEIBQKO9NYVXdFq3iAa090rmWQgPzUz09Ux_Oq_MdONqehYkxpuSzOKTLtJcfLv2aQmXHVtpa6_oO3EVeXev-tNY2okIlJGxlsrSQ4Pb4ZDzGv0AnsBRDHMukNvab-Ukq_bmsyl9rcTIwk4cw3zStzyv5Nlx3zdDf_KHa-L9tfwQPMtNkJ_3QeAw7cfUE9n7RH9yH2YJOXKQswWs2ygWy2QRXQfY2dilJa8Umm_Qt9vmi-8o-XXzPFb-KEVrAwLJC65encDZ5txhPi1xeofCK111hvdC-CrVGXLhsghE-kvZOw5eNRb-xKdvgg65tgySCBxOQTFa1aEupKunLSj6D3dXlKj4HJtHpi0seLLofylBoqvVaYXcLG0QwagBHm153V72KhkveB7euB8kRSC6DNIARIbN9lCSw0w3sUZdnlNM-6sooLZec9gZJZbwU0RhJUWgrxQD2CYXtRzIAAzjc4OzydP3pSqpyYzVSnRf_fus13Jsu5jM3e3_68QDuU2P7OMwh7HY_1vElMpOueZUG5C1v8dzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trustworthy+Building+Fire+Detection+Framework+With+Simulation-Based+Learning&rft.jtitle=IEEE+access&rft.au=Kim%2C+Young-Jin&rft.au=Kim%2C+Hanjin&rft.au=Lee%2C+Seunggi&rft.au=Kim%2C+Won-Tae&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=55777&rft.epage=55789&rft_id=info:doi/10.1109%2FACCESS.2021.3071552&rft.externalDocID=9398668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon