Reconnaissance Mission Conducted by UAV Swarms Based on Distributed PSO Path Planning Algorithms

Reconnaissance mission has a wide application in both civil and military fields, which provides intelligence and basis for the following decision-making to accomplish certain goals. Due to numerous advantages of UAV swarms such as strong flexibility, high efficiency, and low cost, conducting reconna...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 105086 - 105099
Main Authors Wang, Yubing, Bai, Peng, Liang, Xiaolong, Wang, Weijia, Zhang, Jiaqiang, Fu, Qixi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reconnaissance mission has a wide application in both civil and military fields, which provides intelligence and basis for the following decision-making to accomplish certain goals. Due to numerous advantages of UAV swarms such as strong flexibility, high efficiency, and low cost, conducting reconnaissance missions by UAV swarms has become a trend of future. However, the path planning problem of UAV swarms is a key challenge in the aspect of model construction, algorithm, selection and high computational complexity, especially when the mission is complicated. In this paper, various distributed particle swarm optimization (DPSO)-based path planning algorithms are proposed for UAV swarms conducting a reconnaissance mission, in which targets are gathered in the form of clusters and different tactic needs are taken into consideration. Three algorithms named the maximum density convergence DPSO algorithm (MDC-DPSO), the fast cross-over DPSO algorithm (FCO-DPSO), and the accurate coverage exploration DPSO algorithm (ACE-DPSO) are proposed correspond to the needs of fast convergence, random cross-over, and accurate search, respectively. Different fitness functions and search strategies are specifically designed considering the mobility and communication constraints of the UAV swarms. Besides, the jump-out mechanism and revisit mechanism are designed to save invalid search efforts and avoid falling into local optimum. The simulation results demonstrate that the proposed algorithms are effective in generating paths for UAV swarms conducting a reconnaissance mission, which can be easily applied to large scale swarms.
AbstractList Reconnaissance mission has a wide application in both civil and military fields, which provides intelligence and basis for the following decision-making to accomplish certain goals. Due to numerous advantages of UAV swarms such as strong flexibility, high efficiency, and low cost, conducting reconnaissance missions by UAV swarms has become a trend of future. However, the path planning problem of UAV swarms is a key challenge in the aspect of model construction, algorithm, selection and high computational complexity, especially when the mission is complicated. In this paper, various distributed particle swarm optimization (DPSO)-based path planning algorithms are proposed for UAV swarms conducting a reconnaissance mission, in which targets are gathered in the form of clusters and different tactic needs are taken into consideration. Three algorithms named the maximum density convergence DPSO algorithm (MDC-DPSO), the fast cross-over DPSO algorithm (FCO-DPSO), and the accurate coverage exploration DPSO algorithm (ACE-DPSO) are proposed correspond to the needs of fast convergence, random cross-over, and accurate search, respectively. Different fitness functions and search strategies are specifically designed considering the mobility and communication constraints of the UAV swarms. Besides, the jump-out mechanism and revisit mechanism are designed to save invalid search efforts and avoid falling into local optimum. The simulation results demonstrate that the proposed algorithms are effective in generating paths for UAV swarms conducting a reconnaissance mission, which can be easily applied to large scale swarms.
Author Wang, Weijia
Wang, Yubing
Fu, Qixi
Liang, Xiaolong
Zhang, Jiaqiang
Bai, Peng
Author_xml – sequence: 1
  givenname: Yubing
  orcidid: 0000-0002-6179-9384
  surname: Wang
  fullname: Wang, Yubing
  organization: Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, China
– sequence: 2
  givenname: Peng
  surname: Bai
  fullname: Bai, Peng
  organization: Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, China
– sequence: 3
  givenname: Xiaolong
  surname: Liang
  fullname: Liang, Xiaolong
  email: afeu_lxl@sina.com
  organization: Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, China
– sequence: 4
  givenname: Weijia
  orcidid: 0000-0001-9643-6703
  surname: Wang
  fullname: Wang, Weijia
  organization: Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, China
– sequence: 5
  givenname: Jiaqiang
  surname: Zhang
  fullname: Zhang, Jiaqiang
  organization: Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, China
– sequence: 6
  givenname: Qixi
  surname: Fu
  fullname: Fu, Qixi
  organization: Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, China
BookMark eNp9kc1uEzEUhS1UJErpE3QzEusE_43HXoahQKWiRoSyNbbnTupoYhfbEerb43RahFjgja-Oznd0dc9rdBJiAIQuCF4SgtW7Vd9fbjZLiolaUsUoxvIFOqVEqAVrmTj5a36FznPe4fpkldruFP34Ci6GYHzOJjhovtTBx9D0MQwHV2Bo7ENzu_rebH6ZtM_Ne5OrVg0ffC7J28PRst7cNGtT7pr1ZELwYduspm1Mvtzt8xv0cjRThvOn_wzdfrz81n9eXN98uupX1wvHsSwLJTtnHVcOE6vYICi2ggtKqAJieGeEBD5ybEBRRZnoBAAeq2oVtMway87Q1Zw7RLPT98nvTXrQ0Xj9KMS01SYV7ybQrqUSgx0dES13nTCjFC1xg5CjlMqONevtnHWf4s8D5KJ38ZBCXV9T3raCcEpwdanZ5VLMOcGonS-m1OuVZPykCdbHfvTcjz72o5_6qSz7h33e-P_UxUx5APhDyE4SKQn7DYVDnRY
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11277_023_10534_w
crossref_primary_10_1177_00368504221094722
crossref_primary_10_3390_app13116795
crossref_primary_10_1109_ACCESS_2023_3326435
crossref_primary_10_3390_a13100255
crossref_primary_10_1016_j_asoc_2020_106857
crossref_primary_10_1109_ACCESS_2023_3257570
crossref_primary_10_1017_S0263574723000231
crossref_primary_10_1109_ACCESS_2020_2990927
crossref_primary_10_3390_s23218766
crossref_primary_10_1016_j_ast_2020_105826
crossref_primary_10_1007_s10514_023_10143_3
crossref_primary_10_1007_s40747_023_01015_5
crossref_primary_10_3390_drones6120393
crossref_primary_10_1007_s41315_024_00328_z
crossref_primary_10_1109_TCYB_2021_3090662
crossref_primary_10_3390_biomimetics8020222
crossref_primary_10_3390_s21041224
crossref_primary_10_1109_JIOT_2021_3125971
crossref_primary_10_3390_drones8100521
crossref_primary_10_1016_j_eswa_2024_123170
crossref_primary_10_1016_j_knosys_2024_111830
crossref_primary_10_1109_ACCESS_2020_2978077
crossref_primary_10_1007_s42405_022_00461_8
crossref_primary_10_23919_JSEE_2022_000132
crossref_primary_10_3390_aerospace9090500
crossref_primary_10_3390_drones8050171
crossref_primary_10_1016_j_phycom_2023_102073
crossref_primary_10_3390_s23063051
crossref_primary_10_1109_COMST_2024_3395358
crossref_primary_10_3390_electronics12153263
crossref_primary_10_1016_j_rcim_2022_102330
crossref_primary_10_1016_j_knosys_2020_105530
crossref_primary_10_1109_ACCESS_2021_3132650
crossref_primary_10_1109_ACCESS_2020_3006479
crossref_primary_10_1155_2021_7667173
crossref_primary_10_3390_electronics11132031
crossref_primary_10_1093_jcde_qwac109
crossref_primary_10_3390_drones7020084
crossref_primary_10_1016_j_asoc_2023_110761
crossref_primary_10_1038_s41598_020_76274_0
crossref_primary_10_1088_1742_6596_2716_1_012056
crossref_primary_10_1109_ACCESS_2021_3068972
crossref_primary_10_1007_s42405_024_00813_6
crossref_primary_10_1109_ACCESS_2024_3384976
crossref_primary_10_3390_math9020190
crossref_primary_10_3390_drones7010010
crossref_primary_10_3390_drones7060355
crossref_primary_10_1109_OJITS_2024_3486155
crossref_primary_10_1155_2024_6643424
crossref_primary_10_3390_jmse11040719
crossref_primary_10_1109_LWC_2024_3355934
crossref_primary_10_1016_j_dcan_2022_04_002
crossref_primary_10_1016_j_ress_2023_109904
crossref_primary_10_3389_fnbot_2021_770361
crossref_primary_10_1109_TVT_2022_3219053
crossref_primary_10_1109_ACCESS_2021_3073420
crossref_primary_10_1109_TWC_2024_3407837
crossref_primary_10_1080_01969722_2022_2157607
crossref_primary_10_3390_aerospace10070652
crossref_primary_10_1109_ACCESS_2023_3322930
crossref_primary_10_1109_ACCESS_2020_2991076
crossref_primary_10_1109_ACCESS_2020_2994466
crossref_primary_10_1109_JSEN_2023_3297666
crossref_primary_10_1109_TCCN_2024_3358545
crossref_primary_10_1016_j_sysarc_2023_102895
crossref_primary_10_1109_JIOT_2024_3364230
crossref_primary_10_1109_TCE_2024_3368062
crossref_primary_10_1051_ro_2024073
crossref_primary_10_1007_s10462_023_10670_6
crossref_primary_10_1145_3570723
crossref_primary_10_7717_peerj_cs_388
crossref_primary_10_1007_s41870_024_01917_8
crossref_primary_10_3390_drones9020078
crossref_primary_10_1016_j_jnca_2021_103141
crossref_primary_10_1109_ACCESS_2020_3019963
crossref_primary_10_3390_electronics13132432
crossref_primary_10_3390_s21082642
Cites_doi 10.1016/j.future.2018.07.048
10.1016/j.eswa.2013.10.061
10.1007/s10846-018-0930-5
10.1016/j.cja.2017.09.005
10.1016/j.robot.2016.08.002
10.1109/TE.2015.2402196
10.1109/TAES.2012.6237608
10.1109/CEC.2006.1688510
10.1109/RCAR.2017.8311901
10.1016/j.knosys.2017.08.023
10.1109/TSMCA.2011.2159586
10.1109/IISA.2018.8633635
10.1016/j.ast.2018.07.021
10.1109/ACCESS.2018.2878615
10.1177/027836402320556359
10.1109/SIS.2007.368026
10.1109/ICIT.2016.7475064
10.1109/TRO.2004.838026
10.1016/j.ast.2018.10.017
10.1016/j.asoc.2017.09.009
10.1016/j.paerosci.2019.05.003
10.21629/JSEE.2017.03.12
10.1016/j.ipl.2006.10.005
10.1016/j.ast.2016.08.017
10.1109/TAES.2018.2807558
10.1016/j.robot.2013.09.004
10.1016/j.knosys.2018.05.033
10.1109/7.869506
10.1016/j.asoc.2018.09.011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2932008
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 105099
ExternalDocumentID oai_doaj_org_article_c5280ebfc1654c76af8651cd68f889bf
10_1109_ACCESS_2019_2932008
8781881
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61703427
  funderid: 10.13039/501100001809
– fundername: Shanxi Province Laboratory, Metasynthesis for Electronic and Information System
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-987cbc49c01b93d620b6462129e1a47a68e4f40ae92923676ee0fa68b9e53bab3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:27 EDT 2025
Mon Jun 30 07:02:29 EDT 2025
Tue Jul 01 02:41:46 EDT 2025
Thu Apr 24 22:53:37 EDT 2025
Wed Aug 27 02:54:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-987cbc49c01b93d620b6462129e1a47a68e4f40ae92923676ee0fa68b9e53bab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9643-6703
0000-0002-6179-9384
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8781881
PQID 2455614210
PQPubID 4845423
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_c5280ebfc1654c76af8651cd68f889bf
proquest_journals_2455614210
ieee_primary_8781881
crossref_citationtrail_10_1109_ACCESS_2019_2932008
crossref_primary_10_1109_ACCESS_2019_2932008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref30
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
lin (ref29) 2007
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
koenig (ref11) 2005; 21
ref3
ref6
ref5
perez-carabaza (ref14) 2018; 62
References_xml – ident: ref21
  doi: 10.1016/j.future.2018.07.048
– ident: ref28
  doi: 10.1016/j.eswa.2013.10.061
– ident: ref25
  doi: 10.1007/s10846-018-0930-5
– ident: ref4
  doi: 10.1016/j.cja.2017.09.005
– ident: ref1
  doi: 10.1016/j.robot.2016.08.002
– ident: ref12
  doi: 10.1109/TE.2015.2402196
– ident: ref2
  doi: 10.1109/TAES.2012.6237608
– ident: ref18
  doi: 10.1109/CEC.2006.1688510
– ident: ref19
  doi: 10.1109/RCAR.2017.8311901
– ident: ref24
  doi: 10.1016/j.knosys.2017.08.023
– ident: ref15
  doi: 10.1109/TSMCA.2011.2159586
– ident: ref20
  doi: 10.1109/IISA.2018.8633635
– ident: ref6
  doi: 10.1016/j.ast.2018.07.021
– ident: ref23
  doi: 10.1109/ACCESS.2018.2878615
– ident: ref26
  doi: 10.1177/027836402320556359
– ident: ref17
  doi: 10.1109/SIS.2007.368026
– ident: ref8
  doi: 10.1109/ICIT.2016.7475064
– start-page: 823
  year: 2007
  ident: ref29
  article-title: The standard particle swarm optimization algorithm convergence analysis and parameter selection
  publication-title: Proc 3rd Int Conf Natural Comput
– volume: 21
  start-page: 354
  year: 2005
  ident: ref11
  article-title: Fast replanning for navigation in unknown terrain
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2004.838026
– ident: ref3
  doi: 10.1016/j.ast.2018.10.017
– volume: 62
  start-page: 789
  year: 2018
  ident: ref14
  article-title: Ant colony optimization for multi-UAV minimum time search in uncertain domains
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.09.009
– ident: ref22
  doi: 10.1016/j.paerosci.2019.05.003
– ident: ref9
  doi: 10.21629/JSEE.2017.03.12
– ident: ref30
  doi: 10.1016/j.ipl.2006.10.005
– ident: ref16
  doi: 10.1016/j.ast.2016.08.017
– ident: ref13
  doi: 10.1109/TAES.2018.2807558
– ident: ref27
  doi: 10.1016/j.robot.2013.09.004
– ident: ref7
  doi: 10.1016/j.knosys.2018.05.033
– ident: ref10
  doi: 10.1109/7.869506
– ident: ref5
  doi: 10.1016/j.asoc.2018.09.011
SSID ssj0000816957
Score 2.4812918
Snippet Reconnaissance mission has a wide application in both civil and military fields, which provides intelligence and basis for the following decision-making to...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105086
SubjectTerms Algorithms
Clustering algorithms
Convergence
Crossovers
Decision making
distributed particle swarm optimization (DPSO)
Heuristic algorithms
Particle swarm optimization
Path planning
Reconnaissance
Reconnaissance aircraft
Reconnaissance mission
Robots
Search methods
Swarm intelligence
UAV swarms
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAkECeOY4-lgBASUKkUsRm_AkglRW0R4t9zl6RVERIsjInsJP7u4rtznO8j5FCGjEknWaRkGiIeEhFJg8thkDy7DEUmK7WG6xtx2edXD9nDnNQX7gmr6YFr4E5clsg42MLhbzcuF6aA_sx5IQsplS1w9oWYN1dMVXOwZEJleUMzxGJ10u50YES4l0sdQ4jDz_7fQlHF2N9IrPyYl6tgc7FKVposkbbrp1sjC6FcJ8tz3IEb5BELx7I0ABwajl6_4H7WknaGJVK4Bk_tJ-2372nvw4xex_QUwpWn0OAMqXJR5QoOu71b2oUckE61i2h78DQcvUyeX8ebpH9xfte5jBq5hMjxWE4A7dxZx5WLmVWpF0lsBRcQmlRghudGyMALHpsAGRHytokQ4gLOWhWy1BqbbpHFcliGbUIzmXiTJz4trOfIUZfkuS9UFjyzLg2yRZIpcto1XOIoaTHQVU0RK13DrRFu3cDdIkezTm81lcbvzU_RJLOmyINdnQDv0I136L-8o0U20KCzi8gcEhTJWmRvamDdvLNjnXCUCuVQA-_8x613yRIOp16u2SOLk9F72IcEZmIPKl_9ApOF6VQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Reconnaissance Mission Conducted by UAV Swarms Based on Distributed PSO Path Planning Algorithms
URI https://ieeexplore.ieee.org/document/8781881
https://www.proquest.com/docview/2455614210
https://doaj.org/article/c5280ebfc1654c76af8651cd68f889bf
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGTnBgwEB0G5MPHJcuPxzHPnaFaUIqTBpFu5nYfoGJLZ3aVAj-et5z3AjGhLgllh05-ey8H7a_j7HXCspMOZUlWhWQCMhlompKh6Hz7EoSmQxqDbP38mwu3l2Wl1vsaDgLAwBh8xmM6TKs5fuFW1Oq7FhVaF7onPUDDNz6s1pDPoUEJHRZRWKhLNXHk-kU34F2b-kxGjVa6P_D-ASO_iiq8tefOJiX0x0223Ss31Xybbzu7Nj9vMPZ-L89f8IeRz-TT_qB8ZRtQfuMPfqNfXCXfabQs21r_PQEPZ9d0Y7Ylk8XLZHAguf2B59PPvGL7_XyZsVP0OB5jhXeENku6WTh7fnFB36OXiTfqB_xyfWXxfKq-3qzes7mp28_Ts-SKLiQOJGqDvGqnHVCuzSzuvAyT60UEo2bhqwWVS0ViEakNaBPRcxvEiBtsNRqKAtb2-IF224XLbxkvFS5r6vcF431glju8qryjS7BZ9YVoEYs3yBhXGQjJ1GMaxOiklSbHj5D8JkI34gdDY1uezKOf1c_IYiHqsSkHQoQGhMnpnFlrlKwjaNjXa6SdYPjM3NeqkYpbZsR2yU4h4dEJEfsYDNgTJz1K5MLEhsVGEXv3d9qnz2kDvYpnAO23S3X8Aqdms4ehmTAYRjTvwBFTPM9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcgAOUCioCy34wLHZ5mE79nG7UC3QLZXaRb0ZPyZQ0WbRblao_fV4Em_ES4hbYtmRk8_OjMfj7yPklQSeSSezRMkCEga5SKTBcFhwnh1HkclWrWF6IiYz9u6CX2yQ_f4sDAC0yWcwxMt2L9_P3QpDZQeyDOYFz1nfCXafZ91prT6ighISipeRWihL1cFoPA5vgflbahjMGm71_2J-Wpb-KKvyx7-4NTBHD8l03bUur-TrcNXYobv9jbXxf_u-RR5ET5OOuqHxiGxA_Zjc_4l_cJt8wsVnXZvw8RF8Or3EnNiajuc10sCCp_aGzkYf6dl3s7he0sNg8jwNFV4j3S4qZYXb07MP9DT4kXStf0RHV5_ni8vmy_XyCZkdvTkfT5IouZA4lsomIFY665hyaWZV4UWeWsFEMG8KMsNKIySwiqUGgleF3G8CIK1CqVXAC2ts8ZRs1vMadgjlMvemzH1RWc-Q5y4vS18pDj6zrgA5IPkaCe0iHznKYlzpdl2SKt3BpxE-HeEbkP2-0beOjuPf1Q8R4r4qcmm3BQEaHaemdjyXKdjK4cEuVwpThRGaOS9kJaWy1YBsI5z9QyKSA7K7HjA6zvulzhnKjbKwjn7291Yvyd3J-fRYH789ef-c3MPOdgGdXbLZLFawF1ycxr5oR_YPWxT1kQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconnaissance+Mission+Conducted+by+UAV+Swarms+Based+on+Distributed+PSO+Path+Planning+Algorithms&rft.jtitle=IEEE+access&rft.au=Wang%2C+Yubing&rft.au=Bai%2C+Peng&rft.au=Liang%2C+Xiaolong&rft.au=Wang%2C+Weijia&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=105086&rft.epage=105099&rft_id=info:doi/10.1109%2FACCESS.2019.2932008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2932008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon