Trustworthy Building Fire Detection Framework With Simulation-Based Learning
With the difficulty of collecting desirable training data due to the heterogeneities of IoT sensors in various buildings and the scarcity of fire events, it is time consuming and expensive to apply data-driven deep learning approaches to fire detection systems in specific building environments. Simu...
Saved in:
Published in | IEEE access Vol. 9; pp. 55777 - 55789 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the difficulty of collecting desirable training data due to the heterogeneities of IoT sensors in various buildings and the scarcity of fire events, it is time consuming and expensive to apply data-driven deep learning approaches to fire detection systems in specific building environments. Simulation-based learning has been actively researched to mitigate data scarcity problems by reproducing potential fire events. Since simulation-based learning mainly depends on synthetic training data, trained deep learning models may generate erroneous predictions in real-world scenarios that are unlike any of the training samples. In this paper, we propose a trustworthy building fire detection framework based on a multioutput encoder-decoder network, named MEDNet, which is designed for the practical usage of simulation-based learning in building fire detection. The fundamental steps of our approach are (1) modeling and simulating fire events to create realistic synthetic data that reflect data from actual buildings, (2) predicting a fire event and dissimilarities between real input data and synthetic training data based on the trained MEDNet model, and (3) operating a switching mechanism to use a knowledge-based method that does not depend on synthetic training data when dissimilarities exist. Finally, we perform simulation experiments based on a real building compartment where the proposed framework is compared with conventional time-series classification networks on various evaluation datasets. The proposed framework is trustworthy in practical usage because MEDNet with a switching mechanism achieves a 36.65% higher F1-score than conventional time-series classification networks and generates false-positive predictions lower than 0.02% even in unpredictable scenarios. |
---|---|
AbstractList | With the difficulty of collecting desirable training data due to the heterogeneities of IoT sensors in various buildings and the scarcity of fire events, it is time consuming and expensive to apply data-driven deep learning approaches to fire detection systems in specific building environments. Simulation-based learning has been actively researched to mitigate data scarcity problems by reproducing potential fire events. Since simulation-based learning mainly depends on synthetic training data, trained deep learning models may generate erroneous predictions in real-world scenarios that are unlike any of the training samples. In this paper, we propose a trustworthy building fire detection framework based on a multioutput encoder-decoder network, named MEDNet, which is designed for the practical usage of simulation-based learning in building fire detection. The fundamental steps of our approach are (1) modeling and simulating fire events to create realistic synthetic data that reflect data from actual buildings, (2) predicting a fire event and dissimilarities between real input data and synthetic training data based on the trained MEDNet model, and (3) operating a switching mechanism to use a knowledge-based method that does not depend on synthetic training data when dissimilarities exist. Finally, we perform simulation experiments based on a real building compartment where the proposed framework is compared with conventional time-series classification networks on various evaluation datasets. The proposed framework is trustworthy in practical usage because MEDNet with a switching mechanism achieves a 36.65% higher F1-score than conventional time-series classification networks and generates false-positive predictions lower than 0.02% even in unpredictable scenarios. |
Author | Kim, Hanjin Lee, Seunggi Kim, Young-Jin Kim, Won-Tae |
Author_xml | – sequence: 1 givenname: Young-Jin orcidid: 0000-0002-9772-021X surname: Kim fullname: Kim, Young-Jin organization: Department of Computer Science Engineering, Korea University of Technology and Education, Cheonan, Republic of Korea – sequence: 2 givenname: Hanjin orcidid: 0000-0002-2436-3784 surname: Kim fullname: Kim, Hanjin organization: Department of Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Republic of Korea – sequence: 3 givenname: Seunggi surname: Lee fullname: Lee, Seunggi organization: Department of Computer Science Engineering, Korea University of Technology and Education, Cheonan, Republic of Korea – sequence: 4 givenname: Won-Tae orcidid: 0000-0003-3426-3792 surname: Kim fullname: Kim, Won-Tae email: wtkim@koreatech.ac.kr organization: Department of Computer Science Engineering, Korea University of Technology and Education, Cheonan, Republic of Korea |
BookMark | eNpNUcFOwzAMjRBIjMEXcKnEuSOJm7Q5jsFg0iQOA3GM0sTdMrYG0lZof09HEcIXW8_vPVt6F-S0DjUScs3ohDGqbqez2cNqNeGUswnQnAnBT8iIM6lSECBP_83n5KpptrSvoodEPiLLl9g17VeI7eaQ3HV-53y9TuY-YnKPLdrWhzqZR7PHnvOevPl2k6z8vtuZ4ya9Mw26ZIkm1r3ukpxVZtfg1W8fk9f5w8vsKV0-Py5m02VqM1q0qbJMWuEKWWWUQulyZhEYEyU1peIiK3nlrJOFKgvOqcsdVUoUrOKQCbBcwJgsBl8XzFZ_RL838aCD8foHCHGtTWy93aGWFqXIMwmG8oyBUQY5wzwHVVW5AtZ73QxeHzF8dti0ehu6WPfvay4YgJI8y3oWDCwbQ9NErP6uMqqPKeghBX1MQf-m0KuuB5VHxD-FAlVIWcA3ojSDPw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_knosys_2023_111319 crossref_primary_10_1016_j_jobe_2022_105310 crossref_primary_10_1109_ACCESS_2022_3190852 crossref_primary_10_1016_j_eswa_2023_121665 crossref_primary_10_1142_S1469026823500141 crossref_primary_10_3390_s24051428 crossref_primary_10_1109_JSEN_2021_3124266 |
Cites_doi | 10.3801/IAFSS.FSS.5-403 10.1016/j.firesaf.2020.103069 10.1016/S0379-7112(01)00057-1 10.1145/324138.324142 10.1007/s10973-019-08804-6 10.1145/1754414.1754419 10.1109/CVPR.2016.90 10.1016/j.atmosres.2017.06.025 10.1016/j.autcon.2017.08.027 10.1016/j.firesaf.2008.08.008 10.1007/BF01040709 10.1016/j.psep.2018.09.006 10.1007/s10694-020-01022-9 10.1109/MNET.2018.1700202 10.1007/s10694-016-0625-z 10.3801/IAFSS.FSS.9-1329 10.1007/s10618-019-00619-1 10.1016/j.autcon.2019.01.007 10.1109/IJCNN.2017.7966039 10.1007/s10694-020-00985-z 10.1109/ACCESS.2019.2946515 10.1016/j.enbuild.2014.08.015 10.1016/j.aei.2018.04.015 10.1016/j.buildenv.2006.11.001 10.1109/TIA.2017.2777925 10.1016/j.engstruct.2006.11.024 10.1016/j.compchemeng.2019.03.012 10.1109/JIOT.2019.2958185 10.1109/TRO.2014.2387571 10.1016/j.firesaf.2019.102854 10.1016/j.procs.2019.11.058 10.1002/prs.10068 10.1109/IROS.2017.8202133 10.1109/COMST.2018.2844341 10.1109/TSMC.2020.2968516 10.1023/B:FIRE.0000003313.97677.c5 10.1038/nature14539 10.1109/ACCESS.2014.2325029 10.1016/j.jlp.2016.11.020 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3071552 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 55789 |
ExternalDocumentID | oai_doaj_org_article_6ce657463a02413a9ae21e7739ff7931 10_1109_ACCESS_2021_3071552 9398668 |
Genre | orig-research |
GrantInformation_xml | – fundername: Institute for Information and Communication Technology Promotion (IITP) grantid: 2019-0-01347; 2015-0-00816 funderid: 10.13039/501100010418 – fundername: Post-Doctoral Program of KOREATECH |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-9c16c5d86f4003bd71ce3115b0ab9254b2fdcd689b8220d7d099581f23453c253 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:13:02 EDT 2024 Thu Oct 10 17:43:47 EDT 2024 Fri Aug 23 02:46:22 EDT 2024 Wed Jun 26 19:27:09 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-9c16c5d86f4003bd71ce3115b0ab9254b2fdcd689b8220d7d099581f23453c253 |
ORCID | 0000-0002-2436-3784 0000-0003-3426-3792 0000-0002-9772-021X |
OpenAccessLink | https://doaj.org/article/6ce657463a02413a9ae21e7739ff7931 |
PQID | 2513396244 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2021_3071552 ieee_primary_9398668 doaj_primary_oai_doaj_org_article_6ce657463a02413a9ae21e7739ff7931 proquest_journals_2513396244 |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 babrauskas (ref48) 1990 ref17 ref16 ref19 ref18 ref51 ref50 kevin (ref39) 2019 ref45 ref47 ref42 ref41 malhotra (ref35) 2016 ref44 bukowski (ref49) 2003 roewekamp (ref38) 2008 (ref28) 2013 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref36 ref31 hamins (ref37) 2005 ref30 ref33 ref32 ref2 ref1 lee (ref46) 1978 fang (ref52) 2020 patterson (ref8) 2002; 2 sharma (ref7) 2017 ref24 zhang (ref53) 2016 ref26 ref25 ref20 ref22 ref21 akhloufi (ref23) 2018; 10643 ref27 ref29 ingason (ref43) 2015 |
References_xml | – start-page: 183 year: 2017 ident: ref7 article-title: Deep convolutional neural networks for fire detection in images publication-title: Proc Int Conf Eng Appl Neural Netw contributor: fullname: sharma – ident: ref33 doi: 10.3801/IAFSS.FSS.5-403 – ident: ref22 doi: 10.1016/j.firesaf.2020.103069 – ident: ref44 doi: 10.1016/S0379-7112(01)00057-1 – ident: ref34 doi: 10.1145/324138.324142 – start-page: 281 year: 2020 ident: ref52 article-title: A fault diagnosis framework for autonomous vehicles based on hybrid data analysis methods combined with fuzzy PID control publication-title: Proc 3rd Int Conf Unmanned Syst (ICUS) contributor: fullname: fang – year: 2003 ident: ref49 article-title: Performance of home smoke alarms, analysis of the response of several available technologies in residential fire settings contributor: fullname: bukowski – ident: ref12 doi: 10.1007/s10973-019-08804-6 – volume: 2 start-page: 9 year: 2002 ident: ref8 article-title: SnapMirror: Fire-system-based asynchronous mirroring for disaster recovery publication-title: FAST contributor: fullname: patterson – ident: ref50 doi: 10.1145/1754414.1754419 – ident: ref42 doi: 10.1109/CVPR.2016.90 – ident: ref14 doi: 10.1016/j.atmosres.2017.06.025 – ident: ref30 doi: 10.1016/j.autcon.2017.08.027 – year: 2016 ident: ref53 article-title: Understanding deep learning requires rethinking generalization publication-title: arXiv 1611 03530 contributor: fullname: zhang – ident: ref47 doi: 10.1016/j.firesaf.2008.08.008 – ident: ref45 doi: 10.1007/BF01040709 – year: 2016 ident: ref35 article-title: LSTM-based encoder-decoder for multi-sensor anomaly detection publication-title: arXiv 1607 00148 contributor: fullname: malhotra – ident: ref9 doi: 10.1016/j.psep.2018.09.006 – ident: ref6 doi: 10.1007/s10694-020-01022-9 – ident: ref4 doi: 10.1109/MNET.2018.1700202 – ident: ref25 doi: 10.1007/s10694-016-0625-z – year: 1990 ident: ref48 publication-title: Heat Release in Fires contributor: fullname: babrauskas – year: 2013 ident: ref28 – ident: ref31 doi: 10.3801/IAFSS.FSS.9-1329 – ident: ref40 doi: 10.1007/s10618-019-00619-1 – volume: 10643 year: 2018 ident: ref23 article-title: UAVs for wildland fires publication-title: Proc SPIE contributor: fullname: akhloufi – ident: ref29 doi: 10.1016/j.autcon.2019.01.007 – ident: ref41 doi: 10.1109/IJCNN.2017.7966039 – ident: ref18 doi: 10.1007/s10694-020-00985-z – year: 1978 ident: ref46 article-title: An instrument to evaluate installed smoke detectors contributor: fullname: lee – year: 2005 ident: ref37 article-title: Report of experimental results for the international fire model benchmarking and validation exercise# 3 contributor: fullname: hamins – ident: ref26 doi: 10.1109/ACCESS.2019.2946515 – ident: ref21 doi: 10.1016/j.enbuild.2014.08.015 – ident: ref32 doi: 10.1016/j.aei.2018.04.015 – ident: ref15 doi: 10.1016/j.buildenv.2006.11.001 – ident: ref51 doi: 10.1109/TIA.2017.2777925 – ident: ref13 doi: 10.1016/j.engstruct.2006.11.024 – ident: ref17 doi: 10.1016/j.compchemeng.2019.03.012 – ident: ref5 doi: 10.1109/JIOT.2019.2958185 – ident: ref19 doi: 10.1109/TRO.2014.2387571 – year: 2008 ident: ref38 article-title: International collaborative fire modeling project (ICFMP). Summary of benchmark publication-title: Tech Rep GRS-227 contributor: fullname: roewekamp – ident: ref16 doi: 10.1016/j.firesaf.2019.102854 – ident: ref27 doi: 10.1016/j.procs.2019.11.058 – year: 2015 ident: ref43 article-title: Development of a test method for fire detection in road tunnels contributor: fullname: ingason – ident: ref11 doi: 10.1002/prs.10068 – ident: ref20 doi: 10.1109/IROS.2017.8202133 – ident: ref2 doi: 10.1109/COMST.2018.2844341 – ident: ref36 doi: 10.1109/TSMC.2020.2968516 – ident: ref24 doi: 10.1023/B:FIRE.0000003313.97677.c5 – ident: ref3 doi: 10.1038/nature14539 – ident: ref1 doi: 10.1109/ACCESS.2014.2325029 – year: 2019 ident: ref39 article-title: Fire dynamics simulator technical reference guide volume 3: Validation contributor: fullname: kevin – ident: ref10 doi: 10.1016/j.jlp.2016.11.020 |
SSID | ssj0000816957 |
Score | 2.3094587 |
Snippet | With the difficulty of collecting desirable training data due to the heterogeneities of IoT sensors in various buildings and the scarcity of fire events, it is... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 55777 |
SubjectTerms | Atmospheric modeling building fire detection Buildings Classification Coders Data models Deep learning encoder-decoder network Encoders-Decoders Fire detection Internet of Things Machine learning Model testing modeling and simulation Predictive models Simulation Simulation-based learning supervised learning-based rare event detection Switching Training Training data Trustworthiness |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library Online dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJzgUClTdApUPPZLFjh07PrILK4QKF0DlZm1sp0VVF0SzB_rrO-N4V4Vy4BZFSTTxG3s-PH4D8KXhEaMAaQoEIBTKe1NYVbdFq3hAa4_uXEupgYtLfXajzm-r2xU4XJ6FiTGm4rM4pMu0lx_u_ZxSZUdW2lrrehVWjbX9Wa1lPoUaSNjKZGIhwe3R8XiM_4AhYCmGqMnENfbM-CSO_txU5b-VOJmXySZcLATrq0p-DuddM_R_XnA2vlXyLXiX_Ux23CvGe1iJs23Y-Id9cAe-XtN5i1Qj-MRGuT02m-AayE5il0q0ZmyyKN5i3-66H-zq7lfu91WM0P4FlvlZv-_CzeT0enxW5OYKhVe87grrhfZVqDWiwmUTjPCRmHcaPm0sRo1N2QYfdG0bdCF4MAFdyaoWbSlVJX1ZyQ-wNrufxY_AJIZ8ccqDxeBDGUpMtV4rHG5hgwhGDeBwMeruoefQcCn24Nb1IDkCyWWQBjAiZJaPEgF2uoEj6vJ8ctpHXRml5ZTTziBxjJciGiMpB22lGMAOobD8SAZgAPsLnF2erL9dST1urEZH59Prb-3BOgnYZ172Ya17nMcD9EW65nNSwr_mR9ml priority: 102 providerName: IEEE |
Title | Trustworthy Building Fire Detection Framework With Simulation-Based Learning |
URI | https://ieeexplore.ieee.org/document/9398668 https://www.proquest.com/docview/2513396244 https://doaj.org/article/6ce657463a02413a9ae21e7739ff7931 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2xTsMwELVQJxgQUBCBUnlgJNSJHTse20JUIWChFd2sxnagAwFBGPh7zo5bFTGwsCZREr9zfPcu53cInZfEAgugIgYDmJhpLWLJ8iquGDHg7SGcq1xq4O6eT2bsZp7NN1p9uZqwVh64BW7AteWZYJwuiPsF5MSk08QKQV2yUdKW-BC5Qab8GpwnXGYiyAzB-cFwPIYRASFMk0uY10557Icr8or9ocXKr3XZO5tiD-2GKBEP27fbR1u2PkA7G9qBXXQ7dbslfIXfFx6F5ta4gBUMX9nGF1jVuFiVXuHHZfOMH5YvoVtXPALvZXBQV306RLPiejqexKE1QqwZyZtY6oTrzOQcMCW0NCLR1unmlGRRSuB8ZVoZbXguSwgAiBEGAsEsT6qUsozqNKNHqFO_1vYYYQqEzS6IkUAdmHBppUpzBvAk0iRGsAhdrFBSb60ChvLMgUjVgqocqCqAGqGRQ3J9qZOv9gfAqCoYVf1l1Ah1nR3WN5FU5pznEeqt7KLCp_ahUtehRnIIU07-49GnaNsNp82y9FCnef-0ZxB3NGXfT7G-3yL4DQ5ez_o |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nc9MwEN0p5QA98FUYQgvowLFOJUuWrGMTyARIeiEdetPEkgwdhrQDzqH99d2VlQxfB24ej-2R9STt29XqLcCbhkf0AqQpEIBQKO9NYVXdFq3iAa090rmWQgPzUz09Ux_Oq_MdONqehYkxpuSzOKTLtJcfLv2aQmXHVtpa6_oO3EVeXev-tNY2okIlJGxlsrSQ4Pb4ZDzGv0AnsBRDHMukNvab-Ukq_bmsyl9rcTIwk4cw3zStzyv5Nlx3zdDf_KHa-L9tfwQPMtNkJ_3QeAw7cfUE9n7RH9yH2YJOXKQswWs2ygWy2QRXQfY2dilJa8Umm_Qt9vmi-8o-XXzPFb-KEVrAwLJC65encDZ5txhPi1xeofCK111hvdC-CrVGXLhsghE-kvZOw5eNRb-xKdvgg65tgySCBxOQTFa1aEupKunLSj6D3dXlKj4HJtHpi0seLLofylBoqvVaYXcLG0QwagBHm153V72KhkveB7euB8kRSC6DNIARIbN9lCSw0w3sUZdnlNM-6sooLZec9gZJZbwU0RhJUWgrxQD2CYXtRzIAAzjc4OzydP3pSqpyYzVSnRf_fus13Jsu5jM3e3_68QDuU2P7OMwh7HY_1vElMpOueZUG5C1v8dzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trustworthy+Building+Fire+Detection+Framework+With+Simulation-Based+Learning&rft.jtitle=IEEE+access&rft.au=Kim%2C+Young-Jin&rft.au=Kim%2C+Hanjin&rft.au=Lee%2C+Seunggi&rft.au=Kim%2C+Won-Tae&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=55777&rft.epage=55789&rft_id=info:doi/10.1109%2FACCESS.2021.3071552&rft.externalDocID=9398668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |