Reconnaissance Mission Conducted by UAV Swarms Based on Distributed PSO Path Planning Algorithms
Reconnaissance mission has a wide application in both civil and military fields, which provides intelligence and basis for the following decision-making to accomplish certain goals. Due to numerous advantages of UAV swarms such as strong flexibility, high efficiency, and low cost, conducting reconna...
Saved in:
Published in | IEEE access Vol. 7; pp. 105086 - 105099 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reconnaissance mission has a wide application in both civil and military fields, which provides intelligence and basis for the following decision-making to accomplish certain goals. Due to numerous advantages of UAV swarms such as strong flexibility, high efficiency, and low cost, conducting reconnaissance missions by UAV swarms has become a trend of future. However, the path planning problem of UAV swarms is a key challenge in the aspect of model construction, algorithm, selection and high computational complexity, especially when the mission is complicated. In this paper, various distributed particle swarm optimization (DPSO)-based path planning algorithms are proposed for UAV swarms conducting a reconnaissance mission, in which targets are gathered in the form of clusters and different tactic needs are taken into consideration. Three algorithms named the maximum density convergence DPSO algorithm (MDC-DPSO), the fast cross-over DPSO algorithm (FCO-DPSO), and the accurate coverage exploration DPSO algorithm (ACE-DPSO) are proposed correspond to the needs of fast convergence, random cross-over, and accurate search, respectively. Different fitness functions and search strategies are specifically designed considering the mobility and communication constraints of the UAV swarms. Besides, the jump-out mechanism and revisit mechanism are designed to save invalid search efforts and avoid falling into local optimum. The simulation results demonstrate that the proposed algorithms are effective in generating paths for UAV swarms conducting a reconnaissance mission, which can be easily applied to large scale swarms. |
---|---|
AbstractList | Reconnaissance mission has a wide application in both civil and military fields, which provides intelligence and basis for the following decision-making to accomplish certain goals. Due to numerous advantages of UAV swarms such as strong flexibility, high efficiency, and low cost, conducting reconnaissance missions by UAV swarms has become a trend of future. However, the path planning problem of UAV swarms is a key challenge in the aspect of model construction, algorithm, selection and high computational complexity, especially when the mission is complicated. In this paper, various distributed particle swarm optimization (DPSO)-based path planning algorithms are proposed for UAV swarms conducting a reconnaissance mission, in which targets are gathered in the form of clusters and different tactic needs are taken into consideration. Three algorithms named the maximum density convergence DPSO algorithm (MDC-DPSO), the fast cross-over DPSO algorithm (FCO-DPSO), and the accurate coverage exploration DPSO algorithm (ACE-DPSO) are proposed correspond to the needs of fast convergence, random cross-over, and accurate search, respectively. Different fitness functions and search strategies are specifically designed considering the mobility and communication constraints of the UAV swarms. Besides, the jump-out mechanism and revisit mechanism are designed to save invalid search efforts and avoid falling into local optimum. The simulation results demonstrate that the proposed algorithms are effective in generating paths for UAV swarms conducting a reconnaissance mission, which can be easily applied to large scale swarms. |
Author | Wang, Weijia Wang, Yubing Fu, Qixi Liang, Xiaolong Zhang, Jiaqiang Bai, Peng |
Author_xml | – sequence: 1 givenname: Yubing orcidid: 0000-0002-6179-9384 surname: Wang fullname: Wang, Yubing organization: Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, China – sequence: 2 givenname: Peng surname: Bai fullname: Bai, Peng organization: Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, China – sequence: 3 givenname: Xiaolong surname: Liang fullname: Liang, Xiaolong email: afeu_lxl@sina.com organization: Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, China – sequence: 4 givenname: Weijia orcidid: 0000-0001-9643-6703 surname: Wang fullname: Wang, Weijia organization: Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, China – sequence: 5 givenname: Jiaqiang surname: Zhang fullname: Zhang, Jiaqiang organization: Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, China – sequence: 6 givenname: Qixi surname: Fu fullname: Fu, Qixi organization: Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, China |
BookMark | eNp9kc1uEzEUhS1UJErpE3QzEusE_43HXoahQKWiRoSyNbbnTupoYhfbEerb43RahFjgja-Oznd0dc9rdBJiAIQuCF4SgtW7Vd9fbjZLiolaUsUoxvIFOqVEqAVrmTj5a36FznPe4fpkldruFP34Ci6GYHzOJjhovtTBx9D0MQwHV2Bo7ENzu_rebH6ZtM_Ne5OrVg0ffC7J28PRst7cNGtT7pr1ZELwYduspm1Mvtzt8xv0cjRThvOn_wzdfrz81n9eXN98uupX1wvHsSwLJTtnHVcOE6vYICi2ggtKqAJieGeEBD5ybEBRRZnoBAAeq2oVtMway87Q1Zw7RLPT98nvTXrQ0Xj9KMS01SYV7ybQrqUSgx0dES13nTCjFC1xg5CjlMqONevtnHWf4s8D5KJ38ZBCXV9T3raCcEpwdanZ5VLMOcGonS-m1OuVZPykCdbHfvTcjz72o5_6qSz7h33e-P_UxUx5APhDyE4SKQn7DYVDnRY |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s11277_023_10534_w crossref_primary_10_1177_00368504221094722 crossref_primary_10_3390_app13116795 crossref_primary_10_1109_ACCESS_2023_3326435 crossref_primary_10_3390_a13100255 crossref_primary_10_1016_j_asoc_2020_106857 crossref_primary_10_1109_ACCESS_2023_3257570 crossref_primary_10_1017_S0263574723000231 crossref_primary_10_1109_ACCESS_2020_2990927 crossref_primary_10_3390_s23218766 crossref_primary_10_1016_j_ast_2020_105826 crossref_primary_10_1007_s10514_023_10143_3 crossref_primary_10_1007_s40747_023_01015_5 crossref_primary_10_3390_drones6120393 crossref_primary_10_1007_s41315_024_00328_z crossref_primary_10_1109_TCYB_2021_3090662 crossref_primary_10_3390_biomimetics8020222 crossref_primary_10_3390_s21041224 crossref_primary_10_1109_JIOT_2021_3125971 crossref_primary_10_3390_drones8100521 crossref_primary_10_1016_j_eswa_2024_123170 crossref_primary_10_1016_j_knosys_2024_111830 crossref_primary_10_1109_ACCESS_2020_2978077 crossref_primary_10_1007_s42405_022_00461_8 crossref_primary_10_23919_JSEE_2022_000132 crossref_primary_10_3390_aerospace9090500 crossref_primary_10_3390_drones8050171 crossref_primary_10_1016_j_phycom_2023_102073 crossref_primary_10_3390_s23063051 crossref_primary_10_1109_COMST_2024_3395358 crossref_primary_10_3390_electronics12153263 crossref_primary_10_1016_j_rcim_2022_102330 crossref_primary_10_1016_j_knosys_2020_105530 crossref_primary_10_1109_ACCESS_2021_3132650 crossref_primary_10_1109_ACCESS_2020_3006479 crossref_primary_10_1155_2021_7667173 crossref_primary_10_3390_electronics11132031 crossref_primary_10_1093_jcde_qwac109 crossref_primary_10_3390_drones7020084 crossref_primary_10_1016_j_asoc_2023_110761 crossref_primary_10_1038_s41598_020_76274_0 crossref_primary_10_1088_1742_6596_2716_1_012056 crossref_primary_10_1109_ACCESS_2021_3068972 crossref_primary_10_1007_s42405_024_00813_6 crossref_primary_10_1109_ACCESS_2024_3384976 crossref_primary_10_3390_math9020190 crossref_primary_10_3390_drones7010010 crossref_primary_10_3390_drones7060355 crossref_primary_10_1109_OJITS_2024_3486155 crossref_primary_10_1155_2024_6643424 crossref_primary_10_3390_jmse11040719 crossref_primary_10_1109_LWC_2024_3355934 crossref_primary_10_1016_j_dcan_2022_04_002 crossref_primary_10_1016_j_ress_2023_109904 crossref_primary_10_3389_fnbot_2021_770361 crossref_primary_10_1109_TVT_2022_3219053 crossref_primary_10_1109_ACCESS_2021_3073420 crossref_primary_10_1109_TWC_2024_3407837 crossref_primary_10_1080_01969722_2022_2157607 crossref_primary_10_3390_aerospace10070652 crossref_primary_10_1109_ACCESS_2023_3322930 crossref_primary_10_1109_ACCESS_2020_2991076 crossref_primary_10_1109_ACCESS_2020_2994466 crossref_primary_10_1109_JSEN_2023_3297666 crossref_primary_10_1109_TCCN_2024_3358545 crossref_primary_10_1016_j_sysarc_2023_102895 crossref_primary_10_1109_JIOT_2024_3364230 crossref_primary_10_1109_TCE_2024_3368062 crossref_primary_10_1051_ro_2024073 crossref_primary_10_1007_s10462_023_10670_6 crossref_primary_10_1145_3570723 crossref_primary_10_7717_peerj_cs_388 crossref_primary_10_1007_s41870_024_01917_8 crossref_primary_10_3390_drones9020078 crossref_primary_10_1016_j_jnca_2021_103141 crossref_primary_10_1109_ACCESS_2020_3019963 crossref_primary_10_3390_electronics13132432 crossref_primary_10_3390_s21082642 |
Cites_doi | 10.1016/j.future.2018.07.048 10.1016/j.eswa.2013.10.061 10.1007/s10846-018-0930-5 10.1016/j.cja.2017.09.005 10.1016/j.robot.2016.08.002 10.1109/TE.2015.2402196 10.1109/TAES.2012.6237608 10.1109/CEC.2006.1688510 10.1109/RCAR.2017.8311901 10.1016/j.knosys.2017.08.023 10.1109/TSMCA.2011.2159586 10.1109/IISA.2018.8633635 10.1016/j.ast.2018.07.021 10.1109/ACCESS.2018.2878615 10.1177/027836402320556359 10.1109/SIS.2007.368026 10.1109/ICIT.2016.7475064 10.1109/TRO.2004.838026 10.1016/j.ast.2018.10.017 10.1016/j.asoc.2017.09.009 10.1016/j.paerosci.2019.05.003 10.21629/JSEE.2017.03.12 10.1016/j.ipl.2006.10.005 10.1016/j.ast.2016.08.017 10.1109/TAES.2018.2807558 10.1016/j.robot.2013.09.004 10.1016/j.knosys.2018.05.033 10.1109/7.869506 10.1016/j.asoc.2018.09.011 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2932008 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 105099 |
ExternalDocumentID | oai_doaj_org_article_c5280ebfc1654c76af8651cd68f889bf 10_1109_ACCESS_2019_2932008 8781881 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61703427 funderid: 10.13039/501100001809 – fundername: Shanxi Province Laboratory, Metasynthesis for Electronic and Information System |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-987cbc49c01b93d620b6462129e1a47a68e4f40ae92923676ee0fa68b9e53bab3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:27 EDT 2025 Mon Jun 30 07:02:29 EDT 2025 Tue Jul 01 02:41:46 EDT 2025 Thu Apr 24 22:53:37 EDT 2025 Wed Aug 27 02:54:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-987cbc49c01b93d620b6462129e1a47a68e4f40ae92923676ee0fa68b9e53bab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9643-6703 0000-0002-6179-9384 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8781881 |
PQID | 2455614210 |
PQPubID | 4845423 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c5280ebfc1654c76af8651cd68f889bf proquest_journals_2455614210 ieee_primary_8781881 crossref_citationtrail_10_1109_ACCESS_2019_2932008 crossref_primary_10_1109_ACCESS_2019_2932008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref30 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 lin (ref29) 2007 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 koenig (ref11) 2005; 21 ref3 ref6 ref5 perez-carabaza (ref14) 2018; 62 |
References_xml | – ident: ref21 doi: 10.1016/j.future.2018.07.048 – ident: ref28 doi: 10.1016/j.eswa.2013.10.061 – ident: ref25 doi: 10.1007/s10846-018-0930-5 – ident: ref4 doi: 10.1016/j.cja.2017.09.005 – ident: ref1 doi: 10.1016/j.robot.2016.08.002 – ident: ref12 doi: 10.1109/TE.2015.2402196 – ident: ref2 doi: 10.1109/TAES.2012.6237608 – ident: ref18 doi: 10.1109/CEC.2006.1688510 – ident: ref19 doi: 10.1109/RCAR.2017.8311901 – ident: ref24 doi: 10.1016/j.knosys.2017.08.023 – ident: ref15 doi: 10.1109/TSMCA.2011.2159586 – ident: ref20 doi: 10.1109/IISA.2018.8633635 – ident: ref6 doi: 10.1016/j.ast.2018.07.021 – ident: ref23 doi: 10.1109/ACCESS.2018.2878615 – ident: ref26 doi: 10.1177/027836402320556359 – ident: ref17 doi: 10.1109/SIS.2007.368026 – ident: ref8 doi: 10.1109/ICIT.2016.7475064 – start-page: 823 year: 2007 ident: ref29 article-title: The standard particle swarm optimization algorithm convergence analysis and parameter selection publication-title: Proc 3rd Int Conf Natural Comput – volume: 21 start-page: 354 year: 2005 ident: ref11 article-title: Fast replanning for navigation in unknown terrain publication-title: IEEE Trans Robot doi: 10.1109/TRO.2004.838026 – ident: ref3 doi: 10.1016/j.ast.2018.10.017 – volume: 62 start-page: 789 year: 2018 ident: ref14 article-title: Ant colony optimization for multi-UAV minimum time search in uncertain domains publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.09.009 – ident: ref22 doi: 10.1016/j.paerosci.2019.05.003 – ident: ref9 doi: 10.21629/JSEE.2017.03.12 – ident: ref30 doi: 10.1016/j.ipl.2006.10.005 – ident: ref16 doi: 10.1016/j.ast.2016.08.017 – ident: ref13 doi: 10.1109/TAES.2018.2807558 – ident: ref27 doi: 10.1016/j.robot.2013.09.004 – ident: ref7 doi: 10.1016/j.knosys.2018.05.033 – ident: ref10 doi: 10.1109/7.869506 – ident: ref5 doi: 10.1016/j.asoc.2018.09.011 |
SSID | ssj0000816957 |
Score | 2.4812918 |
Snippet | Reconnaissance mission has a wide application in both civil and military fields, which provides intelligence and basis for the following decision-making to... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105086 |
SubjectTerms | Algorithms Clustering algorithms Convergence Crossovers Decision making distributed particle swarm optimization (DPSO) Heuristic algorithms Particle swarm optimization Path planning Reconnaissance Reconnaissance aircraft Reconnaissance mission Robots Search methods Swarm intelligence UAV swarms Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWAkECeOY4-lgBASUKkUsRm_AkglRW0R4t9zl6RVERIsjInsJP7u4rtznO8j5FCGjEknWaRkGiIeEhFJg8thkDy7DEUmK7WG6xtx2edXD9nDnNQX7gmr6YFr4E5clsg42MLhbzcuF6aA_sx5IQsplS1w9oWYN1dMVXOwZEJleUMzxGJ10u50YES4l0sdQ4jDz_7fQlHF2N9IrPyYl6tgc7FKVposkbbrp1sjC6FcJ8tz3IEb5BELx7I0ABwajl6_4H7WknaGJVK4Bk_tJ-2372nvw4xex_QUwpWn0OAMqXJR5QoOu71b2oUckE61i2h78DQcvUyeX8ebpH9xfte5jBq5hMjxWE4A7dxZx5WLmVWpF0lsBRcQmlRghudGyMALHpsAGRHytokQ4gLOWhWy1BqbbpHFcliGbUIzmXiTJz4trOfIUZfkuS9UFjyzLg2yRZIpcto1XOIoaTHQVU0RK13DrRFu3cDdIkezTm81lcbvzU_RJLOmyINdnQDv0I136L-8o0U20KCzi8gcEhTJWmRvamDdvLNjnXCUCuVQA-_8x613yRIOp16u2SOLk9F72IcEZmIPKl_9ApOF6VQ priority: 102 providerName: Directory of Open Access Journals |
Title | Reconnaissance Mission Conducted by UAV Swarms Based on Distributed PSO Path Planning Algorithms |
URI | https://ieeexplore.ieee.org/document/8781881 https://www.proquest.com/docview/2455614210 https://doaj.org/article/c5280ebfc1654c76af8651cd68f889bf |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGTnBgwEB0G5MPHJcuPxzHPnaFaUIqTBpFu5nYfoGJLZ3aVAj-et5z3AjGhLgllh05-ey8H7a_j7HXCspMOZUlWhWQCMhlompKh6Hz7EoSmQxqDbP38mwu3l2Wl1vsaDgLAwBh8xmM6TKs5fuFW1Oq7FhVaF7onPUDDNz6s1pDPoUEJHRZRWKhLNXHk-kU34F2b-kxGjVa6P_D-ASO_iiq8tefOJiX0x0223Ss31Xybbzu7Nj9vMPZ-L89f8IeRz-TT_qB8ZRtQfuMPfqNfXCXfabQs21r_PQEPZ9d0Y7Ylk8XLZHAguf2B59PPvGL7_XyZsVP0OB5jhXeENku6WTh7fnFB36OXiTfqB_xyfWXxfKq-3qzes7mp28_Ts-SKLiQOJGqDvGqnHVCuzSzuvAyT60UEo2bhqwWVS0ViEakNaBPRcxvEiBtsNRqKAtb2-IF224XLbxkvFS5r6vcF431glju8qryjS7BZ9YVoEYs3yBhXGQjJ1GMaxOiklSbHj5D8JkI34gdDY1uezKOf1c_IYiHqsSkHQoQGhMnpnFlrlKwjaNjXa6SdYPjM3NeqkYpbZsR2yU4h4dEJEfsYDNgTJz1K5MLEhsVGEXv3d9qnz2kDvYpnAO23S3X8Aqdms4ehmTAYRjTvwBFTPM9 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcgAOUCioCy34wLHZ5mE79nG7UC3QLZXaRb0ZPyZQ0WbRblao_fV4Em_ES4hbYtmRk8_OjMfj7yPklQSeSSezRMkCEga5SKTBcFhwnh1HkclWrWF6IiYz9u6CX2yQ_f4sDAC0yWcwxMt2L9_P3QpDZQeyDOYFz1nfCXafZ91prT6ighISipeRWihL1cFoPA5vgflbahjMGm71_2J-Wpb-KKvyx7-4NTBHD8l03bUur-TrcNXYobv9jbXxf_u-RR5ET5OOuqHxiGxA_Zjc_4l_cJt8wsVnXZvw8RF8Or3EnNiajuc10sCCp_aGzkYf6dl3s7he0sNg8jwNFV4j3S4qZYXb07MP9DT4kXStf0RHV5_ni8vmy_XyCZkdvTkfT5IouZA4lsomIFY665hyaWZV4UWeWsFEMG8KMsNKIySwiqUGgleF3G8CIK1CqVXAC2ts8ZRs1vMadgjlMvemzH1RWc-Q5y4vS18pDj6zrgA5IPkaCe0iHznKYlzpdl2SKt3BpxE-HeEbkP2-0beOjuPf1Q8R4r4qcmm3BQEaHaemdjyXKdjK4cEuVwpThRGaOS9kJaWy1YBsI5z9QyKSA7K7HjA6zvulzhnKjbKwjn7291Yvyd3J-fRYH789ef-c3MPOdgGdXbLZLFawF1ycxr5oR_YPWxT1kQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconnaissance+Mission+Conducted+by+UAV+Swarms+Based+on+Distributed+PSO+Path+Planning+Algorithms&rft.jtitle=IEEE+access&rft.au=Wang%2C+Yubing&rft.au=Bai%2C+Peng&rft.au=Liang%2C+Xiaolong&rft.au=Wang%2C+Weijia&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=105086&rft.epage=105099&rft_id=info:doi/10.1109%2FACCESS.2019.2932008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2932008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |