Comparative evaluation of PML technique for hydrodynamic impact loading on spar-type floating platform

The structural dynamic stability of spar-type floating platform for offshore wind turbine subject to hydrodynamic impact is numerically investigated by the dynamic response analysis. The unbounded flow domain of sea water is truncated to a bounded finite domain and the reflection of out-going hydrod...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 85; pp. 80 - 92
Main Authors Kim, M.S., Jeon, S.H., Cho, J.R., Jeong, W.B.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.07.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0029-8018
1873-5258
DOI10.1016/j.oceaneng.2014.04.026

Cover

Loading…
Abstract The structural dynamic stability of spar-type floating platform for offshore wind turbine subject to hydrodynamic impact is numerically investigated by the dynamic response analysis. The unbounded flow domain of sea water is truncated to a bounded finite domain and the reflection of out-going hydrodynamic impact wave at the artificial boundary of truncated domain is minimized by the perfectly matched layer (PML) technique. The generalized transport equations governing the non-viscous compressible water flow is split into three PML equations by introducing the direction-wise absorption coefficients and the state variables. The coupled fluid–structure interaction problem is approximated by the iterative Eulerian FVM–Lagrangian FEM with the Euler–Lagrange coupling scheme. The impact-induced hydrodynamic pressure is calculated by the JWL equation of state and the mixture of un-reacted explosive and reaction products is defined by the reacted volume fraction. It is confirmed from the numerical experiments that the wave reflection phenomenon at the artificial boundary is substantially reduced when compared with the case without using the PML technique. And, the remarkable amplitude difference and the fluctuation with several subsequent peaks in the time responses of rigid body motion and effective stress of the floating platform are successfully suppressed when PML layers are used. •The PML technique is comparatively evaluated for the hydrodynamic loading on spar-type floating platform.•Impact-induced hydrodynamic pressure between with and without the PML technique is compared.•The reflection of out-going waves at truncated boundary is substantially absorbed.•Time histories of six rigid body motions of floating platform are also compared.
AbstractList The structural dynamic stability of spar-type floating platform for offshore wind turbine subject to hydrodynamic impact is numerically investigated by the dynamic response analysis. The unbounded flow domain of sea water is truncated to a bounded finite domain and the reflection of out-going hydrodynamic impact wave at the artificial boundary of truncated domain is minimized by the perfectly matched layer (PML) technique. The generalized transport equations governing the non-viscous compressible water flow is split into three PML equations by introducing the direction-wise absorption coefficients and the state variables. The coupled fluid-structure interaction problem is approximated by the iterative Eulerian FVM-Lagrangian FEM with the Euler-Lagrange coupling scheme. The impact-induced hydrodynamic pressure is calculated by the JWL equation of state and the mixture of un-reacted explosive and reaction products is defined by the reacted volume fraction. It is confirmed from the numerical experiments that the wave reflection phenomenon at the artificial boundary is substantially reduced when compared with the case without using the PML technique. And, the remarkable amplitude difference and the fluctuation with several subsequent peaks in the time responses of rigid body motion and effective stress of the floating platform are successfully suppressed when PML layers are used.
The structural dynamic stability of spar-type floating platform for offshore wind turbine subject to hydrodynamic impact is numerically investigated by the dynamic response analysis. The unbounded flow domain of sea water is truncated to a bounded finite domain and the reflection of out-going hydrodynamic impact wave at the artificial boundary of truncated domain is minimized by the perfectly matched layer (PML) technique. The generalized transport equations governing the non-viscous compressible water flow is split into three PML equations by introducing the direction-wise absorption coefficients and the state variables. The coupled fluid–structure interaction problem is approximated by the iterative Eulerian FVM–Lagrangian FEM with the Euler–Lagrange coupling scheme. The impact-induced hydrodynamic pressure is calculated by the JWL equation of state and the mixture of un-reacted explosive and reaction products is defined by the reacted volume fraction. It is confirmed from the numerical experiments that the wave reflection phenomenon at the artificial boundary is substantially reduced when compared with the case without using the PML technique. And, the remarkable amplitude difference and the fluctuation with several subsequent peaks in the time responses of rigid body motion and effective stress of the floating platform are successfully suppressed when PML layers are used. •The PML technique is comparatively evaluated for the hydrodynamic loading on spar-type floating platform.•Impact-induced hydrodynamic pressure between with and without the PML technique is compared.•The reflection of out-going waves at truncated boundary is substantially absorbed.•Time histories of six rigid body motions of floating platform are also compared.
Author Jeong, W.B.
Kim, M.S.
Jeon, S.H.
Cho, J.R.
Author_xml – sequence: 1
  givenname: M.S.
  surname: Kim
  fullname: Kim, M.S.
  organization: School of Mechanical Engineering, Pusan National University, Busan 609-735, South Korea
– sequence: 2
  givenname: S.H.
  surname: Jeon
  fullname: Jeon, S.H.
  organization: School of Mechanical Engineering, Pusan National University, Busan 609-735, South Korea
– sequence: 3
  givenname: J.R.
  surname: Cho
  fullname: Cho, J.R.
  email: jrcho@pusan.ac.kr
  organization: School of Mechanical Engineering, Pusan National University, Busan 609-735, South Korea
– sequence: 4
  givenname: W.B.
  surname: Jeong
  fullname: Jeong, W.B.
  organization: School of Mechanical Engineering, Pusan National University, Busan 609-735, South Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28548097$$DView record in Pascal Francis
BookMark eNqNkUuLFDEUhYOMYM_oX5BsBDfVJqm8ClwozfiAFl3oOtxOJTNpqpIySTf0vzdtz2zcjHAh4XK-k3DONbqKKTqEXlOypoTKd_t1sg6ii3drRihfkzZMPkMrqlXfCSb0FVoRwoZOE6pfoOtS9oQQKUm_Qn6T5gUy1HB02B1hOrRrijh5_OPbFldn72P4fXDYp4zvT2NO4ynCHCwOjbMVTwnGEO9wY0oz6uppaeK2reftMkFt5PwSPfcwFffq4bxBvz7d_tx86bbfP3_dfNx2lhNdu8ESNThvByCD105RBbIHJagc1c6KnrOdEyC8ZcAol7r3O8ZBAbc7qfXQ9zfo7cV3yan9ulQzh2LdNLV80qEYKjljnHJB_kPK1KA4F6JJ3zxIoViYfIZoQzFLDjPkk2FacE0G1XTvLzqbUynZeWND_ZtnzRAmQ4k5N2b25rExc27MkDZMNlz-gz--8CT44QK6Fu0xuGyKDS5aN4bsbDVjCk9Z_AHscrdy
CODEN OCENBQ
CitedBy_id crossref_primary_10_1080_15567036_2020_1840668
crossref_primary_10_1007_s10706_017_0343_4
crossref_primary_10_1007_s40996_020_00538_y
crossref_primary_10_1007_s40430_021_03297_7
crossref_primary_10_1016_j_apm_2017_09_036
crossref_primary_10_1142_S021987622150016X
Cites_doi 10.2514/2.167
10.1063/1.4737778
10.2514/3.44330
10.1073/pnas.74.5.1765
10.1016/0021-9991(91)90135-8
10.1016/0045-7930(83)90006-3
10.12989/sem.2012.43.5.679
10.1063/1.862940
10.1006/jcph.1994.1159
10.1002/nme.2346
10.1121/1.1458590
10.1016/0021-9991(87)90041-6
10.1115/PVP2006-ICPVT-11-93107
10.1016/S1270-9638(00)00111-5
10.1006/jcph.1996.0181
10.1002/fld.434
10.1016/j.jcp.2008.01.010
10.1109/75.311494
10.1090/S0025-5718-1987-0890254-1
10.1016/j.oceaneng.2011.12.009
10.1115/1.2871129
10.1002/cpa.3160330603
10.1006/jcph.1996.0244
10.1016/j.oceaneng.2013.07.017
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TN
F1W
H96
L.G
7SU
7TB
8FD
C1K
FR3
H8D
KR7
L7M
DOI 10.1016/j.oceaneng.2014.04.026
DatabaseName CrossRef
Pascal-Francis
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
Applied Sciences
EISSN 1873-5258
EndPage 92
ExternalDocumentID 28548097
10_1016_j_oceaneng_2014_04_026
S0029801814001656
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
SSH
WUQ
IQODW
7TN
F1W
H96
L.G
7SU
7TB
8FD
C1K
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c408t-9c079efc9a09f8e717a63a7516d7bc5342be5a5fc2a214683fb24a7a4cb688933
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Fri Jul 11 09:36:55 EDT 2025
Fri Jul 11 04:22:50 EDT 2025
Wed Apr 02 07:24:02 EDT 2025
Thu Apr 24 23:12:54 EDT 2025
Tue Jul 01 03:26:24 EDT 2025
Fri Feb 23 02:26:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Non-reflective boundary treatment
Offshore wind turbine
Hydrodynamic impact
Structural stability
Floating platform
Perfectly matched layer (PML)
Dynamic response
Hydrodynamic force
Wind generator
Fluid structure interaction
Modeling
Perfectly matched layer
Numerical simulation
Offshore structure
Spar platform
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-9c079efc9a09f8e717a63a7516d7bc5342be5a5fc2a214683fb24a7a4cb688933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1627974455
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_1642241450
proquest_miscellaneous_1627974455
pascalfrancis_primary_28548097
crossref_citationtrail_10_1016_j_oceaneng_2014_04_026
crossref_primary_10_1016_j_oceaneng_2014_04_026
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2014_04_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-15
PublicationDateYYYYMMDD 2014-07-15
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Ocean engineering
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Taylor (bib28) 1941
Colonius, T., Lele, SK., Moin, P., 1992. Boundary conditions for direct computation of aerodynamic sound generation. In: Fourteenth DGRA/AIAA Aeroacoustics Conference Proceedings, vol. 1, pp. 438–447.
Cho, Han, Hwang, Cho, Lim (bib9) 2012; 43
Berenger (bib5) 1996; 127
Martin, Couder-Castaneda (bib26) 2010; 63
Biran (bib6) 2003
Bayliss, Turkel (bib2) 1980; 33
Lee, Tarver (bib22) 1980; 23
Hu (bib18) 1996; 129
Beckert (bib3) 2000; 4
Cho, Park, Kim, Rashed (bib10) 2008; 76
Thompson (bib29) 1987; 68
Freud (bib12) 1997; 35
Engquist, B., Majda, A., 1977. Absorbing boundary conditions for the numerical simulation of waves. Proc. Natl. Acad. Sci. USA 74(5), 1765–1766.
Berenger (bib4) 1994; 114
Sigrist, J.F., Abouri, D., 2006. Numerical simulation of a non-linear coupled fluid–structure problem with implicit and explicit coupling procedure. In: ASME Pressure Vessel and Piping Division Conference Proceedings, Vancouver, Canada, pp. 23–27.
Lefebvre, Collu (bib23) 2012; 40
Cho, Lee (bib8) 2003; 41
Geers, Hunter (bib13) 2002; 111
Higdon (bib17) 1987; 49
Liu, Young (bib24) 2008; 75
Katz, Thiele, Taflove (bib21) 1994; 4
Givoli (bib15) 1991; 94
Jeon, Cho, Seo, Cho, Jeong (bib20) 2013; 72
Harder, Desmarais (bib16) 1972; 9
Turkel (bib30) 1983; 11
Ghoshal, Mitra (bib14) 2012; 112
MacNeal Schwendler Corp., 2006. MSC/Dytran Theory Manual (ver. 2005r3). Los Angeles, CA, USA.
Vichnevetsky, Bowles (bib31) 1982
Hu, Li, Lin (bib19) 2008; 227
Taylor (10.1016/j.oceaneng.2014.04.026_bib28) 1941
Berenger (10.1016/j.oceaneng.2014.04.026_bib5) 1996; 127
10.1016/j.oceaneng.2014.04.026_bib11
Bayliss (10.1016/j.oceaneng.2014.04.026_bib2) 1980; 33
Thompson (10.1016/j.oceaneng.2014.04.026_bib29) 1987; 68
Geers (10.1016/j.oceaneng.2014.04.026_bib13) 2002; 111
Givoli (10.1016/j.oceaneng.2014.04.026_bib15) 1991; 94
Biran (10.1016/j.oceaneng.2014.04.026_bib6) 2003
Cho (10.1016/j.oceaneng.2014.04.026_bib10) 2008; 76
Cho (10.1016/j.oceaneng.2014.04.026_bib9) 2012; 43
Martin (10.1016/j.oceaneng.2014.04.026_bib26) 2010; 63
Beckert (10.1016/j.oceaneng.2014.04.026_bib3) 2000; 4
Freud (10.1016/j.oceaneng.2014.04.026_bib12) 1997; 35
Turkel (10.1016/j.oceaneng.2014.04.026_bib30) 1983; 11
Harder (10.1016/j.oceaneng.2014.04.026_bib16) 1972; 9
Lee (10.1016/j.oceaneng.2014.04.026_bib22) 1980; 23
10.1016/j.oceaneng.2014.04.026_bib7
Lefebvre (10.1016/j.oceaneng.2014.04.026_bib23) 2012; 40
10.1016/j.oceaneng.2014.04.026_bib27
10.1016/j.oceaneng.2014.04.026_bib25
Jeon (10.1016/j.oceaneng.2014.04.026_bib20) 2013; 72
Higdon (10.1016/j.oceaneng.2014.04.026_bib17) 1987; 49
Vichnevetsky (10.1016/j.oceaneng.2014.04.026_bib31) 1982
Hu (10.1016/j.oceaneng.2014.04.026_bib19) 2008; 227
Katz (10.1016/j.oceaneng.2014.04.026_bib21) 1994; 4
Ghoshal (10.1016/j.oceaneng.2014.04.026_bib14) 2012; 112
Liu (10.1016/j.oceaneng.2014.04.026_bib24) 2008; 75
Hu (10.1016/j.oceaneng.2014.04.026_bib18) 1996; 129
Berenger (10.1016/j.oceaneng.2014.04.026_bib4) 1994; 114
Cho (10.1016/j.oceaneng.2014.04.026_bib8) 2003; 41
References_xml – volume: 11
  start-page: 121
  year: 1983
  end-page: 144
  ident: bib30
  article-title: Progress in computational physics
  publication-title: Comput. Fluids
– volume: 94
  start-page: 1
  year: 1991
  end-page: 29
  ident: bib15
  article-title: Non-reflecting boundary conditions
  publication-title: J. Comput. Phys.
– volume: 112
  start-page: 024911
  year: 2012
  ident: bib14
  article-title: Non-contact near-field underwater explosion induced shock-wave loading of submerged rigid structures: nonlinear compressibility effects in fluid structure interaction
  publication-title: J. Appl. Phys.
– volume: 63
  start-page: 47
  year: 2010
  end-page: 77
  ident: bib26
  article-title: An improved unsplit and convolutional perfectly matched layer absorbing technique for the Navier–Stokes equations using cut-off frequency shift
  publication-title: Comput. Model. Eng. Sci.
– volume: 33
  start-page: 707
  year: 1980
  end-page: 725
  ident: bib2
  article-title: Radiation boundary conditions for wave-like equations
  publication-title: Comm. Pure Appl. Math
– volume: 41
  start-page: 185
  year: 2003
  end-page: 208
  ident: bib8
  article-title: Dynamic analysis of baffled fuel-storage tanks using the ALE finite element method
  publication-title: Int. J. Numer. Methods Fluids
– volume: 111
  start-page: 1584
  year: 2002
  end-page: 1601
  ident: bib13
  article-title: An integrated wave-effects model for an underwater explosion bubble
  publication-title: J. Acoust. Soc. Am.
– start-page: 287
  year: 1941
  end-page: 303
  ident: bib28
  article-title: The pressure and impulse of submarine explosion waves on plates
  publication-title: Scientific Papers of G.I. Taylor III
– reference: Colonius, T., Lele, SK., Moin, P., 1992. Boundary conditions for direct computation of aerodynamic sound generation. In: Fourteenth DGRA/AIAA Aeroacoustics Conference Proceedings, vol. 1, pp. 438–447.
– volume: 4
  start-page: 268
  year: 1994
  end-page: 270
  ident: bib21
  article-title: Validation and extension to three dimensions of the Berenger absorbing boundary condition for FD-TD meshes
  publication-title: IEEE Microw. Guided Wave Lett.
– volume: 114
  start-page: 185
  year: 1994
  end-page: 200
  ident: bib4
  article-title: A perfectly matched layer for the absorption of electromagnetic waves
  publication-title: J. Comput. Phys.
– volume: 49
  start-page: 65
  year: 1987
  end-page: 90
  ident: bib17
  article-title: Numerical absorbing boundary conditions for the wave equation
  publication-title: Math. Comput.
– volume: 23
  start-page: 2362
  year: 1980
  end-page: 2372
  ident: bib22
  article-title: Phenomenological model of shock initiation in heterogeneous explosive
  publication-title: Phys. Fluids
– volume: 68
  start-page: 1
  year: 1987
  end-page: 24
  ident: bib29
  article-title: Time dependent boundary conditions for hyperbolic systems
  publication-title: J. Comput. Phys.
– volume: 35
  start-page: 740
  year: 1997
  end-page: 742
  ident: bib12
  article-title: Proposed inflow/outflow boundary conditions for direct computation of aerodynamic sound
  publication-title: AIAA J.
– volume: 127
  start-page: 363
  year: 1996
  end-page: 379
  ident: bib5
  article-title: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves
  publication-title: J. Comput. Phys.
– volume: 43
  start-page: 679
  year: 2012
  end-page: 690
  ident: bib9
  article-title: Mobile harbor: structural dynamic response of RORI crane to wave-induced excitation
  publication-title: Struct. Eng. Mech.
– volume: 72
  start-page: 356
  year: 2013
  end-page: 364
  ident: bib20
  article-title: Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables
  publication-title: Ocean Eng.
– volume: 9
  start-page: 189
  year: 1972
  end-page: 191
  ident: bib16
  article-title: Interpolation using surface splines
  publication-title: J. Aircr.
– year: 2003
  ident: bib6
  article-title: Ship Hydrostatics and Stability
– volume: 129
  start-page: 201
  year: 1996
  end-page: 209
  ident: bib18
  article-title: On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer
  publication-title: J. Comput. Phys.
– year: 1982
  ident: bib31
  publication-title: Fourier Analysis of Numerical Approximations of Hypersonic Equation
– reference: Engquist, B., Majda, A., 1977. Absorbing boundary conditions for the numerical simulation of waves. Proc. Natl. Acad. Sci. USA 74(5), 1765–1766.
– volume: 40
  start-page: 15
  year: 2012
  end-page: 26
  ident: bib23
  article-title: Preliminary design of a floating support structure for a 5
  publication-title: Ocean Eng.
– reference: MacNeal Schwendler Corp., 2006. MSC/Dytran Theory Manual (ver. 2005r3). Los Angeles, CA, USA.
– volume: 4
  start-page: 13
  year: 2000
  end-page: 22
  ident: bib3
  article-title: Coupling fluid (CFD) and structural (FE) models using finite interpolation elements
  publication-title: Aerosp. Sci. Technol.
– volume: 75
  start-page: 044504
  year: 2008
  ident: bib24
  article-title: Transient response of submerged plates subject to underwater shock loading: an analytical perspective. ASME Trans
  publication-title: J. Appl. Mech.
– reference: Sigrist, J.F., Abouri, D., 2006. Numerical simulation of a non-linear coupled fluid–structure problem with implicit and explicit coupling procedure. In: ASME Pressure Vessel and Piping Division Conference Proceedings, Vancouver, Canada, pp. 23–27.
– volume: 227
  start-page: 4398
  year: 2008
  end-page: 4424
  ident: bib19
  article-title: Absorbing boundary conditions for nonlinear Euler and Navier–Stokes equations based on the perfectly matched layer technique
  publication-title: J. Comput. Phys.
– volume: 76
  start-page: 749
  year: 2008
  end-page: 774
  ident: bib10
  article-title: Hydroelastic analysis of insulation containment of LNG carrier by global-local approach
  publication-title: Int. J. Numer. Methods Eng.
– volume: 35
  start-page: 740
  issue: 4
  year: 1997
  ident: 10.1016/j.oceaneng.2014.04.026_bib12
  article-title: Proposed inflow/outflow boundary conditions for direct computation of aerodynamic sound
  publication-title: AIAA J.
  doi: 10.2514/2.167
– volume: 112
  start-page: 024911
  issue: 2
  year: 2012
  ident: 10.1016/j.oceaneng.2014.04.026_bib14
  article-title: Non-contact near-field underwater explosion induced shock-wave loading of submerged rigid structures: nonlinear compressibility effects in fluid structure interaction
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4737778
– volume: 9
  start-page: 189
  year: 1972
  ident: 10.1016/j.oceaneng.2014.04.026_bib16
  article-title: Interpolation using surface splines
  publication-title: J. Aircr.
  doi: 10.2514/3.44330
– ident: 10.1016/j.oceaneng.2014.04.026_bib11
  doi: 10.1073/pnas.74.5.1765
– volume: 94
  start-page: 1
  year: 1991
  ident: 10.1016/j.oceaneng.2014.04.026_bib15
  article-title: Non-reflecting boundary conditions
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(91)90135-8
– volume: 11
  start-page: 121
  year: 1983
  ident: 10.1016/j.oceaneng.2014.04.026_bib30
  article-title: Progress in computational physics
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(83)90006-3
– volume: 43
  start-page: 679
  issue: 5
  year: 2012
  ident: 10.1016/j.oceaneng.2014.04.026_bib9
  article-title: Mobile harbor: structural dynamic response of RORI crane to wave-induced excitation
  publication-title: Struct. Eng. Mech.
  doi: 10.12989/sem.2012.43.5.679
– volume: 23
  start-page: 2362
  issue: 12
  year: 1980
  ident: 10.1016/j.oceaneng.2014.04.026_bib22
  article-title: Phenomenological model of shock initiation in heterogeneous explosive
  publication-title: Phys. Fluids
  doi: 10.1063/1.862940
– volume: 114
  start-page: 185
  issue: 2
  year: 1994
  ident: 10.1016/j.oceaneng.2014.04.026_bib4
  article-title: A perfectly matched layer for the absorption of electromagnetic waves
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1159
– volume: 76
  start-page: 749
  year: 2008
  ident: 10.1016/j.oceaneng.2014.04.026_bib10
  article-title: Hydroelastic analysis of insulation containment of LNG carrier by global-local approach
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2346
– volume: 111
  start-page: 1584
  issue: 4
  year: 2002
  ident: 10.1016/j.oceaneng.2014.04.026_bib13
  article-title: An integrated wave-effects model for an underwater explosion bubble
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1458590
– volume: 68
  start-page: 1
  year: 1987
  ident: 10.1016/j.oceaneng.2014.04.026_bib29
  article-title: Time dependent boundary conditions for hyperbolic systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(87)90041-6
– ident: 10.1016/j.oceaneng.2014.04.026_bib27
  doi: 10.1115/PVP2006-ICPVT-11-93107
– volume: 4
  start-page: 13
  year: 2000
  ident: 10.1016/j.oceaneng.2014.04.026_bib3
  article-title: Coupling fluid (CFD) and structural (FE) models using finite interpolation elements
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/S1270-9638(00)00111-5
– ident: 10.1016/j.oceaneng.2014.04.026_bib7
– volume: 127
  start-page: 363
  year: 1996
  ident: 10.1016/j.oceaneng.2014.04.026_bib5
  article-title: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0181
– volume: 41
  start-page: 185
  year: 2003
  ident: 10.1016/j.oceaneng.2014.04.026_bib8
  article-title: Dynamic analysis of baffled fuel-storage tanks using the ALE finite element method
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.434
– year: 2003
  ident: 10.1016/j.oceaneng.2014.04.026_bib6
– volume: 227
  start-page: 4398
  year: 2008
  ident: 10.1016/j.oceaneng.2014.04.026_bib19
  article-title: Absorbing boundary conditions for nonlinear Euler and Navier–Stokes equations based on the perfectly matched layer technique
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.01.010
– volume: 4
  start-page: 268
  issue: 8
  year: 1994
  ident: 10.1016/j.oceaneng.2014.04.026_bib21
  article-title: Validation and extension to three dimensions of the Berenger absorbing boundary condition for FD-TD meshes
  publication-title: IEEE Microw. Guided Wave Lett.
  doi: 10.1109/75.311494
– year: 1982
  ident: 10.1016/j.oceaneng.2014.04.026_bib31
– start-page: 287
  year: 1941
  ident: 10.1016/j.oceaneng.2014.04.026_bib28
  article-title: The pressure and impulse of submarine explosion waves on plates
– volume: 49
  start-page: 65
  year: 1987
  ident: 10.1016/j.oceaneng.2014.04.026_bib17
  article-title: Numerical absorbing boundary conditions for the wave equation
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1987-0890254-1
– volume: 40
  start-page: 15
  year: 2012
  ident: 10.1016/j.oceaneng.2014.04.026_bib23
  article-title: Preliminary design of a floating support structure for a 5MW offshore wind turbine
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2011.12.009
– volume: 75
  start-page: 044504
  year: 2008
  ident: 10.1016/j.oceaneng.2014.04.026_bib24
  article-title: Transient response of submerged plates subject to underwater shock loading: an analytical perspective. ASME Trans
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2871129
– volume: 33
  start-page: 707
  year: 1980
  ident: 10.1016/j.oceaneng.2014.04.026_bib2
  article-title: Radiation boundary conditions for wave-like equations
  publication-title: Comm. Pure Appl. Math
  doi: 10.1002/cpa.3160330603
– volume: 129
  start-page: 201
  year: 1996
  ident: 10.1016/j.oceaneng.2014.04.026_bib18
  article-title: On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0244
– volume: 63
  start-page: 47
  issue: 1
  year: 2010
  ident: 10.1016/j.oceaneng.2014.04.026_bib26
  article-title: An improved unsplit and convolutional perfectly matched layer absorbing technique for the Navier–Stokes equations using cut-off frequency shift
  publication-title: Comput. Model. Eng. Sci.
– ident: 10.1016/j.oceaneng.2014.04.026_bib25
– volume: 72
  start-page: 356
  year: 2013
  ident: 10.1016/j.oceaneng.2014.04.026_bib20
  article-title: Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2013.07.017
SSID ssj0006603
Score 2.086872
Snippet The structural dynamic stability of spar-type floating platform for offshore wind turbine subject to hydrodynamic impact is numerically investigated by the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 80
SubjectTerms Applied sciences
Buildings. Public works
Computational fluid dynamics
Exact sciences and technology
Floating platform
Floating platforms
Fluid flow
Hydraulic constructions
Hydrodynamic impact
Hydrodynamics
Joining
Mathematical analysis
Mathematical models
Non-reflective boundary treatment
Offshore structure (platforms, tanks, etc.)
Offshore wind turbine
Perfectly matched layer (PML)
Rigid-body dynamics
Structural stability
Title Comparative evaluation of PML technique for hydrodynamic impact loading on spar-type floating platform
URI https://dx.doi.org/10.1016/j.oceaneng.2014.04.026
https://www.proquest.com/docview/1627974455
https://www.proquest.com/docview/1642241450
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4heqFFVaFUpI_IlbgucXb9PKKoKH1AORSJm-X12i0o2kQQDlz62zuzjwTUCg6V9rKWZ2157Hl4Z74BOIha27zSHt1UGTMRecws9wnPleKl8jH4iu47Tk7V9Fx8uZAXGzDpc2EorLKT_a1Mb6R11zLqVnO0uLykHN_cGsKbEmS3SILdFkLTLj_8vQ7zUIoXfZgH9b6XJXx1iCrC17H-SSFeooE8JZCFfyuo7YW_wWVLbb2Lv0R3o4-OX8HLzpBkR-1cd2Aj1rvw_B684C68-E4Dd5jUryFN1kjfbI3yzeaJnZ18Yys0V4Z2LPt1V6FobcvVszaVks3mTcA9QxqUQ9cZXd-yhK0UOs0WM78kC3gPzo8__ZhMs67MQhYEN8vMBq5tTMF6bpOJ6N95VXgtx6rSZZCFyMsovUwh91QF3BSpzIXXXoRSGTR3ijewWc_ruA9Mo7edKhNMqUtRJeErJdH3NiFqKU0sBiD7tXWhwyCnUhgz1webXbmeJ4544jg-uRrAaEW3aFE4nqSwPevcg_3kUFU8STt8wOvVkJRtarjVA_jYM9_haaRfLPiR-e2NG6tco4cmpHysjyC7SUj-9j8m-Q626I2umcfyPWwur2_jB7SPluWwOQBDeHb0-ev09A-OcxJ6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9MBLCAqo4VEWiavJxt7nsYqoUpoEDq3U22q93i2tIidq00P_PTOxnbYC0QOST2uPd7XjnZdnvgH4ErW2eaU9uqkyZiLymFnuE54rxUvlY_AVxTumMzU-Ed9P5ekWjLpaGEqrbGV_I9PX0rodGbS7OVien1ONb24N4U0JslukegTbhE4le7C9f3g0nm0EslK86DI9iOBOofDFV9QSvo71GWV5iTXqKeEs_F1HPV_6K9y51LS8-EN6r1XSwUt40dqSbL9Z7ivYivUOPL2DMLgDz37QxC0s9WtIo1uwb3YL9M0Wif2cTtgG0JWhKct-3VQoXZuO9ayppmTzxTrnniENiqLLjCK4LOEoZU-z5dyvyAh-AycH345H46zttJAFwc0qs4FrG1OwnttkIrp4XhVey6GqdBlkIfIySi9TyD01AjdFKnPhtRehVAYtnuIt9OpFHXeBaXS4U2WCKXUpqiR8pSS63yZELaWJRR9kt7cutDDk1A1j7rp8swvX8cQRTxzHK1d9GGzolg0Qx4MUtmOdu_dJOdQWD9Lu3eP1ZkoqODXc6j587pjv8EDSXxZ8yeL6yg1VrtFJE1L-6xlBppOQ_N1_LPITPB4fTyducjg7eg9P6A5FnYfyA_RWl9fxI5pLq3KvPQ6_AeIdFSs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+evaluation+of+PML+technique+for+hydrodynamic+impact+loading+on+spar-type+floating+platform&rft.jtitle=Ocean+engineering&rft.au=KIM%2C+M.+S&rft.au=JEON%2C+S.+H&rft.au=CHO%2C+J.+R&rft.au=JEONG%2C+W.+B&rft.date=2014-07-15&rft.pub=Elsevier&rft.issn=0029-8018&rft.volume=85&rft.spage=80&rft.epage=92&rft_id=info:doi/10.1016%2Fj.oceaneng.2014.04.026&rft.externalDBID=n%2Fa&rft.externalDocID=28548097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon